JPH0219423B2 - - Google Patents

Info

Publication number
JPH0219423B2
JPH0219423B2 JP55124579A JP12457980A JPH0219423B2 JP H0219423 B2 JPH0219423 B2 JP H0219423B2 JP 55124579 A JP55124579 A JP 55124579A JP 12457980 A JP12457980 A JP 12457980A JP H0219423 B2 JPH0219423 B2 JP H0219423B2
Authority
JP
Japan
Prior art keywords
tube
sample
light
reagent
measurement chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55124579A
Other languages
Japanese (ja)
Other versions
JPS5749843A (en
Inventor
Hiroshi Arayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP12457980A priority Critical patent/JPS5749843A/en
Publication of JPS5749843A publication Critical patent/JPS5749843A/en
Publication of JPH0219423B2 publication Critical patent/JPH0219423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、生体成分の発光分析装置、特に連続
的かつ自動的に分析可能な発光分析装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical emission spectrometer for biological components, and particularly to an optical emission spectrometer capable of continuous and automatic analysis.

[従来の技術] 生体成分、特に血清中の成分の分析は、通常特
定の試薬と生体成分とを反応させ、反応生成物の
吸光度を測定して生体成分の定量分析をするもの
であり、この吸光度分析は簡便ではあるが、その
感度が低いという欠点があつた。
[Prior art] Analysis of biological components, especially components in serum, is usually performed by reacting a specific reagent with the biological component and measuring the absorbance of the reaction product to quantitatively analyze the biological component. Although absorbance analysis is simple, it has the disadvantage of low sensitivity.

前述した吸光度分析に対して、生体成分と適当
な試薬との反応によつて生じる生化学的発光量又
は化学的発光量を測定することによつて、成分の
定量分析を行う発光分析が周知である。この発光
分析によれば、吸光度分析と比較して一般に数桁
以上の高感度を得ることができ、他の蛍光分析あ
るいはラジオイムノアツセイ分析等と同程度の高
感度の分析を行うことができる。この種の発光分
析は、例えば、アデノシントリフオスフエイト
(ATP)の分析に用いられ、試薬としてルシフエ
リン及び触媒として働くルシフエラーゼが用いら
れる。また、他の分析例として過酸化水素を定量
的に発生する反応が用いられ、すなわち、グルコ
ーズにグルコーズオキシダーゼを試薬として反応
させ、グルコン酸と過酸化水素を得、この過酸化
水素にルミノールとベルオキシダーゼとを反応さ
せることによつて発光反応を生起させ、グルコー
ズを定量分析することができる。更に、ルミノー
ルと過酸化水素とを基質としてラベルされたベル
オキシダーゼの検出を発光によつて行い、エンザ
イムイムノアツセイ分析も可能である。
In contrast to the above-mentioned absorbance analysis, luminescence analysis is well-known, which performs quantitative analysis of components by measuring the amount of biochemical luminescence or chemiluminescence produced by the reaction between biological components and appropriate reagents. be. According to this luminescence analysis, it is generally possible to obtain a sensitivity several orders of magnitude higher than that of absorbance analysis, and it is possible to perform analyzes with high sensitivity comparable to other fluorescence analysis or radioimmunoassay analysis. . This type of luminescence analysis is used, for example, for the analysis of adenosine triphosphate (ATP), using luciferin as a reagent and luciferase acting as a catalyst. In addition, as another analysis example, a reaction that quantitatively generates hydrogen peroxide is used. In other words, glucose is reacted with glucose oxidase as a reagent to obtain gluconic acid and hydrogen peroxide, and this hydrogen peroxide is mixed with luminol. By reacting with peroxidase, a luminescence reaction is caused, and glucose can be quantitatively analyzed. Furthermore, enzyme immunoassay analysis is also possible by detecting labeled peroxidase by luminescence using luminol and hydrogen peroxide as substrates.

