JPH02183778A - Method for forming corrosion-proof film for closed circulation type absorption refrigerator and absorption refrigerator - Google Patents

Method for forming corrosion-proof film for closed circulation type absorption refrigerator and absorption refrigerator

Info

Publication number
JPH02183778A
JPH02183778A JP1002821A JP282189A JPH02183778A JP H02183778 A JPH02183778 A JP H02183778A JP 1002821 A JP1002821 A JP 1002821A JP 282189 A JP282189 A JP 282189A JP H02183778 A JPH02183778 A JP H02183778A
Authority
JP
Japan
Prior art keywords
film
regenerator
closed circulation
forming
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1002821A
Other languages
Japanese (ja)
Other versions
JPH0762578B2 (en
Inventor
Masahiko Ito
雅彦 伊藤
Heihachiro Midorikawa
緑川 平八郎
Kazutoshi Ito
和利 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1002821A priority Critical patent/JPH0762578B2/en
Publication of JPH02183778A publication Critical patent/JPH02183778A/en
Publication of JPH0762578B2 publication Critical patent/JPH0762578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To improve a corrosion durability by a method wherein a composite film of molybde num oxide and iron oxide is formed on at least a surface of a component member contacting with absorptive liquid. CONSTITUTION:A composite film of molybdenum oxide and iron oxide has a high anti- corrosion characteristic and then a reliability in anti-corrosion characteristic of a closed circulation type absorptive freezer having this film formed on an inner wall of a high tempera ture regenerator is remarkably increased. In case that an anti-corrosion protection film is formed on an inner wall by operating a high temperature regenerator 1a, valves 17a and 17c are closed, a valve 17e is released, a film forming liquid is fed from the valve 17e to a specified level, the valve 17e is closed, the valve 17b is opened, the high temperature regenera tor is heated under its operation and the film forming liquid is circulated by using the recirculating pipe 16. At this time, generated water vapor 14 is returned back to water by a condensor 2 to act as a refrigerant. This refrigerant 11 is supplied to the high temperature regenerator 1a by using the refrigerant supplying pipe 18 and by opening the valve 17d. With this operation, a concentration of the film forming liquid within the high temperature regenerator 1a is kept constant and then an anti-corrosion protection film is formed at an inner wall of the high temperature regenerator and the pipe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸収式冷凍機に係り、特に主要構成部材表面に
防食被膜を予め形成することにより冷凍機の主要構成部
材を高度に腐食防止した耐食性に優れた密閉循環型吸収
式冷凍機に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an absorption refrigerator, and in particular to a method that highly prevents corrosion of the main components of the refrigerator by forming an anticorrosion coating on the surfaces of the main components in advance. This invention relates to a closed circulation absorption refrigerator with excellent corrosion resistance.

〔従来の技術〕[Conventional technology]

従来、密閉循環型吸収式冷凍機は運転上1機内圧力が大
気圧以下であるため、一般には水を冷媒とし、濃厚Li
Br水溶液を吸収液として用いている。そして、一般に
、吸収式冷凍機は、吸収液、すなわちLiBr a度が
高いlミど、高い冷凍効率が得られるため、例えば、二
重効用吸収式冷凍機では%機内で最も温度の高い部分で
は、吸収液の温度及び濃度は約160℃、65%LiB
r程度までになる。
Conventionally, since the internal pressure of closed circulation absorption refrigerators is below atmospheric pressure during operation, water is generally used as a refrigerant and concentrated Li
A Br aqueous solution is used as the absorption liquid. In general, absorption chillers can achieve high refrigeration efficiency when the absorption liquid, that is, the temperature of LiBr is high, so for example, in a dual-effect absorption chiller, the highest temperature part of the machine , the temperature and concentration of the absorption liquid are approximately 160°C, 65% LiB
It becomes about r.

一万、LiBr水溶液の金鵡に対する腐食性は、温度及
び濃度が高いほど激しくなる。したがって吸収液中には
適正なインヒビターを添加しないと冷凍機の構成部拐は
激しく腐食することになる。
However, the corrosivity of LiBr aqueous solution to gold becomes more severe as the temperature and concentration become higher. Therefore, unless an appropriate inhibitor is added to the absorption liquid, the components of the refrigerator will be severely corroded.

従来、多く用いられているインヒビターは無機系の酸化
剤でるる。−船釣な酸化剤としてはクロム酸塩、硝酸塩
、モリブデン酸塩、タングステン酸塩などが知られてい
る。これらの酸化剤はpH調整剤であるアルカリ金属の
水酸化物と併用され、その酸化作用により材料表面に被
膜を形成して腐食が抑制される。
Conventionally, the most commonly used inhibitors are inorganic oxidizing agents. - Chromates, nitrates, molybdates, tungstates, etc. are known as oxidizing agents for boat fishing. These oxidizing agents are used together with an alkali metal hydroxide, which is a pH adjusting agent, and their oxidizing action forms a film on the surface of the material to suppress corrosion.

