JPH02199847A - Mounting of ic chip - Google Patents

Mounting of ic chip

Info

Publication number
JPH02199847A
JPH02199847A JP1917989A JP1917989A JPH02199847A JP H02199847 A JPH02199847 A JP H02199847A JP 1917989 A JP1917989 A JP 1917989A JP 1917989 A JP1917989 A JP 1917989A JP H02199847 A JPH02199847 A JP H02199847A
Authority
JP
Japan
Prior art keywords
conductive adhesive
chip
resin
drive
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1917989A
Other languages
Japanese (ja)
Inventor
Osami Hayashi
修身 林
Hideki Tabei
秀樹 田部井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd, Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP1917989A priority Critical patent/JPH02199847A/en
Publication of JPH02199847A publication Critical patent/JPH02199847A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Wire Bonding (AREA)

Abstract

PURPOSE:To execute a stable connection and to easily execute an exchange operation by executing a heating and melting operation again by a method wherein a hot-melting type conductive adhesive which is solid at room temperature is used as a conductive adhesive, this adhesive is transcribed on a bump of an IC chip, the IC chip is brought into contact with an electrode part on a circuit board and is heated and both are connected electrically. CONSTITUTION:A layer of a hot-melting type conductive adhesive 4 is formed on a support film 3 having a mold-releasing property; bumps 2 of a drive IC 1 are brought into contact with the layer under a heating condition by using a heating tool 5; then, the conductive adhesive 4 is melted by this heating. When this IC is pulled up, the conductive adhesive 4 is transcribed on tip parts of the bumps 2 of the drive IC 1 and a conductive adhesive 6 is formed here. Then, the drive IC is brought into contact with input/output electrodes 8 on a glass substrate 7; the drive IC is pressurized and heated by using the heating tool 5; then, the conductive adhesive 6 existing at the tip parts of the bumps 2 is melted; the bumps 2 of the drive IC 1 and the input/output electrodes 8 on the glass substrate 7 are connected electrically surely via the conductive adhesive layer 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はICチップの実装方法、特には回路基板として
の液晶表示体のガラス基板上に駆動ICを導電性接着剤
によってフェイスダウンボンディングしてなるICチッ
プの実装方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for mounting an IC chip, and particularly to a method for mounting a driving IC on a glass substrate of a liquid crystal display as a circuit board by face-down bonding with a conductive adhesive. The present invention relates to a method for mounting an IC chip.

[従来の技術] 近年、液晶表示装置の画像表示への応用が活発に進めら
れており、これに伴なって液晶表示装置と駆動ICとの
接続は微細かつ多端子化の傾向が強まってきているため
、量産性がよく、信頼性の高いICチップの実装方法が
要求されている。
[Prior Art] In recent years, the application of liquid crystal display devices to image display has been actively promoted, and along with this, there has been a growing tendency for connections between liquid crystal display devices and drive ICs to be finer and have more terminals. Therefore, there is a need for an IC chip mounting method that is easy to mass produce and has high reliability.

このため、液晶表示体などのガラス基板上に画素パター
ンの形成と同一工程において駆動ICの電極部と対応す
るパターン電極部とを薄膜形成し、該液晶表示体のパタ
ーン電極部と駆動ICの電極部とをガラス基板面上で接
続する方法がとられており、この実装方法としては 1)駆動ICの電極上に半田バンブを形成し、メタライ
ズ化したガラス基板電極上に当接したのち、半田を溶融
して接続固定するフリップチップ法、 2)ガラス基板にダイボンディングした駆動ICをワイ
ヤーボンディングする方法、 3)導電性接着剤を用いて駆動ICをガラス基板に接続
する方法 などが提案されている。
For this reason, a pattern electrode section corresponding to the electrode section of the drive IC is formed as a thin film on a glass substrate such as a liquid crystal display body in the same process as forming a pixel pattern, and the pattern electrode section of the liquid crystal display body and the electrode section of the drive IC are formed as thin films. This mounting method involves 1) forming solder bumps on the electrodes of the drive IC, bringing them into contact with the metalized glass substrate electrodes, and then soldering. 2) wire-bonding the drive IC die-bonded to the glass substrate; and 3) connecting the drive IC to the glass substrate using conductive adhesive. There is.

そして、これらのうち3)の導電性接着剤を用いる方法
はコストダウンが図れるし、実装密度の点でもすぐれて
いるということから、熱硬化性の導電性接着剤を用いた
ものが一部実用化されており、この導電性接着剤につい
てはAg、Cu。
Among these methods, method 3) using conductive adhesives can reduce costs and is superior in terms of packaging density, so methods using thermosetting conductive adhesives have been put into practical use in some cases. Ag and Cu are used for this conductive adhesive.

Pd、Niなどの金属粉またはカーボン粉などの導電性
付与剤をエポキシ系、フェノール系、アクリル系などの
液状硬化性樹脂に混入・分散させたペースト状のものが
使用されている。
A paste is used in which a conductivity imparting agent such as metal powder such as Pd or Ni or carbon powder is mixed and dispersed in a liquid curable resin such as epoxy, phenol, or acrylic.

〔発明が解決しようとする課1!II この液状の熱硬化性接着剤を用いて接続する方法には駆
動ICチップの電極部にこの導電性接着剤を塗布するこ
とが難しいということから、これには第3図(a)に示
したように駆動ICチップ11の電極部に金バンブ12
を形成し、形成された金バンプ12を液状の導電性接着
剤13を入れた槽14中に浸漬したのち、第3図(b)
 に示したように金バンブ12の先端に導電性接着剤1
3を付着させたものを引上げてこれをガラス基板に実装
し硬化させる方法、または第4図(a)に示したように
液状の導電性接着剤13を平滑なプレート15の上に金
バンブ12の高さよりも薄い所定の厚みにドクターナイ
フなどで塗工し、この塗工面に駆動ICチップ11の金
バンブ12を当接し、ついで第4図(b)に示したよう
にこれを引上げて金バンブ12の先端に導電性接着剤1
3を付着させ、これをガラス基板に実装し硬化させる方
法がとられている。
[Question 1 that the invention attempts to solve! II. In this connection method using a liquid thermosetting adhesive, it is difficult to apply this conductive adhesive to the electrode part of the drive IC chip. As shown, a gold bump 12 is placed on the electrode part of the drive IC chip 11.
After forming the gold bumps 12 and immersing them in a tank 14 containing a liquid conductive adhesive 13, as shown in FIG. 3(b)
As shown in Figure 1, conductive adhesive 1 is applied to the tip of gold bump 12.
Alternatively, as shown in FIG. 4(a), liquid conductive adhesive 13 is placed on a smooth plate 15 using gold bumps 12. The gold bump 12 of the driving IC chip 11 is brought into contact with this coated surface to a predetermined thickness that is thinner than the height of Conductive adhesive 1 on the tip of bump 12
3 is attached, mounted on a glass substrate, and hardened.