従来の発光分析装置では、試料と試薬を混合し
たバイヤルを挿入する測定室と光電子増倍管との
間に遮光シヤツターを設け、バイヤルを挿入する
時にはこのシヤツターを閉じておき、バイヤルを
挿入後、測定室の開閉蓋を閉じると同時に前記遮
光シヤツターを開いて、前記バイヤル内での反応
により発生する発光量を光電子増倍管によつて測
定していた。従つて、この従来装置では、各測定
時毎に測定室の蓋の開閉、バイヤルの挿入、取出
し、遮光シヤツターの開閉が必要で、多種類の試
料を測定するためには多くの時間と労力を要し、
連続的かつ自動的に発光分析を行うことができな
いという欠点があつた。
In conventional emission spectrometers, a light-shielding shutter is installed between the photomultiplier tube and the measurement chamber into which the vial containing the sample and reagent mixture is inserted, and the shutter is closed when the vial is inserted. The light-shielding shutter was opened at the same time as the lid of the measurement chamber was closed, and the amount of luminescence generated by the reaction within the vial was measured using a photomultiplier tube. Therefore, with this conventional device, it is necessary to open and close the lid of the measurement chamber, insert and remove vials, and open and close the light-shielding shutter for each measurement, which requires a lot of time and effort to measure many types of samples. In short,
The drawback was that emission analysis could not be performed continuously and automatically.

発明の目的 本発明は上記従来の課題に鑑み成されたもの
で、その目的は、連続的に多数個の試料を能率よ
く定量分析することのできる改良された発光分析
装置を提供することにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to provide an improved luminescence spectrometer that can continuously and efficiently quantitatively analyze a large number of samples. .

[課題を解決するための手段] 上記目的を達成するために、本発明に係る生体
成分の発光分析装置は、遮光された測定室と、こ
の測定室壁に貫入され少なくとも測定室外部分が
遮光管とされ、かつ管内を通過して測定室へ入射
する光を阻止するために前記遮光管の一部を屈曲
形成した供給管を有しこの供給管により試料及び
試薬を連続的に測定室に送り込む供給手段と、測
定室内に密に巻回して配設され前記供給手段によ
り送り込まれた試料及び試薬を混合した後に連続
的に流通させる流通管と、この流通管の巻回部に
受光面が対向するように設けられた試料と試薬と
の反応による発光を電気的に検出する光電子増倍
管と、を含み、試料と試薬との反応によつて生じ
る生化学的発光量又は化学的発光量を測定して試
料中の生体成分を連続的に定量分析することを特
徴とする。
[Means for Solving the Problems] In order to achieve the above object, an optical emission analyzer for biological components according to the present invention includes a light-shielded measurement chamber and a light-shielding tube that penetrates the wall of the measurement chamber and at least the outside portion of the measurement chamber. and has a supply pipe formed by bending a part of the light-shielding tube in order to prevent light from passing through the tube and entering the measurement chamber, and the sample and reagent are continuously fed into the measurement chamber through this supply pipe. a supply means, a flow tube disposed in a tightly wound manner in the measurement chamber and through which the sample and reagent sent by the supply means are mixed and continuously circulated; and a light-receiving surface faces the wound portion of the flow tube. a photomultiplier tube that electrically detects the luminescence caused by the reaction between the sample and the reagent; It is characterized by continuously measuring and quantitatively analyzing biological components in a sample.

[実施例] 以下図面に基づいて本発明の好適な実施例を説
明する。
[Embodiments] Preferred embodiments of the present invention will be described below based on the drawings.

第1図には、本発明に係る発光分析装置の概略
全体構成が示されている。遮光された測定室10
内には、光電子増倍管12が設置されている。
FIG. 1 shows a schematic overall configuration of an optical emission spectrometer according to the present invention. Light-shielded measurement room 10
A photomultiplier tube 12 is installed inside.

この測定室10の外部には、試料を貯留した試
料源24及び試薬を貯留した試薬源26が配置さ
れている。
A sample source 24 storing a sample and a reagent source 26 storing a reagent are arranged outside the measurement chamber 10.

