JPH02191594A - Sewage treating device - Google Patents

Sewage treating device

Info

Publication number
JPH02191594A
JPH02191594A JP899689A JP968989A JPH02191594A JP H02191594 A JPH02191594 A JP H02191594A JP 899689 A JP899689 A JP 899689A JP 968989 A JP968989 A JP 968989A JP H02191594 A JPH02191594 A JP H02191594A
Authority
JP
Japan
Prior art keywords
filter layer
layer
filter
filter medium
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP899689A
Other languages
Japanese (ja)
Inventor
Hideji Takeuchi
竹内 秀二
Yuji Yoshii
吉井 裕二
Hirohisa Yamada
山田 尋久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP899689A priority Critical patent/JPH02191594A/en
Publication of JPH02191594A publication Critical patent/JPH02191594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To lower the burden of a lower filter layer and to allow the long-term continuous treatment of sewage in the sewage treating device having an air diffuser for aeration by packing a cylindrical filter medium for rough filtration into an upper filter layer. CONSTITUTION:The filter layer 2 is segmented to two layers; the upper filter layer 2a and the lower filter layer 2b. The cylindrical filter medium 20 which consists of a synthetic resin, has a rugged surface and is of 1.0 to 1.2 in sp. gr., 5 to 20mm in diameter and 70.3 to 5.0 times the diameter in length is packed into the upper filter layer 2a. The air diffuser 6 for aeration which supplies oxygen to the microorganism seated in the filter layers 2 is disposed into the lower part of the lower filter layer 2b or the lower part of the upper filter layer 2a. The greater part of the SS in the upper filter layer 2a is removed in this way and the load of the lower filter layer 2b is decreased. Further, the surface of the cylindrical filter medium 20 is made into the rugged state and, therefore, the microorganisms are liable to stick thereon and the biotreating capacity is increased.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、都市下水、産業排水などの有機性排水あるい
は下水二次処理水を生物膜濾過法によって処理する汚水
処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a sewage treatment device for treating organic wastewater such as urban sewage and industrial wastewater, or secondary treated sewage water by a biofilm filtration method.

[従来技術] 生物膜濾過法による汚水処理装置は、処理槽内に玉砂利
、砕石、アンスラサイト、ラシしリングなどの粒状濾材
を充填した生物膜濾層を備え、濾層の下部から空気を吹
き込む散気手段が設けられ、濾材の表面あるいは濾層の
空隙に着生している好気性微生物の作用によって原水中
のBOD成分を酸化分解処理する装置である。この装置
は、濾層内での気液接触がよいために酸素溶解効率が高
く、また有機物の除去と同時に懸濁性固形物(以下、S
Sと云う)を除去する機能をも有しており、近年、その
適用についての開発研究がなされている。
[Prior art] Sewage treatment equipment using the biofilm filtration method has a biofilm filter layer filled with granular filter media such as gravel, crushed stone, anthracite, and lacquer rings in the treatment tank, and air is blown from the bottom of the filter layer. This device is equipped with aeration means and oxidizes and decomposes BOD components in raw water by the action of aerobic microorganisms that grow on the surface of the filter medium or in the voids of the filter layer. This device has high oxygen dissolution efficiency due to good gas-liquid contact within the filter layer, and also removes suspended solids (hereinafter referred to as S) while simultaneously removing organic matter.
It also has the function of removing S (S), and research and development on its application has been conducted in recent years.

例えば、濾層に粒状濾材を充填した生物濾過脱法による
装置を使用し、活性汚泥法による処理水の高度処理を行
った研究結果が発表されている(第25回下水道研究発
表会講演集1294頁〜296頁、 1988年)、第
4図はこの装置の説明図である。第4図において、この
装置は処理槽1内に4〜7Iの粒状濾材を1m充填して
流層30を形成している。そして、処理槽1の上部には
原水流入管4が、下部には処理水排出管5がそれぞれ配
管され、また流層30の下方には濾材に着生した微生物
に酸素を供給するための曝気用空気供給管7が配管され
ている6図中、9は処理水排出管5に接続させて処理槽
1に逆洗水を流入させる逆洗水供給管、11は逆洗排水
管を示し、曝気用空気供給管7は逆洗用空気の供給管を
兼ねている。
For example, research results have been published on advanced treatment of treated water using the activated sludge method using a biological filtration system in which the filter bed is filled with granular filter media (25th Sewerage Research Conference Proceedings, p. 1294). 296, 1988), FIG. 4 is an explanatory diagram of this device. In FIG. 4, in this apparatus, a treatment tank 1 is filled with 4 to 7I granular filter media for 1 m to form a fluid bed 30. A raw water inflow pipe 4 is installed in the upper part of the treatment tank 1, and a treated water discharge pipe 5 is installed in the lower part of the treatment tank 1. Also, below the flow bed 30, aeration is provided to supply oxygen to the microorganisms that have grown on the filter media. In Figure 6, where the air supply pipe 7 is installed, 9 indicates a backwash water supply pipe that is connected to the treated water discharge pipe 5 and allows backwash water to flow into the treatment tank 1, and 11 indicates a backwash drain pipe. The aeration air supply pipe 7 also serves as a backwash air supply pipe.