しかし、これらの方法では導電性接着剤が液状体である
ことから、金バンブ12に導電性接着剤13の層を形成
させるときに不必要な部分にまで導電性接着剤13が付
着してしまうために電極間にリークの発生するおそれが
あり、これには硬化剤が配合されるので導電性接着剤の
粘度の時間的変化によって安定した厚みの導電性接着剤
層が得られず、この導電性接着剤層の厚みの不均一に起
因して厚みが厚い場合にはガラス基板への実装時に導電
性接着剤が流動し、第5図に示したようにこの流動層1
6の存在によってガラス基板17上の電極18間にリー
クの発生するおそれがあり、これが薄い場合には接続抵
抗が大きくなるばか接着強度が低下するという不利が生
じる。
However, in these methods, since the conductive adhesive is a liquid, when forming the layer of the conductive adhesive 13 on the gold bump 12, the conductive adhesive 13 adheres to unnecessary parts. Therefore, there is a risk of leakage occurring between the electrodes, and since a curing agent is added to this, it is not possible to obtain a conductive adhesive layer with a stable thickness due to changes in the viscosity of the conductive adhesive over time. If the conductive adhesive layer is thick due to uneven thickness, the conductive adhesive will flow during mounting on the glass substrate, and as shown in FIG.
6 may cause leakage between the electrodes 18 on the glass substrate 17, and if it is thin, there will be a disadvantage that the connection resistance will increase and the adhesive strength will decrease.

また、この場合、導電性接着剤13を転写形成した駆動
ICチップは導電性接着剤が液体であるために、ハンド
リングが難しいという問題があり、この熱硬化性の導電
性接着剤を使用した場合には駆動ICチップをガラス基
板に実装したのち硬化させる必要があるので、液晶表示
装置全体を高温で所定の時間、例えばこれがエポキシ系
のものであれば80℃で2時間径度処理する必要があり
、したがフてこれには液晶表示装置における液晶自体が
耐熱性の低いものであることから液晶表示装置に悪影響
の生じるおそれがあり、さらにこのものは−度硬化する
とICチップの交換が不可能となり、リペア性に欠ける
という問題点もある。
In addition, in this case, since the conductive adhesive 13 is transferred and formed on the drive IC chip, there is a problem that it is difficult to handle because the conductive adhesive is a liquid. Since it is necessary to harden the drive IC chip after mounting it on a glass substrate, the entire liquid crystal display device must be hardened at a high temperature for a predetermined period of time, for example, if it is an epoxy-based device, it is necessary to heat it at 80°C for 2 hours. However, since the liquid crystal itself in the liquid crystal display device has low heat resistance, there is a risk of adverse effects on the liquid crystal display device, and furthermore, once this material is hardened, it becomes impossible to replace the IC chip. However, there is also the problem that repairability is lacking.

[課題を解決するための手段] 本発明はこのような不利、欠点を解決したICチップの
実装方法に関するもので、これは支持フィルム上に熱溶
融形厚電性接着剤層を設け、該接着剤層とICチップの
金属突起電極を加熱条件下に当接して該金属突起電極表
面に該接着剤層を転写形成し、ついで該ICチップを回
路基板電極上にフェイスダウンで置き、該接着剤層の熱
溶融接着により両者を電気的に接続することを特徴とす
るものである。
[Means for Solving the Problems] The present invention relates to an IC chip mounting method that solves the above disadvantages and drawbacks, and this invention involves providing a heat-melting thick electrically conductive adhesive layer on a support film, The adhesive layer is brought into contact with the metal protrusion electrode of the IC chip under heating conditions to transfer and form the adhesive layer on the surface of the metal protrusion electrode, and then the IC chip is placed face down on the circuit board electrode, and the adhesive layer is placed face down on the circuit board electrode. It is characterized by electrically connecting the two layers by heat-melting adhesion of the layers.

すなわち1、本発明者らは導電性接着剤を用いたICチ
ップのフェイスダウンボンディング法における導電性接
着剤および導電性接着剤層の突起電極上への形成方法に
ついて種々検討した結果、この導電性接着剤を常温では
固体状の熱溶融形厚電性接着剤とし、これをICチップ
の突起電極に転写させ、このICチップを回路基板電極
部と当接して加熱すれば、導電性接着剤の溶融によって
ICチップの電極部と回路基板の電極部とが接着し、両
者が電気的に確実に接続され、転写される導電性接着剤
の量が均一であることから両者間にリークの発生するお
それはなく、安定した接続が得られることを見出すと共
に、ここに使用される導電性接着剤が熱溶融形のもので
あることから、これはICチップ実装後にICに不良が
見出されたときでも、再加熱溶融でこれを容易に交換で
きるといつりベア性をもつものであること、またこのI
Cチップのガラス基板への実装も導電性接着剤層をもつ
ICチップのみを加熱すればよく、液晶表示体を加熱す
る必要がないので液晶に熱的影響が及ばないこと、さら
にはICチップのガラス基板への実装が両者を当損し、
加熱して導電性接着剤を溶融するだけでよいので数十秒
単位で可能とされるということを確認して本発明を完成
させた。
Namely, 1. As a result of various studies on the conductive adhesive and the method for forming the conductive adhesive layer on the protruding electrode in the face-down bonding method of IC chips using the conductive adhesive, the present inventors found that the conductive The adhesive is a heat-melting thick conductive adhesive that is solid at room temperature, and if this is transferred to the protruding electrodes of an IC chip, and the IC chip is brought into contact with the circuit board electrode and heated, the conductive adhesive will be transferred. The electrode portion of the IC chip and the electrode portion of the circuit board are bonded together by melting, and the two are electrically connected reliably, and since the amount of conductive adhesive transferred is uniform, leakage occurs between the two. We found that there was no need to worry about this and that a stable connection could be obtained, and since the conductive adhesive used here was of a heat-melting type, this could be used if a defect was found in the IC after the IC chip was mounted. However, if it can be easily replaced by reheating and melting, it is a hangable item, and this I
When mounting a C chip on a glass substrate, only the IC chip with the conductive adhesive layer needs to be heated, and there is no need to heat the liquid crystal display, so there is no thermal effect on the liquid crystal. Mounting on the glass substrate damages both,
The present invention was completed after confirming that it is possible to do this in tens of seconds, since it is only necessary to heat and melt the conductive adhesive.