したがって、防食性を高めるには酸化性の強い酸化剤は
ど望ましいため、クロム酸塩や硝酸塩が多く用いられて
いる。−万、モリブデン酸塩は酸化力が弱い上に吸収液
に対する溶解度が極めて小さいため、必要な@反の確保
が困難で被膜形成力が不十分、且つ安定な被膜形成に長
時間かかり、その間構成部材は腐食されて水素ガスが発
生し、冷凍効率が低下するなど、満足すべき防食効果金
得ることが難しかった。
Therefore, chromates and nitrates are often used because oxidizing agents with strong oxidizing properties are desirable in order to improve corrosion resistance. - Since molybdate has weak oxidizing power and extremely low solubility in the absorption liquid, it is difficult to secure the necessary @reaction, the film-forming power is insufficient, and it takes a long time to form a stable film. The members were corroded and hydrogen gas was generated, reducing refrigeration efficiency, making it difficult to obtain a satisfactory corrosion protection effect.

さらに、有機物インヒビターについても提案されてhる
が、構成部材表面に強固な被膜を形成することが雌しい
こと、熱安定性が不十分であること、伝熱性能向上のた
めに添加する高級アルコールに選択溶解し易く、防食効
果が低下する難点があつ九。
Furthermore, organic substance inhibitors have also been proposed, but they are difficult to form a strong film on the surface of the component, have insufficient thermal stability, and require higher alcohols to be added to improve heat transfer performance. It has the disadvantage that it is easily selectively dissolved in water, reducing its anticorrosion effect.

なお、この種の吸収式冷凍機、吸収液及び吸収式冷凍機
の腐食防止方法に関するものには、例えば特公昭45−
1711号、特公昭45−25954号、特公昭42−
269i7号、特公昭4゜−11550号、特公昭60
−29872号各公報で知られている。また、特に防食
性臭化リチウム水溶液組成物については、特開昭53−
25288号、特開昭58−224186号、特開昭5
8−224187号各公報に開示されている。
In addition, regarding this type of absorption refrigerator, absorption liquid, and corrosion prevention method for absorption refrigerator, for example, Japanese Patent Publication No. 1973-
No. 1711, Special Publication No. 25954, Special Publication No. 1972-
269i7, Special Publication No. 4゜-11550, Special Publication No. 11550, Special Publication No. 11550
It is known from various publications such as No.-29872. In addition, especially regarding the anticorrosive lithium bromide aqueous solution composition,
No. 25288, JP-A-58-224186, JP-A-Sho 5
No. 8-224187.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、材料表面を酸化して被膜を形成し、こ
れにより腐食を抑制することを目的としていた。したが
って、主要構成部材であシ、且つ腐食条件の厳しい部位
に使われる鉄系材料の腐食とインヒビター効果について
は十分研究され、種々のインヒビターが提案されている
The purpose of the above-mentioned conventional technology is to oxidize the surface of a material to form a film, thereby suppressing corrosion. Therefore, the corrosion of iron-based materials, which are major structural members and are used in areas subject to severe corrosion conditions, and the inhibitor effects have been thoroughly studied, and various inhibitors have been proposed.

しかしながら、従来は、材料表面に予め、防食被膜を形
成することや、構成部材を高度に防食するための被膜構
造については研究されておらず、このため、必らずしも
満足すべき耐食信頼性が得られていなかった。
However, in the past, there has been no research into forming an anti-corrosion film on the surface of the material in advance, or into a film structure for highly corrosion-protecting structural members. I wasn't getting the sex.

さらに、上記従来技術は、腐食の激しい高温再生器内壁
に、腐食保護被膜を予め形成するため、吸収式冷凍機の
高温再生器を単独で運転することは考慮されていなかっ
た。
Further, in the above-mentioned prior art, since a corrosion protective film is formed in advance on the highly corroded inner wall of the high-temperature regenerator, no consideration is given to operating the high-temperature regenerator of an absorption chiller alone.