このように構成された装置において、原水流入管4から
供給された原水は流層30を通過する間にBOD及びS
Sが除去され、処理水は処理水排出管5から排出する。
In the device configured in this way, the raw water supplied from the raw water inflow pipe 4 has BOD and S while passing through the fluid layer 30.
S is removed and the treated water is discharged from the treated water discharge pipe 5.

この浄化処理の間に、SSの捕捉及び微生物の増殖によ
って流層30の圧損が上昇するので、圧損がある限度に
達した時点で流層30の逆洗を行う。
During this purification process, the pressure drop in the fluid bed 30 increases due to the capture of SS and the growth of microorganisms, so the fluid bed 30 is backwashed when the pressure loss reaches a certain limit.

この実施結果の説明においては、BOD、SSの除去は
何れも良好であるが、24時間通水後の圧損は第5図の
ように高い傾向を示している。そして、この圧損の結果
に基づいた流層逆洗の必要頻度は、濾過速度6m/時(
144m7日)の場合で2日に1回程度であることが記
載されている。
In the explanation of the results of this implementation, although both BOD and SS were removed well, the pressure drop after 24 hours of water flow showed a tendency to be high as shown in FIG. Based on the results of this pressure drop, the required frequency of fluidized bed backwashing is determined by the filtration speed of 6 m/hour (
It is stated that in the case of 144 m 7 days), it is about once every two days.

[発明が解決しようとする課題] 上記の従来技術においては、流層に充填する濾材は空隙
率が小さく、目詰まりする度合いが大きいため、流層の
逆洗は比較的短期間で実施しなけれならず、なお、改良
すべき余地がある。
[Problems to be Solved by the Invention] In the above-mentioned conventional technology, the porosity of the filter medium filled in the fluid bed is small and the degree of clogging is large, so backwashing of the fluid bed must be carried out in a relatively short period of time. However, there is still room for improvement.

本発明は、上記の問題点を解決し、BOD、SSの除去
効率を損なうことなく、長時間の処理を継続することが
できる汚水処理装置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems and provide a sewage treatment device that can continue treatment for a long time without impairing the removal efficiency of BOD and SS.

[課題を解決するための手段] 上記の目的を達成するために、本発明の汚水処理装置に
おいては、処理槽内に濾層を備え、この流層に着生する
微生物に酸素を供給するための曝気用散気器を備えた汚
水処理装置において、前記流層を上部濾層および下部濾
層の二つに区分し、前記上部濾層には合成樹脂よりなり
表面に凹凸を有し比重が1.0以上1.2以下、直径が
5翳藤〜20重−1長さが0,3〜5倍の筒状濾材を充
填している。
[Means for Solving the Problems] In order to achieve the above object, the sewage treatment apparatus of the present invention includes a filter layer in the treatment tank, and a filter layer for supplying oxygen to microorganisms that grow in this flow layer. In a sewage treatment equipment equipped with an aeration diffuser, the flow layer is divided into an upper filter layer and a lower filter layer, and the upper filter layer is made of synthetic resin and has an uneven surface and a specific gravity. It is filled with a cylindrical filter medium of 1.0 to 1.2 and a diameter of 5 to 20 weights and a length of 0.3 to 5 times.

この装置における曝気用散気器の配置例としては、下部
濾層の下部に配置する場合、あるいは上部濾層の下部に
配置する場合などがある。
Examples of the arrangement of the aeration diffuser in this device include placing it below the lower filter layer or below the upper filter layer.

[作用] 前述のように、生物膜濾過においては、生物処理による
BOD成分の除去と同時にSSの除去(濾過)が行われ
る6本発明の装置においては、生物処理と濾過を共に効
率よ〈実施することを図っている。
[Function] As mentioned above, in biofilm filtration, SS is removed (filtrated) at the same time as the BOD component is removed by biological treatment. I am trying to do that.

まず、濾過によるSSの除去について説明する0粒径の
小さい粒状濾材を充填した流層は、SSの捕捉率はよく
、微細なSSをも除去できるが、流層が目詰まりする度
合いが大きく、長時間の濾過継続はできない、しかし、
SSが低濃度の場合には長時間の濾過継続が可能となる
。そこで、本発明においては、二つの異なる濾材を使用
し、筒状濾材を充填した上部濾層と粒状濾材を充填した
下部IJtlとによって濾層を構成している。
First, to explain the removal of SS by filtration, a fluid bed filled with a small granular filter medium of zero particle size has a good SS capture rate and can remove even minute SS, but the fluid bed is clogged to a large degree. It is not possible to continue filtration for a long time, but
When the SS concentration is low, filtration can be continued for a long time. Therefore, in the present invention, two different filter media are used, and the filter layer is composed of an upper filter layer filled with a cylindrical filter material and a lower IJtl filled with a granular filter material.