つぎにこれをさらに詳述する。Next, this will be explained in more detail.

[作 用] 第1図、第2図は本発明によるICチップの実装方法の
縦断面図を示したものである0本発明によるICチップ
の実装は第1図(a)に示したように、離型性を有する
支持フィルム3の上に熱溶融形厚電性接着剤4の層を設
け、ここに駆動ICIの突起電極2を加熱ツール5を用
いた加熱条件下に当接すると、この加熱によって導電性
接着剤4が溶融し、第1図(b)に示したようにこのI
Cを引上げると駆動ICIの突起電極2の先端に導電性
接着剤4が転写されてここに導電性接着剤層6が形成さ
れる。つぎに第1図(C)に示したようにこの駆動IC
をガラス基板7の出入力電極8に当接し、加熱ツール5
を用いて駆動ICを加圧、加熱すると突起電極2の先端
に存在している導電性接着剤層6が溶融して駆動ICI
の突起電極2とガラス基板7の出入力電極8がこの導電
性接着剤F18を介して電気的に確実に接続されるし、
この導電性接着剤層6が、均一な厚さのものとされるの
でこの流動によって出入力電極8の間にリークの発生す
るおそれはない、また、この駆動ICIの突起電極2と
ガラス基板7の出入力電極8とは熱溶融型の導電性接着
剤で接着されているので、このICチップが実装後に不
良であることが見出されたときにはこれを再加熱すれば
容易に交換することができるので、このものはりベア性
のよいものであるし、さらにこのガラス基板7への駆動
ICIの実装は加熱ツール5からの加熱による駆動IC
1の加熱による導電性接着剤層6の加熱溶融のみで行な
えるのでガラス基板7を加熱する必要はなく、したがっ
て液晶に熱的影響の与えられることもないという有利性
が与えられるし、この実装も短時間で行なうことができ
るという有利性が与えられる。
[Function] FIGS. 1 and 2 show vertical cross-sectional views of the IC chip mounting method according to the present invention. The IC chip mounting method according to the present invention is performed as shown in FIG. A layer of hot-melting thick electrically conductive adhesive 4 is provided on a support film 3 having mold releasability, and when the protruding electrode 2 of the drive ICI is brought into contact with this layer under heating conditions using a heating tool 5, this The conductive adhesive 4 is melted by heating, and as shown in FIG. 1(b), this I
When C is pulled up, the conductive adhesive 4 is transferred to the tip of the protruding electrode 2 of the drive ICI, and a conductive adhesive layer 6 is formed there. Next, as shown in FIG. 1(C), this drive IC
is in contact with the input/output electrode 8 of the glass substrate 7, and the heating tool 5
When the drive IC is pressurized and heated using a
The protruding electrode 2 and the input/output electrode 8 of the glass substrate 7 are electrically connected reliably through the conductive adhesive F18,
Since the conductive adhesive layer 6 has a uniform thickness, there is no risk of leakage occurring between the input and output electrodes 8 due to this flow. Since the output/input electrodes 8 of the IC chip are bonded to each other with a heat-melting conductive adhesive, if this IC chip is found to be defective after being mounted, it can be easily replaced by reheating it. The drive IC can be mounted on the glass substrate 7 by heating from the heating tool 5.
Since this can be done only by heating and melting the conductive adhesive layer 6 by heating the glass substrate 7, there is no need to heat the glass substrate 7, and therefore there is no thermal influence on the liquid crystal, which is advantageous. It also has the advantage that it can be done in a short time.

本発明で使用されるICチップ、回路基板は従来公知の
ものをそのまま使用すればよい。したがって、この回路
基板は通常のガラス基板のほか、銅張ガラス布エポキシ
樹脂基板、#ll張紙エポキシ脂基板、銅張紙フェノー
ル樹脂基板、銅張ガラス布ポリイミド樹脂基板、銅張金
属ベース基板、タングステンメタライズ・アルミナセラ
ミクス基板、貴金属厚膜印刷・アルミナセラミクス基板
など、現在使用されている全ての種類の回路基板を使用
することができる。
Conventionally known IC chips and circuit boards used in the present invention may be used as they are. Therefore, in addition to ordinary glass substrates, this circuit board includes copper-clad glass cloth epoxy resin substrates, #ll paper-clad epoxy resin substrates, copper-clad paper phenol resin substrates, copper-clad glass cloth polyimide resin substrates, copper-clad metal base substrates, All types of circuit boards currently in use can be used, such as tungsten metallized/alumina ceramic substrates, precious metal thick film printed/alumina ceramic substrates, etc.

また、本発明で使用される熱溶融形厚電性接着剤4とし
ては熱溶融性で高い接着力を有する母材樹脂にこれを導
電性とするための導電性付与剤と必要に応じ粘着付与剤
を添加した樹脂組成物からなるものとすればよいが、こ
のものは後記する剥離性を有する支持フィルムの表面に
均一な厚みで塗工して熱溶融型導電性接着剤層を形成さ
せる必要があるので、溶媒を添加して塗工に適した粘度
、固形分量を調整しておく必要がある。
In addition, the heat-melting type thick electrically conductive adhesive 4 used in the present invention includes a base material resin that is heat-meltable and has high adhesive strength, and a conductivity-imparting agent to make it conductive and, if necessary, adhesion. It may be made of a resin composition to which a releasable agent is added, but this must be coated with a uniform thickness on the surface of a support film with peelability, which will be described later, to form a hot-melt conductive adhesive layer. Therefore, it is necessary to add a solvent to adjust the viscosity and solid content suitable for coating.