試料源24と測定室10とは、試料ポンプ16
の設けられた試料供給管20によつて連結されて
いる。すなわち、試料供給管20が測定室10に
貫入されている。なお、試料供給管20は、洗浄
液源(図示せず)にも連結されており、試料ポン
プ16によつて試料の供給だけではなく、洗浄液
供給も行われる。
The sample source 24 and the measurement chamber 10 are connected to the sample pump 16.
They are connected by a sample supply tube 20 provided with. That is, the sample supply pipe 20 penetrates into the measurement chamber 10. The sample supply tube 20 is also connected to a cleaning liquid source (not shown), and the sample pump 16 supplies not only the sample but also the cleaning liquid.

また、試薬源26と測定室10とは、試薬ポン
プ18の設けられた試薬供給管22によつて連結
されている。
Further, the reagent source 26 and the measurement chamber 10 are connected by a reagent supply pipe 22 in which a reagent pump 18 is provided.

すなわち、試料ポンプ16,試薬ポンプ18,
試料供給管20,試薬供給管22,試料源24及
び試薬源26によつて供給手段が形成されてい
る。
That is, sample pump 16, reagent pump 18,
The sample supply tube 20, the reagent supply tube 22, the sample source 24, and the reagent source 26 form a supply means.

本発明の第1の特徴的事項は、試料供給管20
及び試薬供給管22の構造であり、第2図及び第
3図には、この供給管の構造の一例が示されてい
る。
The first characteristic feature of the present invention is that the sample supply tube 20
and the structure of the reagent supply tube 22, and an example of the structure of this supply tube is shown in FIGS. 2 and 3.

すなわち、試料供給管20を例にとつて示せ
ば、測定室10の測定室壁10aに貫入される試
料供給管20は、少なくとも測定室外部に位置す
る部分20aを遮光性材料、例えばステンレス等
の金属にて構成している。そして、この試料供給
管20には屈曲部20bが形成されている。この
屈曲部20bによつて、試料供給管20内を通つ
て測定室10に入射する外光を確実に阻止するこ
とが可能となり、発光分析精度の低下を防止する
ことができる。
That is, taking the sample supply pipe 20 as an example, the sample supply pipe 20 that penetrates the measurement chamber wall 10a of the measurement chamber 10 has at least a portion 20a located outside the measurement chamber made of a light-shielding material, such as stainless steel. It is made of metal. A bent portion 20b is formed in this sample supply tube 20. This bent portion 20b makes it possible to reliably block external light from entering the measurement chamber 10 through the inside of the sample supply tube 20, making it possible to prevent a decrease in the accuracy of luminescence analysis.

同様に第3図には、試料供給管20の他の構造
が示されており、第2図と同様に遮光体からなる
外部部分20aを有すると共に、屈曲部20bが
設けられており、外部からの光入射を防止するこ
とができる。
Similarly, FIG. 3 shows another structure of the sample supply tube 20, which has an external portion 20a made of a light shield like in FIG. 2, and is provided with a bent portion 20b. can prevent light from entering.

実験によれば、前記屈曲部20bの曲率は、管
径の5倍程度に設定し、好ましくは360度の屈曲
角を設けることが好適である。
According to experiments, it is preferable that the curvature of the bent portion 20b is set to about five times the pipe diameter, and preferably a bending angle of 360 degrees.

また、試料供給管20や試薬供給管22は自動
分注器等と組み合わせて異なる試料あるいは試薬
を選択的に処理するために、プラスチツク等の可
撓管から形成することが望ましいが、このために
屈曲部20bの上方には、これらの処理を容易な
ものとするためにプラスチツク等の透明可撓管2
0cを接続することが好適である。
In addition, it is desirable that the sample supply tube 20 and the reagent supply tube 22 be formed from flexible tubes such as plastic in order to selectively process different samples or reagents in combination with an automatic dispenser or the like. A transparent flexible tube 2 made of plastic or the like is placed above the bent portion 20b to facilitate these treatments.
It is preferable to connect 0c.