上部濾層においては、原水の粗濾過を行って大部分のS
Sを除去し、低SS濃度の水にして下部濾層に送る作用
をなす。下部濾層では、上部濾層で除去できずに残留し
ているSSを捕捉ものである。従って、粒状濾材を充填
した下部濾層の負荷が著しく軽減される。このように、
本発明における濾層は、主として粗濾過の機能を有する
上部濾層と、微細なSSをも除去する仕上げ濾過の機能
を有する下部濾層を組み合わせた構成になっている。
In the upper filter layer, most of the S is removed by rough filtration of the raw water.
It functions to remove S and make water with a low SS concentration and send it to the lower filter layer. The lower filter layer captures the remaining SS that could not be removed by the upper filter layer. Therefore, the load on the lower filter layer filled with granular filter media is significantly reduced. in this way,
The filter layer in the present invention has a combination of an upper filter layer mainly having a coarse filtration function and a lower filter layer having a finish filtration function to remove even fine SS.

筒状濾材は粗濾過の機能を持たせるために使用するもの
であるが、優れた濾過性能をも有している。筒状濾材は
中空であると共に表面が凹凸になっており、空隙率およ
び比表面積が大きい、この濾材を使用すると、比表面積
が大きいのでSSの捕捉が容易に行われ、高いSS除去
率が得られる、また、空隙率が大きいのでSSの捕捉は
濾層全体で行われ、SSの捕捉容量が大きい、さらに、
空隙率が大きいので濾層の圧損が上昇する度合いが小さ
く、長時間の濾過継続ができる。上記のような機能を有
する上部流層、下部流層による濾層の構成は、粒径分布
の幅が広いSSを含む原水を処理する場合において特に
効率的である。この場合、粒径の大きいSSは主として
上部濾層で除去され、上部濾層で除去できなかった主と
して粒径の小さいSSは下部濾層で除去されるので、下
部濾層の目詰まりは一層軽減される。
The cylindrical filter medium is used to provide a coarse filtration function, but it also has excellent filtration performance. The cylindrical filter medium is hollow and has an uneven surface, and has a large porosity and specific surface area. When this filter medium is used, the large specific surface area makes it easy to capture SS, resulting in a high SS removal rate. In addition, since the porosity is large, SS capture is performed throughout the filter layer, and the SS capture capacity is large.Furthermore,
Since the porosity is large, the degree of increase in pressure loss in the filter layer is small, and filtration can be continued for a long time. The structure of the filter layer including the upper flow layer and the lower flow layer having the above-mentioned functions is particularly efficient when treating raw water containing SS with a wide particle size distribution. In this case, SS with large particle size is mainly removed in the upper filter layer, and SS with small particle size that could not be removed in the upper filter layer is removed in the lower filter layer, so clogging of the lower filter layer is further reduced. be done.

次に、生物処理について説明する。前述のように、粒状
濾材は微細なSSを除去するために使用する必要がある
。しかし、生物処理においては、粒状濾材は比表面積が
小さいので微生物の付着量が少なく、従って、流層内の
微生物濃度が低く、BOD負荷を上げることができない
、この粒状濾材の処理能力を補うために、筒状濾材を充
填した上部濾層が設けられている。
Next, biological treatment will be explained. As mentioned above, granular filter media should be used to remove fine SS. However, in biological treatment, since the specific surface area of granular filter media is small, the amount of microorganisms adhering to it is small, and therefore the concentration of microorganisms in the flow layer is low, making it impossible to increase the BOD load. An upper filter layer filled with a cylindrical filter medium is provided.

上部濾層に充填する筒状濾材は、比表面積が大きいので
微生物が付着し易く、また多量に付着する。また、中空
であるので空気を保持する能力が大きく、微生物の活動
が活発になってBOD成分の処理効率が向上する。
Since the cylindrical filter medium filled in the upper filter layer has a large specific surface area, microorganisms easily adhere to it, and a large amount of microorganisms adhere thereto. In addition, since it is hollow, it has a large ability to retain air, which increases the activity of microorganisms and improves the processing efficiency of BOD components.