この母材樹脂としては上記したように加熱溶融性で高い
粘着性をもつものとする必要があるが、これはその溶融
温度が液晶デイスプレィの耐熱温度よりも高すぎないも
のとすることがよいので熱可塑性樹脂または熱可塑性エ
ラストマーから選択されるものとすることが好ましく、
この熱可塑性樹脂としては線状飽和共重合ポリエステル
系樹脂、ブチラール系樹脂、酢酸ビニル共重合系樹脂、
セルロース誘導体系樹脂、ポリメチルメタクリレート系
樹脂、ポリビニルエーテル系樹脂、ポリウレタン系樹脂
、ポリカーボネート系樹脂、エチレン・酢酸ビニル共重
合系樹脂、エチレン・アクリル酸エチル共重合系樹脂、
エチレン・アクリル酸・イソブチル共重合系樹脂などが
例示され、この熱可塑性エラストマーとしてはスチレン
・ブタジェン・スチレンブロック共重合体(S−B−3
)、スチレン・イソプレン・スチレンブロック共重合体
(S−I−3)、スチレン・エチレン・ブチレン・スチ
レンブロック共重合体(S−EB−S)、熱可塑性ポリ
エステルエラストマー、熱可塑性ポリウレタンエラスト
マー、ポリエチレン・ブチルゴムグラフト共重合体、゛
アイオノマートランス1.4−ポリイソプレン、塩素化
ポリエチレンなどが例示される。
As mentioned above, this base material resin needs to be heat-meltable and highly adhesive, but this is because its melting temperature should not be too high than the heat-resistant temperature of the liquid crystal display. Preferably, it is selected from thermoplastic resins or thermoplastic elastomers;
Examples of this thermoplastic resin include linear saturated copolymer polyester resin, butyral resin, vinyl acetate copolymer resin,
Cellulose derivative resin, polymethyl methacrylate resin, polyvinyl ether resin, polyurethane resin, polycarbonate resin, ethylene/vinyl acetate copolymer resin, ethylene/ethyl acrylate copolymer resin,
Examples include ethylene/acrylic acid/isobutyl copolymer resin, and examples of this thermoplastic elastomer include styrene/butadiene/styrene block copolymer (S-B-3).
), styrene/isoprene/styrene block copolymer (S-I-3), styrene/ethylene/butylene/styrene block copolymer (S-EB-S), thermoplastic polyester elastomer, thermoplastic polyurethane elastomer, polyethylene/ Examples include butyl rubber graft copolymer, ionomer trans 1,4-polyisoprene, and chlorinated polyethylene.

また、この母材樹脂を導電性とするために添加される導
電性付与剤としては公知の天然または人造の黒鉛粉、ア
セチレンブラック、ケッチエンブラック、ファーネスブ
ラックなどのカーボンブラック、Ag、Ni、Cu、A
u、Pb、Pdなどの金属単体もしくは合金の金属粉が
例示される。これらは上記した母材樹脂が通常はこれを
溶剤に溶かした導電性インクとして使用されるので、鱗
片状粉のものとしてこれを小粒径の球状粉と適当な割合
で組合せることがよいが、この導電性充填剤の粒径はカ
ーボンブラックについては1次粒子の平均粒径が20〜
50nm、粒度分布が1〜200t+a+のものとされ
るのでそのまま使用すればよく、黒鉛粉や金属粉につい
ては粒度が大きすぎるとこれを添加した樹脂を導電性イ
ンクとしたときに剥離性、フィルムへの塗工性がわるく
なるし、ICチップの突起電極に接触する粒子の確率が
減って導電性が不安定となり、細かすぎると粒子間の接
触確率が減って体積固有抵抗が大きくなる傾向があるの
で、粒度分布が0.3〜30μm1好ましくはI N1
0μmのものとすることがよい、なお、この導電性付与
剤の添加量はこれを添加した導電性樹脂からなる導電性
接着剤の体積固有抵抗がI X 10−’Ω・cm〜1
0Ω・C■の範囲となることが必要とされるので、導電
性インク100重量部に対し目的とする体積固有抵抗の
得られる範囲で20〜60容量%添加すればよい。
In addition, conductivity imparting agents added to make this base material resin conductive include known natural or artificial graphite powder, carbon black such as acetylene black, Ketchien black, and furnace black, Ag, Ni, and Cu. ,A
Examples include metal powders of single metals or alloys such as u, Pb, and Pd. For these, the above-mentioned base resin is usually dissolved in a solvent and used as a conductive ink, so it is preferable to combine it with spherical powder of small particle size in an appropriate ratio as a scaly powder. For carbon black, the particle size of this conductive filler is such that the average particle size of the primary particles is 20~
50nm, with a particle size distribution of 1 to 200t+a+, so you can use it as is.For graphite powder or metal powder, if the particle size is too large, when a conductive ink is made of a resin containing it, the peelability and film formation may be affected. The coating properties of the particles deteriorate, the probability of particles coming into contact with the protruding electrodes of the IC chip decreases, and the conductivity becomes unstable.If the particles are too fine, the probability of contact between particles decreases, and the volume resistivity tends to increase. Therefore, the particle size distribution is 0.3 to 30 μm1, preferably IN1
It is preferable that the conductivity imparting agent is added in an amount of 0 μm.The amount of the conductivity imparting agent added is such that the volume resistivity of the conductive adhesive made of the conductive resin to which it is added is I x 10-'Ω・cm~1
Since it is required to be in the range of 0Ω·C■, it is sufficient to add 20 to 60% by volume per 100 parts by weight of the conductive ink within a range that provides the desired volume resistivity.

また、この母材樹脂にはICチップの突起電極とガラス
基板の入出力電極、例えば半田バンブ。
The base resin also contains protruding electrodes of the IC chip and input/output electrodes of the glass substrate, such as solder bumps.

金バンプ、ITO電極、クロム電極、ニッケル電極など
によく接着することが要求されるので、これには必要に
応じ粘着付与剤が添加されるが、この粘着付与剤として
はロジンまたはロジン誘導体、テルペン樹脂または変性
テルペン樹脂2石油樹脂、クマロン・インデン樹脂、フ
ェノール樹脂、アルキッド樹脂などが例示される。なお
、この母材樹脂にはその溶融温度を低めに制御するため
にワックスを添加してもよく、このワックスとしては融
点が40〜80℃であるカルナバワックス。
Since good adhesion to gold bumps, ITO electrodes, chromium electrodes, nickel electrodes, etc. is required, a tackifier is added as necessary, but this tackifier may include rosin, rosin derivatives, terpenes, etc. Resin or modified terpene resin 2 Petroleum resin, coumaron/indene resin, phenol resin, alkyd resin, etc. are exemplified. Note that wax may be added to this base material resin in order to control its melting temperature to a low level, and this wax is carnauba wax having a melting point of 40 to 80°C.