本発明の目的は、腐食条件の厳しい密閉循環型吸収式冷
凍機の高温再生器の内壁に事前に腐食保護被膜を形成す
ることと、もう一つの目的は、保護被膜を腐食条件の厳
しい高温再生器に形成した耐食性の高い密閉循環型吸収
式冷凍機を提供することにある。
An object of the present invention is to form a corrosion protective film in advance on the inner wall of a high-temperature regenerator of a closed circulation type absorption refrigerator, which is subjected to severe corrosive conditions, and another object is to form a corrosion protective film on the inner wall of a high-temperature regenerator, which is subject to severe corrosive conditions. An object of the present invention is to provide a closed circulation type absorption refrigerator having high corrosion resistance.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、事前に密閉循環型吸収式冷凍機の高温再生
器内壁に腐食を高度に抑制するモリブデン酸化物と鉄酸
化物からなる複合酸化物被膜を形成することによジ、達
成される。
The above object is achieved by forming in advance a composite oxide film consisting of molybdenum oxide and iron oxide, which highly suppresses corrosion, on the inner wall of the high temperature regenerator of the closed circulation type absorption refrigerator.

すなわち、本発明は、密閉循環型吸収式冷凍機において
、吸収液と接する機器構成部材のうち少なくとも再生器
表面には、モリブデン酸化物と鉄酸化物の複合被膜が形
成されていることを特徴とする密閉循環型吸収式冷凍機
である。
That is, the present invention is characterized in that, in a closed circulation type absorption refrigerator, a composite film of molybdenum oxide and iron oxide is formed on at least the surface of the regenerator among the component parts that come into contact with the absorption liquid. This is a closed circulation absorption refrigerator.

また、本発明は、密閉循環型吸収式冷凍機の再生器内に
、pH7,5〜11に調整されたモリブデン酸イオンを
含む水溶液を被膜形成液として封入し、再生器を加熱す
ることによって再生器内壁に防食複合被膜を形成する防
食被膜の形成方法、及び、再生器に液の再循環と冷媒供
給系路を設け、再生器内にpH7,5〜11に調整され
たモリブデン酸イオンを含む水溶液を被膜形成欣として
封入し、再生器を加熱しながら、再生器内の被膜形成g
、を再循環系路を用いて循環させ、冷媒の供給系路から
前記被膜形成液の蒸発量に釣り合う賛の冷媒を供給しな
がら、前記再生器のみを被膜形成運転し、再生器の鉄系
部材の表面に防食複合被膜を形成する防食被膜の形成方
法であり、更に、冷凍機の少なくとも再生器構成部材を
脱脂、脱スケールした後、加圧下にpH7,5〜11に
調整されたモリブデン酸イオンを含む水溶液の被膜形成
液に浸漬して構成部材表面に防食被膜を形成し、次いで
、該部材を組立てることにより、少なくとも再生器内壁
に防食被膜を形成する防食被膜の形成方法である。
In addition, the present invention provides regeneration by sealing an aqueous solution containing molybdate ions adjusted to pH 7.5 to 11 as a film forming liquid in the regenerator of a closed circulation absorption refrigerator, and heating the regenerator. A method for forming an anti-corrosion coating for forming an anti-corrosion composite coating on the inner wall of a vessel, and a regenerator provided with a liquid recirculation and refrigerant supply line, the regenerator containing molybdate ions adjusted to pH 7.5 to 11. Enclose an aqueous solution as a film-forming tube, and while heating the regenerator, form a film inside the regenerator.
, is circulated using a recirculation system, and while supplying a refrigerant that balances the evaporation amount of the film forming liquid from the refrigerant supply system, only the regenerator is operated to form a film, and the iron system of the regenerator is This is a method for forming an anticorrosion coating, which forms an anticorrosion composite coating on the surface of a member, and further includes degreasing and descaling at least the regenerator component of the refrigerator, and then applying molybdic acid adjusted to pH 7.5 to 11 under pressure. This is a method for forming an anti-corrosion coating, in which an anti-corrosion coating is formed on the surface of a component by immersion in an aqueous solution containing ions, and then the anti-corrosion coating is formed on at least the inner wall of the regenerator by assembling the component.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明における密閉循環型吸収式冷凍機は、鉄鋼材料を
主要構成材として、再生器、凝縮器、蒸発器、吸収器及
び熱交換器全主要構成要素とする通常のものでろり、こ
れらの構成要素のうち少なくとも再生器だけは、本発明
の複合被膜が形成されているものである。
The closed circulation absorption refrigerating machine of the present invention is a conventional one in which the main components are a regenerator, a condenser, an evaporator, an absorber, and a heat exchanger, all of which are made of steel. Among the elements, at least only the regenerator is formed with the composite coating of the present invention.

本発明の複合被膜は、モリブデン酸化物と鉄酸化物から
なり、再生器の吸収液に徽する表面が部材内部よりモリ
ブデン酸化物が多くなっておV。
The composite film of the present invention is composed of molybdenum oxide and iron oxide, and the surface that is exposed to the absorption liquid of the regenerator has more molybdenum oxide than the inside of the member.