筒状濾材は比重1.0以上1.2以下のものを使用する
が、その比重は、濾層の逆洗を効率よ〈実施するためで
あり、原水の比重より大きく、下部濾層に充填する粒状
濾材の比重より小さい範囲に定めている6本発明の装置
に充填する濾材は浸漬した状態で使用するので、その比
重は少なくと61.0以上である必要がある。濾層の逆
洗に際しては、濾材を激しく流動させれば、濾材からの
SSの剥離は容易であり、逆洗を短時間で終了させるこ
とができる。このため、筒状濾材の比重の上限はできる
だけ小さくした方が逆洗時の動力の節減となる。また、
本発明における濾層は、上部濾層と下部濾層との間に仕
切りがなく、二つの異なる濾材が接して充填されている
。このため、濾層の逆洗終了時には、筒状濾材と粒状濾
材とを上下2層に分離させなければならず、筒状濾材の
比重は少なくとも粒状濾材の比重より小さいことを要す
る。従って、逆洗終了時における上記両濾材の分離、お
よび逆洗時の流動化の双方を勘案し、筒状濾材の比重の
上限は1.2とした。
The cylindrical filter medium used has a specific gravity of 1.0 or more and 1.2 or less, but the specific gravity is higher than the specific gravity of raw water and is used to efficiently backwash the filter layer. 6. Since the filter medium filled in the apparatus of the present invention is used in a immersed state, its specific gravity must be at least 61.0. When backwashing the filter layer, if the filter medium is vigorously fluidized, SS can be easily peeled off from the filter medium, and backwashing can be completed in a short time. Therefore, it is better to reduce the upper limit of the specific gravity of the cylindrical filter medium as much as possible to save power during backwashing. Also,
In the filter layer of the present invention, there is no partition between the upper filter layer and the lower filter layer, and two different filter media are filled in contact with each other. For this reason, when the backwashing of the filter layer is completed, the cylindrical filter medium and the granular filter medium must be separated into two layers, upper and lower, and the specific gravity of the cylindrical filter medium must be at least smaller than the specific gravity of the granular filter medium. Therefore, the upper limit of the specific gravity of the cylindrical filter medium was set to 1.2, taking into consideration both the separation of the above-mentioned filter media at the end of backwashing and the fluidization during backwashing.

第3図は本発明の装置の上部濾層に充填する筒状濾材の
一例を模式的に示した図である。この筒状濾材20は、
ポリプロピレン、ポリエチレン、ポリスチレンなどの合
成樹脂よりなり、形状は筒状である。また、この筒状濾
材20は発泡体であり、表面には多数の凹凸を有し、そ
の表面は粗面となっている。特に凹部21は発泡時に形
成された不定形の孔であり、筒状濾材20の比表面積を
増大させている。筒状濾材の大きさは、上部濾層が粗濾
過の機能を有するものであるため、下部濾層に充填する
粒状濾材より大きいことを要し、径dが5■置〜20m
m程度、長さlはρ/dで示せば0.3〜5程度の範囲
である。下部濾層に充填する粒状濾材の粒径との関係か
らすれば、筒状濾材20の径dは5龍以上である必要が
あり、径dが20mmを超えとSSの除去率が低下する
。1/dについては、0.3未満では、使用時の各種数
り扱いにおいて破損することがある。ρ/dが5を超え
ると、中空部22内への流体の流通が悪くなって酸素の
供給が不十分になって微生物の活動を阻害し、また、濾
層の充填密度が小さくなってSSの除去率が低下する。
FIG. 3 is a diagram schematically showing an example of a cylindrical filter medium to be filled in the upper filter layer of the apparatus of the present invention. This cylindrical filter medium 20 is
It is made of synthetic resin such as polypropylene, polyethylene, and polystyrene, and has a cylindrical shape. Moreover, this cylindrical filter medium 20 is a foamed body, and has many irregularities on the surface, and the surface is rough. In particular, the recesses 21 are irregularly shaped holes formed during foaming, and increase the specific surface area of the cylindrical filter medium 20. Since the upper filter layer has a coarse filtration function, the size of the cylindrical filter medium must be larger than the granular filter medium filled in the lower filter layer, and the diameter d should be 5 cm to 20 m.
m, and the length l is in the range of about 0.3 to 5 when expressed as ρ/d. Considering the relationship with the particle size of the granular filter medium filled in the lower filter layer, the diameter d of the cylindrical filter medium 20 needs to be 5 mm or more, and if the diameter d exceeds 20 mm, the SS removal rate will decrease. Regarding 1/d, if it is less than 0.3, it may be damaged during various handling during use. When ρ/d exceeds 5, the flow of fluid into the hollow portion 22 becomes poor and oxygen supply becomes insufficient, inhibiting the activity of microorganisms, and the packing density of the filter layer decreases, resulting in SS Removal rate decreases.

なお、本発明において使用可能な筒状濾材は上記の形状
に限定されるものではなく、断面形状が多角形のもの、
あるいは楕円形のものでもよい。
Note that the cylindrical filter media that can be used in the present invention are not limited to the above-mentioned shapes, but include those with a polygonal cross-sectional shape,
Or it may be oval.