ライスワックス、木ろう、みつろう、モンタンワックス
、パラフィンワックス、マイクロクリスタリンワックス
などの天然ワックスおよびポリエチレンワックス、変性
モンタンワックス、変性パラフィンワックス、変性マイ
クロクリスタリンワックス、フィッシャートロプシュワ
ックスなどの合成ワックスが例示されるが、この母材樹
脂に必要に応じ老化防止剤、酸化防止剤、安定剤などを
添加することは任意とされる。
Examples include natural waxes such as rice wax, wood wax, beeswax, montan wax, paraffin wax, and microcrystalline wax, and synthetic waxes such as polyethylene wax, modified montan wax, modified paraffin wax, modified microcrystalline wax, and Fischer-Tropsch wax. It is optional to add anti-aging agents, antioxidants, stabilizers, etc. to this base material resin as necessary.

このようにして得られた熱溶融形厚電性接着性剤は予め
支持フィルム上に塗着して導電性接着剤層を形成させる
のであるが、この支持フィルムは取扱いが容易で十分な
強度をもつものであることが必要であるし、これはまた
この導電性接着剤がICチップの突起電極に完全に転写
されるためには離型性を有するものであることが好まし
いので、これには四フッ化エチレン樹脂、四フッ化エチ
レン−六フッ化プロピレン樹脂、三フッ化エチレン樹脂
、四フッ化エチレンーエチレン共重合樹脂、フッ化ビニ
リデン樹脂、フッ化ビニル樹脂などのフッ素系樹脂や、
ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレ
フィン樹脂からなるフィルムまたは公知の耐熱性プラス
チックフィルムであるポリエステル、ポリカーボネート
、ボリアリレート、ポリアミド、ポリイミドなどのフィ
ルムの表面にフッ素系樹脂、シリコーン系樹脂。
The hot-melt thick conductive adhesive thus obtained is applied in advance onto a support film to form a conductive adhesive layer, and this support film is easy to handle and has sufficient strength. In addition, in order for this conductive adhesive to be completely transferred to the protruding electrodes of the IC chip, it is preferable that it has mold releasability. Fluorine resins such as tetrafluoroethylene resin, tetrafluoroethylene-hexafluoropropylene resin, trifluoroethylene resin, tetrafluoroethylene-ethylene copolymer resin, vinylidene fluoride resin, vinyl fluoride resin,
A film made of polyolefin resin such as polyethylene resin or polypropylene resin or a film made of known heat-resistant plastic film such as polyester, polycarbonate, polyarylate, polyamide, or polyimide is coated with fluorine resin or silicone resin on the surface.

ポリオレフィン系樹脂などの離型性を有する樹脂層を設
けたものが例示されるが、このものは厚すぎるとコスト
高となるので、これは厚さが10〜100μmの範囲の
ものとすることがよい。
An example is one provided with a resin layer having mold releasability such as polyolefin resin, but if this layer is too thick, the cost will be high, so the thickness should be in the range of 10 to 100 μm. good.

本発明における熱溶融形厚電性接着剤層の形成は上記の
ようにして得た熱溶融形厚電性接着剤を溶剤に溶解した
のち、これを公知の塗工方法、例えばダイレクトグラビ
アコーター、オフセットグラビアコーター、三本ロール
リバースコーターコンマコーター ナイフコーターなど
を用いて上記した支持フィルムの表面に均一な厚みにな
るように塗工し、所定温度で乾燥して溶剤を揮散させれ
ばよいが、この導電性接着剤層の厚みは薄すぎると実装
時に十分な接着強度が得られなくなるし、この厚みが駆
動ICの突起電極の高さより厚くなると加熱転写時にI
Cチップ表面にも導電性接着剤が転写され、これによっ
てリークの生じるおそれがあるので、この膜厚は10μ
m以上で突起電極の高さよりも10μm低い厚み以下と
することが好ましい。
In the present invention, the hot-melt thick electrical adhesive layer is formed by dissolving the hot-melting thick electrical adhesive obtained as described above in a solvent, and applying it using a known coating method such as a direct gravure coater. It may be applied using an offset gravure coater, three-roll reverse coater, comma coater, knife coater, etc. to a uniform thickness on the surface of the support film described above, and then dried at a predetermined temperature to volatilize the solvent. If the thickness of this conductive adhesive layer is too thin, it will not be possible to obtain sufficient adhesive strength during mounting, and if this thickness is thicker than the height of the protruding electrodes of the drive IC, I
The conductive adhesive is also transferred to the surface of the C chip, which may cause leakage, so the film thickness should be 10 μm.
It is preferable that the thickness is greater than or equal to m and is less than or equal to 10 μm lower than the height of the protruding electrode.

なお、この熱溶融形厚電性接着剤層の体積固有抵抗は前
記したようにI X 10−’〜10Ω・cmの範囲と
すればよいが、プラズマデイスプレィ、蛍光表示管デイ
スプレィ、ELデイスプレィ、LEDデイスプレィなど
のデイスプレィ用の駆動ICはlO〜100mAオーダ
ーの大電流を流すバイポーラIC,P−MOS−IC,
N−MOS・ICが使われるために、この接触抵抗は0
.1Ω以下、したがってこの体積固有抵抗はI X 1
0−’Ω・cm以下のものとすることがよい。
Note that the volume resistivity of this heat-melting type thick electrical adhesive layer may be in the range of I x 10-' to 10 Ωcm as described above, but it can be used for plasma displays, fluorescent display tube displays, EL displays, Drive ICs for displays such as LED displays include bipolar ICs, P-MOS-ICs, and P-MOS-ICs that flow large currents on the order of 10 to 100 mA.
Since N-MOS IC is used, this contact resistance is 0.
.. 1Ω or less, so this volume resistivity is I x 1
It is preferable to set it to 0-'Ω·cm or less.