次に、本発明の第2の特徴的事項は、測定室1
0内での試料及び試薬の流通経路にあり、本実施
例では試料供給管20と試薬供給管22とが測定
室10内で混合枝52にて結合されている。そし
て、この混合枝52は更に流通管54に連結され
ており、この流通管54は液排出管28に結合さ
れている。そして、上記流通管54には、その管
を密に巻回して構成した巻回部を光電子増倍管1
2の受光面に対向して設けている。混合された試
料及び試薬は、この流通管を連続的に流通する
が、この流通管54の巻回部を通過する際に、そ
の発光が光電子増倍管12によつて測定される。
Next, the second characteristic feature of the present invention is that the measurement chamber 1
In this embodiment, a sample supply pipe 20 and a reagent supply pipe 22 are connected by a mixing branch 52 within the measurement chamber 10. This mixing branch 52 is further connected to a flow pipe 54, and this flow pipe 54 is connected to the liquid discharge pipe 28. The flow tube 54 has a wound portion formed by tightly winding the tube into the photomultiplier tube 54.
It is provided opposite to the light receiving surface of No. 2. The mixed sample and reagent continuously flow through the flow tube, and as they pass through the windings of the flow tube 54, their luminescence is measured by the photomultiplier tube 12.

本実施例によれば、試料及び試薬を一定量連続
的に送り込むことによつて両者の混合液が流通管
54を通る際に発光反応が生起され、その発光量
測定と同時に混合液が液排出管28から排出され
るので、測定時間を短縮することができる。もち
ろん、一回の測定が完了した後、試料ポンプ16
は洗浄液を試料供給管20から流通管54へ供給
し、管内部分の洗浄を行う。なお、上記流通管5
4は、光電子増倍管12の受光面12aにできる
だけ近接した位置に巻回部を設けることが好適で
ある。第4図〜第6図は、この巻回部の一例をそ
れぞれ示している。第4図には、渦巻状に巻回し
た流通管54が示され、ガラスあるいはプラスチ
ツク等の透明部材から成る流通管54内を混合液
が通過する際にその発光が効率良く光電子増倍管
12によつて検出される。
According to this embodiment, by continuously feeding a fixed amount of the sample and reagent, a luminescent reaction occurs when the mixed liquid of both passes through the flow pipe 54, and the mixed liquid is discharged at the same time as the amount of luminescence is measured. Since it is discharged from the tube 28, the measurement time can be shortened. Of course, after one measurement is completed, the sample pump 16
supplies the cleaning liquid from the sample supply tube 20 to the flow tube 54 to clean the inside of the tube. In addition, the above-mentioned flow pipe 5
4, it is preferable to provide the winding portion at a position as close as possible to the light-receiving surface 12a of the photomultiplier tube 12. FIGS. 4 to 6 each show an example of this winding portion. FIG. 4 shows a spirally wound flow tube 54, and when the liquid mixture passes through the flow tube 54 made of a transparent material such as glass or plastic, the light emitted is efficiently transferred to the photomultiplier tube 12. detected by.

第5図には、流通管54を波状に密に形成した
実施例が示され、この実施例によつても同様の発
光量測定を行うことができる。
FIG. 5 shows an embodiment in which the flow tubes 54 are formed densely in a wavy manner, and a similar measurement of the amount of light emission can be performed with this embodiment as well.

第6図には、流通管54を透明部材から成るボ
ビン56に透明管を密に巻回して構成した例が示
されており、この例によつても、効率良く混合液
の発光を検出することが可能となる。
FIG. 6 shows an example in which the flow tube 54 is configured by tightly winding a transparent tube around a bobbin 56 made of a transparent material, and this example also allows for efficient detection of the luminescence of the mixed liquid. becomes possible.

なお、このような発光分析において、試料と試
薬とはその発光特性が第7図で示されるように変
化し、混合後の一定時間、例えば60秒間における
発光量を測定することが必要である。第7図にお
いては、試料と試薬とを混合した時刻t0から一定
時間経過後のt1までの発光量Lが積分測定され
る。従つて、正確な測定を行うためには、光電子
増倍管12の出力を測定時間t1にて正確に制御し
なければならない。
In such luminescence analysis, the luminescence properties of the sample and reagent change as shown in FIG. 7, and it is necessary to measure the amount of luminescence over a certain period of time, for example 60 seconds, after mixing. In FIG. 7, the luminescence amount L is integrally measured from time t 0 when the sample and reagent are mixed to t 1 after a certain period of time has elapsed. Therefore, in order to perform accurate measurements, the output of the photomultiplier tube 12 must be accurately controlled at the measurement time t1 .