また、表面の凹凸は発泡によるものが最もよいが、機械
的に切削したものなどでも使用できる。
The surface irregularities are best formed by foaming, but mechanically cut ones can also be used.

[実施例] 第1図は本発明の一実施例を模式的に示した断面図であ
る。処理槽1内に濾層2を備えており、この濾層2には
異なる二つの濾材が充填され、上部濾層2a、下部濾層
2bを形成している。上部濾層2aには第3図に示した
筒状濾材が充填され、下部濾層2bには粒状濾材が充填
されている0粒状濾材は、比重が1.2を超え2.7以
下の粒子である。具体的な粒状濾材としては、アンスラ
サイト、砂、砂利、シャモット(膨張頁岩)活性炭、セ
ラミックスなどの天然または人工の濾材から選定した1
種または2種以上を使用する。
[Example] FIG. 1 is a sectional view schematically showing an example of the present invention. A filter layer 2 is provided in the processing tank 1, and this filter layer 2 is filled with two different filter media to form an upper filter layer 2a and a lower filter layer 2b. The upper filter layer 2a is filled with a cylindrical filter medium shown in FIG. 3, and the lower filter layer 2b is filled with a granular filter medium. It is. Specific granular filter media include one selected from natural or artificial filter media such as anthracite, sand, gravel, chamotte (expanded shale) activated carbon, and ceramics.
Use one or more species.

粒状濾材の粒径は処理する原水の水質(特にSSの粒径
分布)および処理水の目標によって決定されるが、通常
的0.3mm〜10mmの範囲である。
The particle size of the granular filter medium is determined by the quality of the raw water to be treated (particularly the particle size distribution of SS) and the target of the treated water, but is usually in the range of 0.3 mm to 10 mm.

下部流層2bに2種以上の粒状濾材を充填する場合とし
ては、例えば、下側に砂を充填し、その上にアンスラサ
イト(比重は約1.6で砂と前記筒状濾材の中間)を充
填し、その粒径を砂と筒状濾材との中間の大きさにすれ
ば、濾層2全体がSSを粒度別に捕捉できる3層構造と
なり、効率的な濾過を行うことができる。
When filling the lower flow layer 2b with two or more types of granular filter media, for example, the lower side is filled with sand, and anthracite (specific gravity of about 1.6, between the sand and the cylindrical filter media) is placed on top of it. By filling the SS with a particle size intermediate between that of sand and a cylindrical filter medium, the entire filter layer 2 becomes a three-layer structure capable of capturing SS according to particle size, and efficient filtration can be performed.

濾層2の下端には、多孔板、格子などの形状をなし、実
質的に通水抵抗が殆どない濾層保持材3を備え、濾層2
を担持している。なお、濾層保持材3の代わりに処理槽
1の底部に支持砂利を充填してもよい、処理槽1には各
種の配管が接続されており、その上方には原水流入管4
が、底部には処理水抜き出し管5が配管され、原水が処
理されて排出する流路が形成されている。また下部流層
2bの下部に挿入され濾層2に着生した微生物に酸素を
供給するための曝気用散気器6を備え、この曝気用散気
器6には曝気用空気供給管7が接続されている。そして
、濾層2の逆洗時に使用する手段として、処理槽1の底
部には、濾層保持板3下方に設けた逆洗用散気器8とこ
れに接続させた逆洗用空気供給管9および逆洗水供給管
10を備えている。また、処理槽1の上部には、逆洗排
水管11を備えている。なお、上部濾層2aに充填する
筒状濾材は比重が小さいので、濾層2の逆洗時に流出す
ることがあり、処理槽1上部の逆洗排水流出部近傍にス
クリーン(図示せず)を設けることが望ましい。
The lower end of the filter layer 2 is provided with a filter layer holding material 3 in the shape of a perforated plate, a lattice, etc., which has virtually no resistance to water flow.
is carried. In addition, supporting gravel may be filled in the bottom of the treatment tank 1 instead of the filter layer holding material 3. Various types of piping are connected to the treatment tank 1, and a raw water inflow pipe 4 is connected above it.
However, a treated water extraction pipe 5 is installed at the bottom to form a flow path through which the raw water is treated and discharged. It also includes an aeration diffuser 6 inserted into the lower part of the lower flow layer 2b to supply oxygen to the microorganisms that have grown on the filter layer 2, and this aeration diffuser 6 has an aeration air supply pipe 7. It is connected. As a means for backwashing the filter layer 2, the bottom of the treatment tank 1 includes a backwash air diffuser 8 provided below the filter layer holding plate 3 and a backwash air supply pipe connected to the diffuser 8. 9 and a backwash water supply pipe 10. Further, the upper part of the treatment tank 1 is provided with a backwash drain pipe 11. Note that the cylindrical filter material filled in the upper filter layer 2a has a low specific gravity, so it may flow out when the filter layer 2 is backwashed, so a screen (not shown) is installed near the backwash wastewater outlet in the upper part of the treatment tank 1. It is desirable to provide one.