この支持フィルム上に形成された熱溶融形厚電性接着剤
層の駆動ICの突起電極への転写は、この導電性接着剤
層に該突起電極を第1図(a)に示したように当接し、
これを加熱してこの導電性接着剤層を溶融させたのち放
冷し、第1図(b)に示したようにICチップをこの導
電性接着剤から引き離せばよく、これによれば熱溶融し
た突起電極に接した接着剤部分のみが支持フィルムから
突起電極に転写される。
The heat-melting thick conductive adhesive layer formed on the support film is transferred to the protruding electrodes of the drive IC by attaching the protruding electrodes to the conductive adhesive layer as shown in FIG. 1(a). abutting,
All you have to do is heat this to melt this conductive adhesive layer, then let it cool and separate the IC chip from this conductive adhesive as shown in Figure 1(b). Only the portion of the adhesive in contact with the melted protruding electrode is transferred from the support film to the protruding electrode.

また、この熱溶融形厚電性接着剤を転写形成したICチ
ップのガラス基板への実装は第1図(C)に示したよう
に駆動ICの突起電極をガラス基板の入出力電極の上に
位置合わせして載せたのち、ICチップの背面に加熱ツ
ールを加圧して押し当て、突起電極に転写されている熱
溶融形厚電性接着剤を溶融させたのち自然冷却させれば
よく、これによれば駆動ICの突起電極とガラス基板の
入出力電極にこの導電性接着剤が溶融接着するので、こ
れらが電気的に確実に接続される。
In addition, when mounting an IC chip onto a glass substrate onto which the heat-melting thick conductive adhesive is transferred, the protruding electrodes of the drive IC are placed on top of the input/output electrodes of the glass substrate, as shown in Figure 1 (C). After aligning and mounting the IC chip, press a heating tool against the back of the IC chip to melt the heat-melting thick electrical adhesive transferred to the protruding electrodes, and then allow it to cool naturally. According to the above, the conductive adhesive melts and adheres to the protruding electrodes of the drive IC and the input/output electrodes of the glass substrate, so that they are electrically connected reliably.

なお、このようにして得られたガラス基板に直接搭載さ
れたICチップはその後の動的チエツクで良品と判定さ
れて使用されるが、′!J2図に示すようにさらにIC
チップを包む形で石英粉、シリカ粉末、ガラス粉末など
を充填して熱膨張係数をソーダライムガラスに近い20
x 10−8℃−1以下としたエポキシ樹脂などのチッ
プコート樹脂9を滴下してガラス基板とこの樹脂の物理
接着力によってICチップとガラス基板との密着力を強
化してもよく、これによればICチップを振動、m撃力
から、また湿気、汚染ガスから保護することができると
いう有利性が与えられる。
Note that the IC chip directly mounted on the glass substrate obtained in this way is determined to be good in a subsequent dynamic check and is used, but '! Further IC as shown in figure J2
The chip is wrapped with quartz powder, silica powder, glass powder, etc., and the coefficient of thermal expansion is 20, which is close to that of soda lime glass.
x A chip coat resin 9 such as an epoxy resin having a temperature of 10-8°C or less may be dropped to strengthen the adhesion between the IC chip and the glass substrate by the physical adhesion between the resin and the glass substrate. This offers the advantage of being able to protect the IC chip from vibrations, shock forces, and from moisture and contaminant gases.

[実施例] つぎに本発明の実施例をあげるが、例中の部は重量部を
示したものである。
[Example] Next, Examples of the present invention will be given, and parts in the examples indicate parts by weight.

実施例 スチレン・エチレン・ブチレン・スチレンブロック共重
合体樹脂・クレイトンG 1857  [シェル化学■
製商品名] 80部、テルペン・フェノール樹脂・YS
ポリスターフ130[安原油脂工業@製商品名]40部
、老化防止剤・アンテージDAH[川口化学■製部品名
]1部をトルエン200部に溶解した母材樹脂溶液に、
粒径2×10μmの高純度銀フレーク粉N013・B−
1[そりテックス社製商品名]80部と粒径3μmの高
純度銀パウダー粉・タイプG[モリテックス社製商品名
]20部を上記母材樹脂80容量%に対して40容量%
配合して熱溶融形導電性接看剤組成物を作った。
Examples: Styrene/ethylene/butylene/styrene block copolymer resin/Krayton G 1857 [Shell Chemical Co., Ltd.
Product name] 80 parts, terpene phenolic resin YS
40 parts of Polyturf 130 [trade name manufactured by Yasushi Oil Industries @], 1 part of anti-aging agent Antige DAH [part name manufactured by Kawaguchi Chemical ■] are dissolved in 200 parts of toluene in a base resin solution,
High purity silver flake powder N013・B- with particle size 2 x 10μm
1 80 parts [trade name manufactured by Soritex Co., Ltd.] and 20 parts of high-purity silver powder powder with a particle size of 3 μm Type G [trade name manufactured by Moritex Co., Ltd.] at 40 volume % with respect to 80 volume % of the above base resin.
A hot-melt conductive adhesive composition was prepared by blending.

この樹脂組成物を厚さが75μmであるポリエチレンテ
レフタレートフィルム上にシリコーン離型剤を塗布した
支持フィルム・セラピール[東洋メタライジング■製商
品名]の表面に乾燥膜厚が30μmになるようにナイフ
コーターを用いて塗工したのち、100℃×10分で乾
燥し溶剤を揮散させて、熱溶融形厚電性接着剤層を形成
させた。
This resin composition was coated with a knife coater on the surface of a support film, Therapel (trade name, manufactured by Toyo Metallizing ■), which was prepared by coating a polyethylene terephthalate film with a thickness of 75 μm and a silicone mold release agent, to a dry film thickness of 30 μm. After coating, the adhesive was dried at 100° C. for 10 minutes to volatilize the solvent and form a heat-melting thick electrical adhesive layer.

ついで、厚み0.45部m、サイズ約6mm角の導通試
験用IC−T−78Aメカ[東芝■製商品名]の入出力
電極上に高さ45μmの金バンブを形成させ、この突起
電極を上記で得た熱溶融形導電性接着剤層に当接したの
ち、ICチップ側に加熱ツールを押し当てて加熱して該
熱溶融形厚電性接着剤層を溶融させ、加熱ツールを外し
て放冷し、該試験用ICチップを該接着剤層から剥離し
たところ、突起電極上に該接着剤層が転写形成された。
Next, gold bumps with a height of 45 μm were formed on the input/output electrodes of an IC-T-78A mechanism for continuity testing [product name manufactured by Toshiba ■] with a thickness of 0.45 m and a size of about 6 mm square, and this protruding electrode was After contacting the hot-melting type conductive adhesive layer obtained above, a heating tool is pressed against the IC chip side and heated to melt the hot-melting type thick conductive adhesive layer, and the heating tool is removed. When the test IC chip was peeled off from the adhesive layer after being allowed to cool, the adhesive layer was transferred onto the protruding electrodes.