第8図には、このような光電子増倍管12の出
力を制御する回路図が示されており、光電子増倍
管12には、電源32から高電圧が供給され、ま
た高電圧は感度調整器34によつて最適電圧に調
整されている。光電子増倍管12の出力はAD変
換器36によつてデジタル信号に変換され、この
デジタル信号がレートメータ38にて毎分のカウ
ント数に変換され、レコーダ40にてそのカウン
ト数が記録されている。また、AD変換器36の
出力デジタル信号は、積分器42に供給され、第
7図に示される一定時間の積分が行われた後、表
示器44にてその積分値が表示される。積分器4
2へはタイムコントローラ46から制御信号が供
給されており、第7図の特性で示される積分時間
が積分器42へ設定され、常に一定の積分時間で
光電子増倍管12の出力を積分処理することが可
能となる。
FIG. 8 shows a circuit diagram for controlling the output of such a photomultiplier tube 12. A high voltage is supplied to the photomultiplier tube 12 from a power source 32, and the high voltage is used for sensitivity adjustment. The voltage is adjusted to the optimum voltage by the voltage regulator 34. The output of the photomultiplier tube 12 is converted to a digital signal by the AD converter 36, this digital signal is converted to the number of counts per minute by the rate meter 38, and the number of counts is recorded by the recorder 40. There is. Further, the output digital signal of the AD converter 36 is supplied to an integrator 42, and after being integrated for a certain period of time as shown in FIG. 7, the integrated value is displayed on a display 44. Integrator 4
2 is supplied with a control signal from a time controller 46, and an integration time shown by the characteristics shown in FIG. becomes possible.

なお、レートメータ38による発光強度の測定
は、最高発光強度が生体成分の濃度に比例する原
理を利用するものであり、このためには、試料と
試薬の注入速度を常に一定に保持しなければなら
なず、このため、第1図において試料ポンプ16
及び試薬ポンプ18はその供給速度が常に一定と
なるように制御されている。
Note that the measurement of luminescence intensity by the rate meter 38 utilizes the principle that the maximum luminescence intensity is proportional to the concentration of biological components, and for this purpose, the injection rate of the sample and reagent must always be kept constant. Therefore, in FIG.
The reagent pump 18 is controlled so that its supply rate is always constant.

以上の実施例において、試料源24は単に試験
管として図示されているが、電磁コツクによつて
試料源24と洗浄液源とを自動的に切り換えるこ
とが可能である。また、この試料源24をオート
チエンジヤ等に連動させて、多数個の試料を自動
的に次々と試料ポンプ16によつて測定室10内
に送り込むこともでき、自動的に連続した発光分
析を行うことが可能であるという利点を有する。
In the embodiments described above, the sample source 24 is simply illustrated as a test tube, but it is possible to automatically switch between the sample source 24 and the cleaning liquid source using an electromagnetic knob. In addition, this sample source 24 can be linked to an autochanger or the like to automatically feed a large number of samples into the measurement chamber 10 one after another by the sample pump 16, thereby automatically performing continuous luminescence analysis. It has the advantage that it can be done.

更に、各試料をその発光反応前に適当な処理を
する必要のある場合には、試料源24の代わりに
処理装置の出力側端を試料ポンプ16に接続する
ことも可能である。
Furthermore, if each sample needs to be treated appropriately before its luminescence reaction, the output end of the processing device can be connected to the sample pump 16 instead of the sample source 24.