逆に部材内部になるに従って鉄酸化物楡が多くなってい
る。
Conversely, the number of iron oxide elms increases towards the inside of the member.

次に、本発明の複合被膜の形成においては、pH15〜
11に調整されたモリブデン計イオンを含む水溶液を被
膜形成液として用いて、該浴液を再生器中に封入するか
、再生器の構成部材を該溶液中に浸漬して、密封下に該
溶液の沸点又はそれ以上の温度に加熱して行なうもので
ある。
Next, in forming the composite film of the present invention, pH 15 to
An aqueous solution containing molybdenum meter ions adjusted to a concentration of It is carried out by heating to a temperature at or above the boiling point of

前記被膜形成液は、水浴性のモリブデン酸塩、例えばモ
リブデン酸リチウム等のモリブデン酸のアルカリ金稿塩
を水に溶解してモリブデン酸イオンを形成して、アルカ
リによりpH調整することによって得ることができる。
The film-forming solution can be obtained by dissolving a water-bathable molybdate, for example, an alkali metal salt of molybdate such as lithium molybdate in water to form molybdate ions, and adjusting the pH with an alkali. can.

本発明の密閉循環型吸収式冷凍機において、使用できる
吸収液としては、臭化リチウムを生成分とし、若干量の
アルカリ金属水酸化物と、微量のモリブデン酸塩及び/
又は硝酸塩と必要に応じて高級アルコールの−aを′庁
む水溶液からなるものが使用できる。
In the closed circulation absorption refrigerator of the present invention, the absorption liquid that can be used is lithium bromide as a product, a small amount of alkali metal hydroxide, a small amount of molybdate and/or
Alternatively, an aqueous solution containing a nitrate and, if necessary, a higher alcohol -a can be used.

そして、本発明における高温再生器の被膜は、具体的に
は次のようにして形成するのがよい。すなわち、腐食の
最も故しい高温再生器の吸収液と接する内壁に複合酸化
物被膜を形成するには、高温再生器に被膜形成液再循環
系路と冷媒供給系路を設けて、冷凍機全体の運転ではな
く、被膜形成運転を行い、被膜形成液再循環系路は高温
再生器で加熱a縮される被膜形成液t−循環流動させて
、高温再生器の内壁及びこれに設けた再循環系路の配管
等の吸収液と接する表面に腐食保護被膜を形成させる。
Specifically, the coating of the high temperature regenerator in the present invention is preferably formed as follows. In other words, in order to form a composite oxide film on the inner wall of the high-temperature regenerator that is in contact with the absorption liquid, which is most likely to be corroded, a film-forming liquid recirculation system path and a refrigerant supply system path are provided in the high-temperature regenerator, and the entire refrigerator is The film-forming liquid recirculation line is heated and condensed in the high-temperature regenerator. A corrosion protective film is formed on the surface of the system piping etc. that comes into contact with the absorbing liquid.

一万、冷媒供給系路は、高温再生器の被膜形成運転によ
り、被膜形成液から発生した水蒸気を凝縮器で凝縮して
、水に戻し、この水(冷媒)を再び高温再生器内に供給
して、高温再生器内の被膜形成液濃度を一定に保持する
。これによって高温再生器は一定濃度及び温度の被膜形
成液で運転でき、前記、複合酸化物被膜を冷凍機の運転
前に予め形成する。
10,000, the refrigerant supply system condenses the water vapor generated from the film-forming liquid in the condenser during the film-forming operation of the high-temperature regenerator, returns it to water, and supplies this water (refrigerant) to the high-temperature regenerator again. The concentration of the film forming liquid in the high temperature regenerator is maintained constant. As a result, the high temperature regenerator can be operated with a film forming liquid at a constant concentration and temperature, and the composite oxide film is formed in advance before operating the refrigerator.

〔作 用〕[For production]

モリブデン酸塩は被膜形成液中では解離して陽イオンと
MOO4”−とじて存在する。MoO4”−は鉄系材料
表面にMo の酸化物として存在して被膜を形成して腐
食を抑制する。形成された被膜中のモリブデン酸化物は
、通常M002として存在し、吸収液中のBr−の如き
ハロゲンイオンの被膜破壊作用に対して極めて高い抵抗
力を有し、このため鉄系材料表面に生成した被膜は局部
的な破壊を受は難く、優れた耐孔食性を発揮する。
Molybdate is dissociated in the film forming solution and exists as cations and MOO4''-.MoO4''- exists as an oxide of Mo on the surface of the iron-based material to form a film and suppress corrosion. Molybdenum oxide in the formed film usually exists as M002, and has extremely high resistance to the film-destroying action of halogen ions such as Br- in the absorption liquid, and therefore, it is difficult to form on the surface of iron-based materials. The resulting coating is less susceptible to localized destruction and exhibits excellent pitting corrosion resistance.