つぎにテスト用に製作したクロム蒸着めっきの配線をし
た厚さ1.1mmのガラス基板の出入力電極パターンに
、上記で得た試験用ICの溶融形厚電性接着剤層を転写
形成した突起電極をフェイスダウンで位置合わせして載
せ、ICチップの背面に先端温度が150℃の加熱ツー
ルを押し当て、圧力1.0kg/ca+2で約lθ秒間
加圧、加熱したところ、熱溶融形厚電性接着剤が溶融し
たので加熱ツールを外して自然冷却させ、その後測定電
流10m^のΔ端子抵抗測定法でICチップ突起電極と
試験用ガラス基板の入出力電極間の接続抵抗を測定した
ところ、ICピン当り1Ωで隣接する電極間の絶縁抵抗
は>10”Ωという結果が得られ、ガラス基板上に実装
された試験用ICチップのガラス基板面と平行な方向で
の接着強度はICチップ1個当り1にgf以上であった
Next, the molten thick conductive adhesive layer of the test IC obtained above was transferred and formed on the input/output electrode pattern of a 1.1 mm thick glass substrate with chromium vapor-plated wiring fabricated for testing. The electrodes were aligned and placed face down, a heating tool with a tip temperature of 150°C was pressed against the back of the IC chip, and the heat was applied and heated at a pressure of 1.0 kg/ca+2 for approximately 1θ seconds. Since the adhesive had melted, the heating tool was removed and allowed to cool naturally, and then the connection resistance between the IC chip protruding electrode and the input/output electrode of the test glass substrate was measured using the Δ terminal resistance measurement method with a measurement current of 10 m^. At 1Ω per IC pin, the insulation resistance between adjacent electrodes was >10”Ω, and the adhesive strength of the test IC chip mounted on the glass substrate in the direction parallel to the glass substrate surface was 1Ω. It was more than 1 gf per piece.

また、この試料についてはこのICチップに再度上記し
た接着時と同一の条件で加熱ツールを押し当てて加熱し
、加熱した状態でICチップをつまみ上げたところ、I
Cチップは容易にガラス基板から取り外すことができ、
この際ガラス基板は何ら損傷を受けないことが確認され
、さらにこのガラス基板に熱溶融形厚電性接着剤層を転
写形成した他の試験用ICチップを上記と同じ方法で実
装したところ、上記の同様の接続抵抗、絶縁抵抗および
接着強度をもつものが得られたので、これにリペア性の
あることが確認された。
In addition, for this sample, when the heating tool was pressed against the IC chip again under the same conditions as when bonding described above and heated, and the IC chip was picked up in the heated state, the I.
The C chip can be easily removed from the glass substrate.
At this time, it was confirmed that the glass substrate was not damaged in any way, and furthermore, when another test IC chip with a heat-melted thick conductive adhesive layer transferred and formed on this glass substrate was mounted in the same manner as above. Since a product with similar connection resistance, insulation resistance, and adhesive strength was obtained, it was confirmed that this product had repairability.

なお、上記で得られた実装サンプルについて熱膨張係数
が2.7 x IQ−’℃−1であるエポキシ樹脂系の
チップコート樹脂を直径10aus、高さ1mmのドー
ム状に滴下してこのICチップを被覆し、80℃で2時
間加熱して硬化させたところ、このものはガラス基板を
強く撮ってもその接続抵抗は上昇することがなく、この
ものはまたこれを冷熱サイクル試験機を用いて低温−2
0℃X30分間、高温70℃×30分間、室温25℃×
5分間の冷熱サイクル条件で500サイクルのテストを
行ったときもその接続抵抗の異常は全ピン中1ビンも生
じなかった。
Furthermore, on the mounting sample obtained above, an epoxy resin-based chip coat resin with a thermal expansion coefficient of 2.7 x IQ-'℃-1 was dropped in a dome shape with a diameter of 10aus and a height of 1mm to coat the IC chip. When the glass substrate was coated and cured by heating at 80℃ for 2 hours, the connection resistance did not increase even when the glass substrate was strongly exposed. Low temperature-2
0°C x 30 minutes, high temperature 70°C x 30 minutes, room temperature 25°C x
Even when a 500-cycle test was conducted under 5-minute cooling/heating cycle conditions, no abnormality in connection resistance occurred in any pin out of all the pins.