[発明の効果] 以上説明したように、本発明によれば、試料の
発光分析を自動的かつ連続的に行うことが可能と
なり、各試料毎に測定室を開閉することがないの
で、多数個の試料の測定を短時間で行うことがで
きる利点を有する。また、試料及び試薬の供給管
を通過する外光を屈曲部によつて完全に遮断する
ことができるので、発光量測定の精度の低下を防
止することができる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to automatically and continuously perform luminescence analysis of a sample, and there is no need to open and close the measurement chamber for each sample. It has the advantage of being able to measure several samples in a short time. Furthermore, since the bending portion can completely block external light passing through the sample and reagent supply tubes, it is possible to prevent a decrease in the accuracy of luminescence measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る発光分析装置の好適な実
施例を示す概略構成図、第2図及び第3図は供給
管部の好適な実施例を示す説明図、第4図、第5
図、第6図は流通管の好適な実施例を示す説明
図、第7図は本発明における発光特性図、第8図
は本発明に好適な信号処理回路を示す回路図であ
る。 10……測定室、10a……測定室壁、12…
…光電子増倍管、12a……受光面、16……試
料ポンプ、18…試薬ポンプ、20……試料供給
管、22……試薬供給管、24……試料源、26
……試薬源、20b……屈曲部、54……流通
管、56……ボビン。
FIG. 1 is a schematic configuration diagram showing a preferred embodiment of the optical emission spectrometer according to the present invention, FIGS. 2 and 3 are explanatory diagrams showing preferred embodiments of the supply pipe section, and FIGS.
FIG. 6 is an explanatory diagram showing a preferred embodiment of the flow pipe, FIG. 7 is a light emission characteristic diagram according to the present invention, and FIG. 8 is a circuit diagram showing a signal processing circuit suitable for the present invention. 10...Measurement chamber, 10a...Measurement chamber wall, 12...
... Photomultiplier tube, 12a ... Light receiving surface, 16 ... Sample pump, 18 ... Reagent pump, 20 ... Sample supply tube, 22 ... Reagent supply tube, 24 ... Sample source, 26
...Reagent source, 20b...Bending portion, 54...Flow tube, 56...Bobbin.

Claims (1)

【特許請求の範囲】 1 遮光された測定室と、 この測定室壁に貫入され少なくとも測定室外の
部分が遮光管とされ、かつ管内を通過して測定室
へ入射する光を阻止するために前記遮光管の一部
を屈曲形成した供給管を有しこの供給管により試
料及び試薬を連続的に測定室に送り込む供給手段
と、 測定室内に密に巻回して配設され前記供給手段
により送り込まれた試料及び試薬を混合した後に
連続的に流通させる流通管と、 この流通管の巻回部に受光面が対向するように
設けられ試料と試薬との反応による発光を電気的
に検出する光電子増倍管と、 を含み、試料と試薬との反応によつて生じる生
化学的発光量又は化学的発光量を測定して試料中
の生体成分を連続的に定量分析することを特徴と
する生体成分の発光分析装置。 2 特許請求の範囲1記載の装置において、流通
管は渦巻状に巻回された透明管から形成されてい
ることを特徴とする生体成分の発光分析装置。 3 特許請求の範囲1記載の装置において、流通
管は透明ボビンに巻回された透明管から形成され
ていることを特徴とする生体成分の発光分析装
置。 4 特許請求の範囲1記載の装置において、流通
管は波状に巻回された透明管から形成されている
ことを特徴とする生体成分の発光分析装置。
[Scope of Claims] 1. A light-shielded measurement chamber; and a light-shielding tube that penetrates the wall of the measurement chamber and at least a portion outside the measurement chamber is a light-shielding tube, and the above-mentioned light-shielding tube is used to block light passing through the tube and entering the measurement chamber. A supply means having a supply pipe formed by bending a part of a light-shielding tube and continuously feeding the sample and reagent into the measurement chamber through this supply pipe; A flow tube through which the mixed sample and reagent are mixed and then continuously passed through the flow tube, and a photoelectron intensifier that is installed so that the light-receiving surface faces the winding part of the flow tube and electrically detects the light emitted by the reaction between the sample and the reagent. A biological component characterized by comprising a doubler tube, and continuously quantitatively analyzing the biological component in the sample by measuring the amount of biochemical luminescence or chemiluminescence generated by the reaction between the sample and the reagent. emission spectrometer. 2. An optical emission analysis device for biological components according to claim 1, wherein the flow tube is formed from a spirally wound transparent tube. 3. An optical emission analysis device for biological components according to claim 1, wherein the flow tube is formed of a transparent tube wound around a transparent bobbin. 4. An optical emission analysis device for biocomponents according to claim 1, wherein the flow tube is formed from a transparent tube wound in a wavy manner.
JP12457980A 1980-09-10 1980-09-10 Emission analyzer for biological component Granted JPS5749843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12457980A JPS5749843A (en) 1980-09-10 1980-09-10 Emission analyzer for biological component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12457980A JPS5749843A (en) 1980-09-10 1980-09-10 Emission analyzer for biological component