この装置による処理について説明すると、原水流入管4
から原水を流入させ、曝気用散気器6がら空気を散気し
なから濾層2に通水する。原水は、濾層2を通過する間
にBODが分解されると共に、SSが捕捉されて除去さ
れ、低BOD濃度、低SS濃度の処理水となり、処理水
抜き出し管5から排出する。
To explain the processing by this device, raw water inflow pipe 4
Raw water is introduced from the tank, diffused with air by an aeration diffuser 6, and then passed through the filter layer 2. While the raw water passes through the filter layer 2, BOD is decomposed and SS is captured and removed, resulting in treated water with a low BOD concentration and low SS concentration, which is discharged from the treated water extraction pipe 5.

濾層2の逆洗を行う場合、原水の通水を中断し、逆洗用
散気器8がら空気を吹き込み、濾層2に付着しているS
Sを剥離して水中に懸濁させる。次いで、逆洗水供給管
10から逆洗水を導入して流層2中の懸濁水を排出する
When backwashing the filter layer 2, the flow of raw water is interrupted, air is blown through the backwash diffuser 8, and the S attached to the filter layer 2 is removed.
Peel off the S and suspend it in water. Next, backwash water is introduced from the backwash water supply pipe 10 to discharge suspended water in the fluid layer 2.

第2図は本発明の他の実施例を模式的に示した断面図で
ある。第2図において、第1図と同じ構成部分について
は同一の符号を付し説明を省略する。また、この装置の
操作は第1図の装置と基本的に同じであるので、その説
明を省略する0本実施例においては、曝気用散気器6が
上部濾層2aの下部に配置されている。この装置を使用
した場合、下部流層2bには空気が散気されなくなるが
、下部濾IW2bを通過する原水中には溶存酸素が含ま
れており、下部流層2bの微生物に対する酸素の供給は
なされる。この曝気用散気器6の配置は、特に下水二次
処理水の高度処理などBOD成分濃度が低い原水の処理
に適する。この配置によれば、曝気用空気の圧力が下部
流層2bの抵抗分だけ低くてよく、動力の節減となる。
FIG. 2 is a sectional view schematically showing another embodiment of the present invention. In FIG. 2, the same components as in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted. In addition, since the operation of this device is basically the same as that of the device shown in FIG. 1, the explanation thereof will be omitted. There is. When this device is used, air is no longer diffused into the lower flow layer 2b, but the raw water passing through the lower flow filtration IW2b contains dissolved oxygen, and no oxygen is supplied to the microorganisms in the lower flow layer 2b. It will be done. This arrangement of the aeration diffuser 6 is particularly suitable for the treatment of raw water with a low concentration of BOD components, such as advanced treatment of secondary treated sewage water. According to this arrangement, the pressure of the aeration air can be lowered by the resistance of the lower flow layer 2b, resulting in power savings.

次に、処理実験結果について説明する。Next, processing experiment results will be explained.

(実施例1) 内径5cm、高さ2.5mのアクリル樹脂製の処理槽に
、下部流層として、粒径3〜7−麿のアンスラサイトを
50011充填し、その上に、上部濾層として、第3図
に示した形状で、比重1.02、径10+u+、長さ1
0龍の発泡ポリプロピレンの筒状濾材を50cm充填し
、濾層の構成を第1図の装置と同じ構成にした。
(Example 1) An acrylic resin treatment tank with an inner diameter of 5 cm and a height of 2.5 m was filled with 50,011 pieces of anthracite with a particle size of 3 to 7 mm as a lower flow layer, and on top of that as an upper filter layer. , with the shape shown in Figure 3, specific gravity 1.02, diameter 10+u+, length 1
A 50 cm cylindrical filter medium made of foamed polypropylene was filled, and the structure of the filter layer was the same as that of the apparatus shown in FIG.

この装置を使用し、下水−次処理水の処理実験を行った
。濾過速度は60m/日で行った。なお、比較例として
、粒径3〜7臘貫のアンスラサイトを100C11充填
した実験も同時に実施した。これらの結果は第1表に示
す。
Using this device, an experiment was conducted to treat sewage and subsequent treated water. The filtration speed was 60 m/day. As a comparative example, an experiment in which 100C11 of anthracite with a particle size of 3 to 7 mm was filled was also carried out at the same time. These results are shown in Table 1.