[発明の効果] 本発明のICチップの実装方法は上記した方法で行なわ
れるが、これによればICチップとガラス基板の入出力
電極が熱溶融形厚電性接着剤を介して確実に電気的に接
続されるし、この接続は該導電性接着剤が熱溶融性樹脂
から作られているので不良などが見出されたときにも再
溶融で容易に良品と交換することができ、これはまたI
Cチップの突起電極への転写やガラス基板への実装にお
いて溶融した接着剤が溶融温度以下となって固化すれば
転写および接着が完了することになるので、実装時間を
大巾に短縮することができるという有利性が与えられる
。またこの熱溶融形厚電性接着剤層は支持フィルムに担
持されたフィルム状で提供されるために、接着樹脂のI
Cチップ突起電極への転写の自動化が容易となるし、こ
の転写された接着剤層が上記したような物性をもつもの
であることから、このガラス基板への実装も自動化する
ことができるという実用上の有利性も与えられる。
[Effects of the Invention] The IC chip mounting method of the present invention is carried out by the method described above, and according to this method, the input and output electrodes of the IC chip and the glass substrate are reliably connected to each other through the heat-melting thick electrical adhesive. Since the conductive adhesive is made from hot-melt resin, even if a defect is found, it can be easily replaced with a good one by remelting it. Also I
Transfer and bonding are completed when the melted adhesive cools below the melting temperature and solidifies when transferring the C chip to the protruding electrodes or mounting it on the glass substrate, so the mounting time can be greatly shortened. It gives you the advantage of being able to do it. In addition, since this heat-melting type thick electrical adhesive layer is provided in the form of a film supported on a support film, the adhesive resin's I.I.
It is easy to automate the transfer to the C-chip protruding electrode, and since the transferred adhesive layer has the physical properties described above, it is practical that the mounting on the glass substrate can also be automated. It also provides the above advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実、施例の縦断面図、第2図はこれ
にチップコートをしたものの縦断面図、第3図、第4図
は従来法によるICチップ実装方法の縦断面図、第5図
はこの従来法における電極間リーク例の縦断面図を示し
たものである。 1.11・・−ICチップ、 2・・・突起電極、3・
・・支持フィルム、 4・・・熱溶融形厚電性接着剤、 5・・・加熱ツール、 6・・・熱溶融形厚電性接着剤層、 7.17・・・ガラス基板、 8.18・・・入出力電
極、9・・・チップコート樹脂、12・・・金バンブ、
13・・・導電性接着剤、  14・・・容器、15・
・・平滑プレート、  lト・・流動層。 第 第 図 図 Tb)
Fig. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view of a chip-coated product, and Figs. 3 and 4 are longitudinal cross-sections of a conventional IC chip mounting method. FIG. 5 shows a longitudinal cross-sectional view of an example of leakage between electrodes in this conventional method. 1.11...-IC chip, 2... protruding electrode, 3...
...Support film, 4.. Heat-melting thick electric adhesive, 5.. Heating tool, 6.. Hot-melting thick electric adhesive layer, 7.17.. Glass substrate, 8. 18... Input/output electrode, 9... Chip coat resin, 12... Gold bump,
13... Conductive adhesive, 14... Container, 15.
・・Smooth plate, ・・Fluidized bed. Figure Tb)

Claims (1)

【特許請求の範囲】[Claims] 1、支持フィルム上に熱溶融形導電性接着剤層を設け、
該接着剤層とICチップの金属突起電極を加熱条件下に
当接して該金属突起電極表面に該接着剤層を転写形成し
、ついで該ICチップを回路基板電極上にフェイスダウ
ンで置き、該接着剤層の熱溶融接着により両者を電気的
に接続することを特徴とするICチップの実装方法。
1. Providing a hot-melt conductive adhesive layer on the support film,
The adhesive layer is brought into contact with the metal protrusion electrode of the IC chip under heating conditions to transfer and form the adhesive layer on the surface of the metal protrusion electrode, and then the IC chip is placed face down on the circuit board electrode. A method for mounting an IC chip, characterized in that the two are electrically connected by hot melt bonding of an adhesive layer.
JP1917989A 1989-01-27 1989-01-27 Mounting of ic chip Pending JPH02199847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1917989A JPH02199847A (en) 1989-01-27 1989-01-27 Mounting of ic chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1917989A JPH02199847A (en) 1989-01-27 1989-01-27 Mounting of ic chip

Publications (1)

Publication Number Publication Date
JPH02199847A true JPH02199847A (en) 1990-08-08

Family

ID=11992119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1917989A Pending JPH02199847A (en) 1989-01-27 1989-01-27 Mounting of ic chip

Country Status (1)

Country Link
JP (1) JPH02199847A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999001897A1 (en) * 1997-07-04 1999-01-14 Siemens Aktiengesellschaft Semiconductor module
US6022782A (en) * 1997-05-30 2000-02-08 Stmicroelectronics, Inc. Method for forming integrated circuit transistors using sacrificial spacer
WO2014112624A1 (en) * 2013-01-18 2014-07-24 積水化学工業株式会社 Electrical device and electrical device fabrication method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604230A (en) * 1983-06-21 1985-01-10 Sharp Corp Bonding method of semiconductor chip
JPS60116157A (en) * 1983-11-29 1985-06-22 Matsushita Electric Ind Co Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604230A (en) * 1983-06-21 1985-01-10 Sharp Corp Bonding method of semiconductor chip
JPS60116157A (en) * 1983-11-29 1985-06-22 Matsushita Electric Ind Co Ltd Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6022782A (en) * 1997-05-30 2000-02-08 Stmicroelectronics, Inc. Method for forming integrated circuit transistors using sacrificial spacer
WO1999001897A1 (en) * 1997-07-04 1999-01-14 Siemens Aktiengesellschaft Semiconductor module
WO2014112624A1 (en) * 2013-01-18 2014-07-24 積水化学工業株式会社 Electrical device and electrical device fabrication method

Similar Documents

Publication Publication Date Title
US4917466A (en) Method for electrically connecting IC chips, a resinous bump-forming composition used therein and a liquid-crystal display unit electrically connected thereby
US5120665A (en) Method of using an anisotropically electroconductive adhesive having pressure-deformable electroconductive particles to electrically connect circuits
CN102482540B (en) Anisotropic conductive adhesive for ultrasonic wave adhesion, and electronic parts connection method using same
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
KR20050088946A (en) Adhesives and adhesive films
US6512183B2 (en) Electronic component mounted member and repair method thereof
US5975922A (en) Device containing directionally conductive composite medium
JPH0346774A (en) Anisotropic conductive adhesive, method of electrical connection between electrodes using such adhesive, and electric circuit base formed in such method
JP2007224111A (en) Anisotropic conductive adhesive sheet and its production method
JPH02199847A (en) Mounting of ic chip
JPH05218137A (en) Manufacture of semiconductor device
JPH01132138A (en) Electrical connection method of ic chip, material for resin bump formation and liquid crystal display
KR20100003736A (en) Transfer method of adhesive film
JPH0773066B2 (en) Circuit connection member
JPH09306231A (en) Conductive particulate and substrate
JP6532575B2 (en) Anisotropic conductive film, connection method, bonded body, and method of manufacturing bonded body
EP3257109B1 (en) Electrical connection tape
JPH0237609A (en) Thermal adhesive conducting paste for fitting ic chip
KR20030050333A (en) MDC for reducing time of electronic packaging
JP3505321B2 (en) Conductive fine particles and substrate
JP6352979B2 (en) Anisotropic conductive film, connection method, joined body, and production method of joined body
JP2023176346A (en) Manufacturing method of circuit connection structure and circuit connection device
JPS63148660A (en) Ribbon for conductive bump formation
JPH0234950A (en) Mounting structure of semiconductor element
JPH11166169A (en) Adhesive composition