さらに、MOO42−は、その酸化力により鉄系材料表
面を酸化して、鉄酸化物を形成するが、Mo042−の
特徴は、上記の酸化力に加えて、それ自体がモリブデン
酸化物被膜として鉄系材料表面に存在することである。
Furthermore, MOO42- oxidizes the surface of iron-based materials with its oxidizing power to form iron oxides, but in addition to the above-mentioned oxidizing power, Mo042- itself has a molybdenum oxide film that forms iron oxides. It exists on the surface of the material.

さらに、上記モリブデン酸化物は、被膜の外表面、すな
わち吸収液と接する近傍に多く存在する。
Furthermore, the molybdenum oxide is present in large quantities on the outer surface of the coating, that is, in the vicinity of contact with the absorption liquid.

これは吸収液中のBr−による被膜の局部的破壊防止に
は極めて好都合であり、前述したようにMOO2のハロ
ゲンイオンに対する高い抵抗力により被膜の防食性は格
段に向上する。
This is very convenient for preventing local destruction of the coating due to Br in the absorption liquid, and as mentioned above, the high resistance of MOO2 to halogen ions greatly improves the corrosion resistance of the coating.

また、高温再生器の被膜形成運転後、同被膜形成液は高
温再生器から抜き出される。この際、再生語中に若干量
の被膜形成液が残留しても以後の吸収液封入後の冷凍運
転に際し、何らの支障も及ぼさない。
Further, after the film forming operation of the high temperature regenerator, the film forming liquid is extracted from the high temperature regenerator. At this time, even if a small amount of film-forming liquid remains in the recycled material, it will not cause any problem during the subsequent freezing operation after filling the absorbent liquid.

以上−述べたようにモリブデン酸化物と鉄酸化物の複合
被膜は高い耐食性を発揮し、これを高温再生器内壁に形
成した密閉循環型吸収式冷凍機の耐食信頼性は格段に向
上する。すなわち、このような複合被膜を事前に形成し
た高温再生器を有する密閉循環型冷凍機に臭化リチウム
を主成分とし、若干量のアルカリ金属水酸化物と微量の
モリブデン酸塩らるいは硝酸塩の1種以上を含む水溶液
を吸収液として封入して冷凍運転を行った場合、複合破
膜を形成しないものに比べて耐食性が一段と向上する。
As described above, the composite coating of molybdenum oxide and iron oxide exhibits high corrosion resistance, and the corrosion resistance reliability of a closed circulation absorption refrigerator formed with this coating on the inner wall of a high-temperature regenerator is greatly improved. That is, in a closed circulation refrigerator equipped with a high-temperature regenerator on which such a composite film has been formed in advance, a mixture containing lithium bromide as the main component, a small amount of alkali metal hydroxide, and a trace amount of molybdate or nitrate is added. When an aqueous solution containing one or more of these components is sealed as an absorbing liquid and a freezing operation is performed, the corrosion resistance is further improved compared to a case where a composite membrane rupture is not formed.

すなわち、事前の被膜形成により、冷凍運転初期から高
温再生器の腐食の心配がない。
That is, by forming the film in advance, there is no fear of corrosion of the high temperature regenerator from the beginning of refrigeration operation.

また、吸収液には熱交換器の伝熱性能向上のために、オ
クチルアルコール等の高級アルコールを添加したもので
も同等の効果が得られる。添加されるオクチルアルコー
ル等のi%Mアルコールは[12〜(15%であるが、
本発明の効果は吸収液中のこれら高級アルコールの存在
によっても影響を受けない。
Furthermore, the same effect can be obtained by adding higher alcohol such as octyl alcohol to the absorption liquid in order to improve the heat transfer performance of the heat exchanger. The i%M alcohol such as octyl alcohol added is [12 to (15%),
The effects of the present invention are not affected by the presence of these higher alcohols in the absorption liquid.

〔実施例〕〔Example〕

以下1本発明の実施例を図面等によジ説明するが、本発
8Aはこれら実施例に限定され々い。
Embodiments of the present invention will be described below with reference to the drawings, but the present invention 8A is not limited to these embodiments.

実施例1 第1図は、本発明の一実施例である密閉循環型吸収式冷
凍機の系統図を示したものであり、該冷y1機の冷凍運
転は次のようにして行なわれる。
Embodiment 1 FIG. 1 shows a system diagram of a closed circulation absorption refrigerating machine which is an embodiment of the present invention, and the refrigeration operation of the refrigerating machine is carried out as follows.