第1表 実験結果 (−次処理水) 第2表 実験結果 (二次処理水) 濾過時間;圧損が110011H20になるまでの時間
第1表において、BOD成分およびSSの除去について
は、本発明は従来技術に対しやや優る程度であるが、濾
過時間については、本発明では22日間連続して濾過が
できたが、従来技術では1日で圧損が所定値まで上昇し
、濾層の逆洗が必要となった。
Table 1 Experimental Results (-Secondly Treated Water) Table 2 Experimental Results (Secondary Treated Water) Filtration time: Time until pressure drop reaches 110011H20 In Table 1, regarding the removal of BOD components and SS, the present invention Regarding the filtration time, the present invention was able to perform filtration for 22 consecutive days, which is slightly better than the conventional technology, but with the conventional technology, the pressure drop rose to a predetermined value in one day, and the backwashing of the filter layer was difficult. It became necessary.

(実施例2) 実施例1と同じ装置を使用し、同様の条件で下水二次処
理水の処理実験を行った。但し、濾過速度は120m/
日で行った。この結果を第2表に示す。
(Example 2) Using the same apparatus as in Example 1, a treatment experiment for secondary treated sewage water was conducted under the same conditions. However, the filtration speed is 120m/
I went there in a day. The results are shown in Table 2.

濾過時間;圧損が110clIH20になるまでの時間
第2表において、結果は実施例1の場合と全く同様の傾
向であり、本発明の濾過時間は14日で、従来技術の7
日に対し2倍であった。
Filtration time: time until the pressure drop reaches 110clIH20 In Table 2, the results show exactly the same tendency as in Example 1, and the filtration time of the present invention is 14 days, compared to 7 days of the prior art.
It was twice as high as the day.

[発明の効果] 本発明による装置の濾層は上部4層と下部濾層によって
構成されており、上部4層には粗濾過を目的とした筒状
濾材が充填され、下部流層には微細なSSをも除去でき
る粒状濾材が充填されているので、上部濾層においてS
Sの大部分が除去され、下部流層の負荷を著しく軽減す
る。このため、濾過継続を決定付ける下部流層の圧損上
昇の度合いが小さくなる。さらに、筒状濾材は表面に凹
凸を有しているので、微生物が付着し易く生物処理能力
が大きい、この結果、BOD= SSの除去効率を損な
うことなく、大きな濾過速度で長時間の濾過を継続する
ことができる。
[Effects of the Invention] The filter layer of the device according to the present invention is composed of four upper layers and a lower filter layer. Since it is filled with granular filter media that can remove even SS, the upper filter layer
Most of the S is removed, significantly reducing the load on the lower flow layer. Therefore, the degree of increase in pressure drop in the lower flow layer, which determines whether or not to continue filtration, is reduced. Furthermore, since the cylindrical filter medium has irregularities on its surface, it is easy for microorganisms to adhere to it and has a high biological treatment capacity.As a result, it can perform filtration for a long time at a high filtration speed without compromising the removal efficiency of BOD = SS. Can be continued.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を模式的に示した断面図、第
2図は本発明の他の実施例を模式的に示した断面図、第
3図は本発明の装置の上部4層に充填する筒状濾材の一
実施例を模式的に示した図、第4図は従来の汚水処理装
置の説明図、第5図は従来の汚水処理装置における圧損
の測定結果を示す図である。 1・・・処理槽、2・・・濾層、2a・・・上部濾層、
2b・・・下部流層、4・・・原水流入管、5・・・処
理水抜き出し管56・・・曝気用散気器、20・・・筒
状濾材、21・・・凹部、22・・・中空部。
FIG. 1 is a cross-sectional view schematically showing one embodiment of the present invention, FIG. 2 is a cross-sectional view schematically showing another embodiment of the present invention, and FIG. FIG. 4 is an explanatory diagram of a conventional sewage treatment device, and FIG. 5 is a diagram showing measurement results of pressure drop in a conventional sewage treatment device. be. 1... Processing tank, 2... Filter layer, 2a... Upper filter layer,
2b... Lower flow layer, 4... Raw water inflow pipe, 5... Treated water extraction pipe 56... Aeration diffuser, 20... Tubular filter medium, 21... Concavity, 22... ...Hollow part.

Claims (3)

【特許請求の範囲】[Claims] (1)処理槽内に濾層を備え、この濾層に着生する微生
物に酸素を供給するための曝気用散気器を備えた汚水処
理装置において、前記濾層を上部濾層および下部濾層の
二つに区分し、前記上部濾層には合成樹脂よりなり表面
に凹凸を有し比重が1.0以上1.2以下、直径が5m
m〜20mm、長さが直径の0.3〜5.0倍の筒状濾
材を充填したことを特徴とする汚水処理装置。
(1) In a sewage treatment equipment equipped with a filter layer in the treatment tank and an aeration diffuser for supplying oxygen to microorganisms that grow on the filter layer, the filter layer is separated into an upper filter layer and a lower filter layer. The upper filter layer is made of synthetic resin, has an uneven surface, has a specific gravity of 1.0 or more and 1.2 or less, and has a diameter of 5 m.
A sewage treatment device characterized by being filled with a cylindrical filter medium having a length of 0.3 to 5.0 times the diameter and a length of 0.3 to 5.0 times the diameter.
(2)曝気用散気器が下部濾層の下部に配置されている
請求項1記載の汚水処理装置。
(2) The sewage treatment apparatus according to claim 1, wherein the aeration diffuser is arranged below the lower filter layer.
(3)曝気用散気器が上部濾層の下部に配置されている
請求項1記載の汚水処理装置。
(3) The sewage treatment apparatus according to claim 1, wherein the aeration diffuser is arranged below the upper filter layer.
JP899689A 1989-01-20 1989-01-20 Sewage treating device Pending JPH02191594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP899689A JPH02191594A (en) 1989-01-20 1989-01-20 Sewage treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP899689A JPH02191594A (en) 1989-01-20 1989-01-20 Sewage treating device