Publications (2)

Publication Number Publication Date
JPS5749843A JPS5749843A (en) 1982-03-24
JPH0219423B2 true JPH0219423B2 (en) 1990-05-01

Family

ID=14888958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12457980A Granted JPS5749843A (en) 1980-09-10 1980-09-10 Emission analyzer for biological component

Country Status (1)

Country Link
JP (1) JPS5749843A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142755U (en) * 1983-03-15 1984-09-25 株式会社島津製作所 Flow cell for chemiluminescence detector
JPS60135750A (en) * 1983-12-23 1985-07-19 Agency Of Ind Science & Technol Chemical emission type analytical device for trace component in liquid
FR2609171B1 (en) * 1986-12-24 1989-11-10 Nivarox Sa APPARATUS FOR PHOTOMETRIC ANALYSIS OF LIQUID SAMPLES
JPH076518Y2 (en) * 1987-10-16 1995-02-15 日本分光株式会社 Flow cell for chemiluminescence detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953098A (en) * 1972-06-19 1974-05-23
JPS5432389A (en) * 1977-08-17 1979-03-09 Nippon Bunko Kogyo Kk Method and apparatus for analyzing guanidine compound
JPS5536733A (en) * 1978-09-06 1980-03-14 Mitsubishi Heavy Ind Ltd Method of detecting oil polluted bottle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655648Y2 (en) * 1977-04-28 1981-12-25

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953098A (en) * 1972-06-19 1974-05-23
JPS5432389A (en) * 1977-08-17 1979-03-09 Nippon Bunko Kogyo Kk Method and apparatus for analyzing guanidine compound
JPS5536733A (en) * 1978-09-06 1980-03-14 Mitsubishi Heavy Ind Ltd Method of detecting oil polluted bottle

Also Published As

Publication number Publication date
JPS5749843A (en) 1982-03-24

Similar Documents

Publication Publication Date Title
US4772453A (en) Luminiscence measurement arrangement
US3679312A (en) Method and apparatus for measuring bioluminescence or chemiluminescence for quantitative analysis of samples
US4366118A (en) Apparatus and method for luminescent determination of concentration of an analyte in a sample
US5945344A (en) Electrochemiluminescence method
DE60042990D1 (en) Data processing device for X-ray fluorescence spectroscopy, which takes into account the sensitivity of the measuring device for the chemical elements, regardless of measurement conditions
WO1996041155A9 (en) An improved electrochemiluminescence method
US4309112A (en) Rate measurement analyzer
JPH0219423B2 (en)
EP0411042B1 (en) Apparatus for conducting a plurality of simultaneous measurements of electrochemiluminescent phenomena
JPS5937946B2 (en) Trace component analyzer in specimen
JPH0416205Y2 (en)
JPH0257863B2 (en)
JPH04318444A (en) Chemiluminescence detector
JP2669029B2 (en) Flow cell device
US5255204A (en) Method of calibrating an enzyme immuno assay system
JP2539558B2 (en) Automatic analyzer
JP2728796B2 (en) Chemiluminescence measuring method and measuring device
Stanley Instrumentation for luminescence methods of analysis
JPS594999B2 (en) Method and device for analyzing trace components in samples
JPH0416204Y2 (en)
JPS6453144A (en) Method for evaluating thin film by fluorescent x-ray analysis
JPH0519801Y2 (en)
SU1040389A1 (en) Substance chemical composition determination method
Holtkamp et al. A simple automated method for the fluorometric titration of calcium in biological fluids
US3407043A (en) Method and apparatus for rapid determination of 1-phenyl-3-pyrazolidone (phenidone) in developing solutions