吸収液6は高温再生器1aで加熱濃縮されて、水蒸気1
4を分離する。水蒸気14は低温再生器1bの熱交換器
を通って希薄溶液6bを加熱濃縮して凝縮器2に入り、
こ\で冷却水15により冷却されて水となる。この水が
冷媒11となる。冷媒11は冷媒ポンプ8bにより蒸発
器3に圧送され蒸発管9に散布される。散布された冷媒
11は、蒸発器内が数wIl(gの減圧状態に保持され
ているため蒸発して再び水蒸気となる。この時の蒸発潜
熱により蒸発管9の内部を通る冷水10は冷却されて、
これが冷房に用いられる。蒸発した冷媒11の水蒸気は
吸収器4に入り、こ\で、高温再生器1aで濃縮された
濃厚液6aが散布されて、この中に吸収される。濃厚液
6aは水蒸気を吸収する際に発熱するが、これは冷却管
12内を通る冷却水13により冷却され、希薄液6bと
なる。希薄液6bはポンプ8aにより送られ、熱交換器
5を通って高温再生器1a及び低温再生器1bに戻る。
The absorption liquid 6 is heated and concentrated in the high-temperature regenerator 1a to produce water vapor 1
Separate 4. The steam 14 passes through the heat exchanger of the low temperature regenerator 1b, heats and concentrates the dilute solution 6b, and enters the condenser 2.
Here, it is cooled by the cooling water 15 and becomes water. This water becomes the refrigerant 11. The refrigerant 11 is force-fed to the evaporator 3 by the refrigerant pump 8b and is sprayed onto the evaporator tube 9. The sprayed refrigerant 11 evaporates and becomes water vapor again because the inside of the evaporator is maintained at a reduced pressure of several wIl (g).The latent heat of evaporation at this time cools the cold water 10 passing through the evaporation tube 9. hand,
This is used for cooling. The water vapor of the evaporated refrigerant 11 enters the absorber 4, where the concentrated liquid 6a concentrated in the high-temperature regenerator 1a is dispersed and absorbed therein. The concentrated liquid 6a generates heat when absorbing water vapor, but this is cooled by the cooling water 13 passing through the cooling pipe 12 and becomes a diluted liquid 6b. The diluted liquid 6b is sent by the pump 8a, passes through the heat exchanger 5, and returns to the high temperature regenerator 1a and the low temperature regenerator 1b.

高温再生器の再循環配管16は、冷凍運転時には、パル
プ17t)が閉じられて使用されない。
The recirculation pipe 16 of the high-temperature regenerator is not used during refrigeration operation because the pulp 17t) is closed.

高温再生器1aを単独で運転して内壁に腐食保護皮膜を
形成する場合は、パルプ17a、17cを閉じ、パルプ
17θを開放し、高温再生器1a内が空になっているの
を確認してから、パルプ17eから被膜形成液を一定の
レベルまで導入し、パルプ176を閉じ、次いで、パル
プ17 b’!)開けて、高温再生器を運転加熱し、被
膜形成液を再循環配管16を用いて循環させる。この時
、発生した水蒸気14に凝m器2で水に戻して冷媒11
とする。この冷媒11を冷媒供給配管1B、を使い、パ
ルプ17dを開けて、高温再生器1a内に供給する。こ
れにより高温再生器1a内の被膜形成液濃度を一定に保
ち、高温再生器及び配管内壁に腐食保護皮膜を形成する
。これにより、吸収式冷凍機で最も腐食の激しい高温再
生器内壁に腐食保護効果の極めて優れた複合酸化物皮膜
を形成できるので、冷凍機の冷凍運転に伴なう腐食トラ
ブルは解消する。
When operating the high-temperature regenerator 1a alone to form a corrosion protection film on the inner wall, close the pulps 17a and 17c, open the pulp 17θ, and confirm that the inside of the high-temperature regenerator 1a is empty. , the film forming liquid is introduced from the pulp 17e to a certain level, the pulp 176 is closed, and then the pulp 17 b'! ), the high temperature regenerator is operated and heated, and the coating liquid is circulated using the recirculation line 16. At this time, the water vapor 14 generated is returned to water in the condenser 2, and the refrigerant 11
shall be. This refrigerant 11 is supplied into the high temperature regenerator 1a by opening the pulp 17d using the refrigerant supply pipe 1B. As a result, the concentration of the film-forming liquid in the high-temperature regenerator 1a is kept constant, and a corrosion-protective film is formed on the inner walls of the high-temperature regenerator and the piping. This makes it possible to form a complex oxide film with an extremely excellent corrosion protection effect on the inner wall of the high temperature regenerator, which is the most corrosive area in absorption refrigerators, thereby eliminating corrosion problems associated with the refrigeration operation of the refrigerator.