Publications (1)

Publication Number Publication Date
JPH02191594A true JPH02191594A (en) 1990-07-27

Family

ID=11727185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP899689A Pending JPH02191594A (en) 1989-01-20 1989-01-20 Sewage treating device

Country Status (1)

Country Link
JP (1) JPH02191594A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171090A (en) * 1990-11-02 1992-06-18 Ebara Infilco Co Ltd Biological treating method and device for organic waste liquid
JPH04197493A (en) * 1990-11-29 1992-07-17 Ebara Infilco Co Ltd Method and apparatus for filtering sewage
JPH04284897A (en) * 1991-03-14 1992-10-09 Nanyou Kyokai Gas-liquid contacting method
JPH0647397A (en) * 1992-07-17 1994-02-22 Ebara Infilco Co Ltd Biological nitrifying and denitrifing apparatus
JPH0671290A (en) * 1992-08-28 1994-03-15 Ngk Insulators Ltd Sewage treatment equipment using packed layer
CN100434370C (en) * 2006-10-23 2008-11-19 青岛赛尔环境保护有限公司 Composite biofilter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245895A (en) * 1985-04-23 1986-11-01 Furukawa Electric Co Ltd:The Filter material for fluid filter
JPS61271089A (en) * 1985-05-25 1986-12-01 Hitachi Plant Eng & Constr Co Ltd Filter for waste water using immobilized microorganism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61245895A (en) * 1985-04-23 1986-11-01 Furukawa Electric Co Ltd:The Filter material for fluid filter
JPS61271089A (en) * 1985-05-25 1986-12-01 Hitachi Plant Eng & Constr Co Ltd Filter for waste water using immobilized microorganism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171090A (en) * 1990-11-02 1992-06-18 Ebara Infilco Co Ltd Biological treating method and device for organic waste liquid
JPH04197493A (en) * 1990-11-29 1992-07-17 Ebara Infilco Co Ltd Method and apparatus for filtering sewage
JPH04284897A (en) * 1991-03-14 1992-10-09 Nanyou Kyokai Gas-liquid contacting method
JPH0647397A (en) * 1992-07-17 1994-02-22 Ebara Infilco Co Ltd Biological nitrifying and denitrifing apparatus
JPH0671290A (en) * 1992-08-28 1994-03-15 Ngk Insulators Ltd Sewage treatment equipment using packed layer
CN100434370C (en) * 2006-10-23 2008-11-19 青岛赛尔环境保护有限公司 Composite biofilter

Similar Documents

Publication Publication Date Title
JPH0450880B2 (en)
JPH06285496A (en) Hollow fiber membrane separation biological treatment and device for organic drainage
JP3452143B2 (en) Method and apparatus for biological purification of wastewater
KR20050007259A (en) Apparatus for treating organic material and nitrogen of wastewater by using air floatation type biofilter, and treatment method using the same
KR100698522B1 (en) Purifying system of excretions using microorganism
JP2584386B2 (en) Biological filtration method and device
JPH02191594A (en) Sewage treating device
JP2002126777A (en) Filter tank and water treatment method
JPS58114792A (en) Aerobic biological treating device for waste water
JPS6349297A (en) Waste water treatment device
JPH0957289A (en) Biological treating device of fluidized bed type
JP2592356B2 (en) Organic sewage biological filtration equipment
JPH07112189A (en) Biological filter incorporating special microorganisms
JP2584763B2 (en) Immersion filter bed method for cleaning biological treatment equipment
JPS6385B2 (en)
JPH02191595A (en) Sewage treating device
JP2879897B2 (en) Method and apparatus for removing suspended matter using expanded plastic particles
JPH04193398A (en) Treatment of sewage
JPH07112191A (en) Biological filter
JPH02184398A (en) Moving bed-type denitrification device
JPH07112190A (en) Biological filter
JPH04197493A (en) Method and apparatus for filtering sewage
JPH05208200A (en) Treatment of organic drainage
JPH07112193A (en) Back washing method of biological filter bed
JPH05208104A (en) Apparatus for removing suspensible solid