また、複合酸化物皮膜は次の如き方法で高温再生器部材
表面に形成できる。すなわち、高温再生器部材を単体の
iま、表面を脱脂洗浄し、次いで、酸洗浄等により部材
表面のスケールを除去する。
Further, the composite oxide film can be formed on the surface of the high temperature regenerator member by the following method. That is, the surface of the high-temperature regenerator member is degreased and cleaned for a period of time, and then scale on the surface of the member is removed by acid cleaning or the like.

この材料を被膜形成液中に浸漬して加熱処理することに
より形成される。この場合の処理は、加圧した処理槽の
中で130℃以上にして行なうのが良い。これ以下の温
度では鉄系材料表面にはF13304は形成され難いの
で好ましくない。また、この処理における処理液のpH
はアルカリ性にし、しかも処理中は鉄系材料表面の電位
を制御する必要がめる。すなわち、pHはZ5〜11.
電位は−210〜−810mV(対水素基準t′極)の
範囲内で適宜組合わされて用いられる。中でもpH9−
II、′1位−440〜−650mV (対水素基準電
極)が実用的な条件であり、この場合第2図にFθ−M
o −H20系の状態図として示すように150℃の温
度で、鉄系材料表面に#:j Fe3O4とMo O2
からなる複合酸化物皮膜が形成される。この部材を用い
て高温再生器を裏作することにより冷房運転に伴う吸収
式冷凍機の腐食トラブルは解消される。
It is formed by immersing this material in a film-forming solution and heat-treating it. In this case, the treatment is preferably carried out at 130° C. or higher in a pressurized treatment tank. Temperatures below this temperature are not preferred because F13304 is difficult to form on the surface of the iron-based material. In addition, the pH of the treatment liquid in this treatment
It is necessary to make it alkaline and to control the potential on the surface of the iron-based material during treatment. That is, the pH is Z5-11.
Potentials are used in appropriate combinations within the range of -210 to -810 mV (to hydrogen reference t' pole). Among them, pH9-
II, '1 position -440 to -650 mV (versus hydrogen reference electrode) is a practical condition, and in this case, Fθ-M is shown in Figure 2.
As shown in the phase diagram of the o-H20 system, #:j Fe3O4 and MoO2 are formed on the surface of the iron-based material at a temperature of 150°C.
A composite oxide film is formed. By constructing a high-temperature regenerator using this member, corrosion problems of absorption refrigerators associated with cooling operation can be eliminated.

実施例2 400X15001111.厚さ5sHの熱間圧延鋼板
を50Cのトリクロルエチレン溶液に2分間浸漬して脱
脂した。この鋼材をインヒビターを含む70℃の10%
塩酸水溶液に3分間浸漬して表面の酸化スケールを俗解
除去した。次いで、この鋼材をモリブデン酸リチウムの
10%水溶g (NaOHを加えてpHを10に調節)
を満した処理槽中に浸漬し、処理槽を密閉して、150
℃で10時間加熱した。この時の鋼材の表面電位は−5
o o mV (対水素基準電極)とした。加熱処理後
の鋼材をX線回折及びオージェ電子分光分析によp調べ
たM来、鋼材表面には、MO02ft含むFe3O4の
複合酸化皮膜が形成されていることを確認した。
Example 2 400X15001111. A hot rolled steel plate having a thickness of 5 sH was degreased by immersing it in a 50C trichlorethylene solution for 2 minutes. This steel material was heated to 10% at 70°C containing an inhibitor.
The oxide scale on the surface was removed by immersion in a hydrochloric acid aqueous solution for 3 minutes. Next, this steel material was treated with a 10% aqueous solution of lithium molybdate (adjust the pH to 10 by adding NaOH).
immersed in a treatment tank filled with
Heated at ℃ for 10 hours. The surface potential of the steel material at this time is -5
o o mV (versus hydrogen reference electrode). After the heat treatment, the steel material was examined by X-ray diffraction and Auger electron spectroscopy, and it was confirmed that a composite oxide film of Fe3O4 containing MO02ft was formed on the surface of the steel material.

実施例6 第1図に示した被膜形成液外#a環系路と冷媒供給系路
を設けた密閉循環型吸収式冷凍機の高温再生器にモリブ
デン酸リチウム(pH10)の20%水溶液を被膜形成
液として封入し、沸騰状態で100時間、高温再生器の
みを運転した。これにより、高温再生器内壁に複合酸化
物皮膜を形成した。その後、上記、モリブデン[リチウ
ム水溶液を排出して、高温再生器内を水洗し、洗浄液を
排出した。
Example 6 A 20% aqueous solution of lithium molybdate (pH 10) was coated on a high-temperature regenerator of a closed circulation absorption refrigerator equipped with a #a ring system path outside the coating forming liquid and a refrigerant supply system path shown in Figure 1. It was sealed as a forming liquid and operated only in the high temperature regenerator for 100 hours in a boiling state. As a result, a composite oxide film was formed on the inner wall of the high temperature regenerator. Thereafter, the molybdenum [lithium aqueous solution mentioned above was discharged, the inside of the high-temperature regenerator was washed with water, and the cleaning liquid was discharged.

次に、この再生器内壁に形成した皮膜の深さ方向の成分
濃度分布をイオンマイクロアナライザーにより分析した
結果を第5図に示す。第3図は酸化皮膜のO,MO及び
Feの濃度を示すグラフである。
Next, FIG. 5 shows the results of analyzing the component concentration distribution in the depth direction of the film formed on the inner wall of the regenerator using an ion microanalyzer. FIG. 3 is a graph showing the concentrations of O, MO, and Fe in the oxide film.

第3図で横軸は皮膜の深さを表わし、衝撃時間0が皮膜
外表面で、gfI撃時開時間きくなるほど皮してそれぞ
れの比を表わしている。図から明らかな如く、皮膜の外
表面、すなわち吸収液と接する面近傍にMOが多く、F
eが少ない。またOも表面近傍に多い。このことから複
合皮膜の表面近傍にモリブデン酸化物(MoO2、MO
OK )  が多く、皮膜内部になるにしたがってFe
104が多い構成になっていることが明らかでるる。
In FIG. 3, the horizontal axis represents the depth of the film, and the impact time of 0 is the outer surface of the film, and the longer the opening time at the time of gfI impact, the deeper the surface, representing the respective ratios. As is clear from the figure, there is a lot of MO on the outer surface of the film, that is, near the surface in contact with the absorption liquid, and F
There are few e. Also, there is a lot of O near the surface. This indicates that molybdenum oxides (MoO2, MO2) are present near the surface of the composite film.
OK) is large, and as it gets closer to the inside of the film, Fe
It is clear that the configuration has a large number of 104s.

実施例4 実施例5で被覆形成処理した高温再生器を有する密閉循
環型吸収式冷凍機に通常の冷凍運転に用いる下記の吸収
液を封入して、全負荷で200時間運転し、機内で発生
するH2ガスiを20時間毎に6111定して平均H2
ガス発生速度を求めた。結果を第1表に示す。
Example 4 A closed circulation absorption refrigerating machine equipped with a high-temperature regenerator that had been coated in Example 5 was filled with the following absorbent liquid used in normal refrigeration operation, and operated at full load for 200 hours. H2 gas i is constant 6111 every 20 hours and the average H2
The gas generation rate was determined. The results are shown in Table 1.

吸収液A : LiBr  ・・・−50〜70wt%
LiOH・・・・α05〜t(1wt%LL2MOO4
” In〜150 ppm(MoO4”−としてン LiNO3・・・・5〜350ppm (N0s−として) 残部 ・・・・水 吸収液B : LiBr  =−50〜70 wt%L
iOH−−−−α05〜1.0 wt%Li2M004
 ms@10〜400 ppm(MoO4”−として) 式−オクチルアルコール・・−α5wt%残部 ・・・
・水 吸収液C: LiBr  ・ee・50〜70wt%L
iOH・・・・α05〜115wt%LiN0.  −
−−−  5 0〜3 5 0  ppm(No3−と
じて) 残部 ・・・・水 第 1 表 これに対し、予め、複合酸化物皮膜を形成しない場合は
、いずれの吸収液でも平均水素ガス発生速度は約αl 
5 ml / minであった。表から明らかなように
水素ガス発生速度は高温再生器に被覆を形成したもので
は著しく小さい。水素ガスの発生は冷凍機内の鉄系材料
の腐食に付随するものであることから、本発明になる冷
凍機は著しく耐食性に優れていることが明白でおる。
Absorption liquid A: LiBr...-50 to 70 wt%
LiOH...α05~t (1wt%LL2MOO4
"In~150 ppm (as MoO4"-) LiNO3...5~350 ppm (as N0s-) Balance...Water absorption liquid B: LiBr = -50~70 wt%L
iOH---α05~1.0 wt%Li2M004
ms@10~400 ppm (as MoO4”-) Formula - Octyl alcohol...-α5wt% balance...
・Water absorption liquid C: LiBr ・ee・50-70wt%L
iOH...α05-115wt%LiN0. −
--- 50 to 350 ppm (including No. 3) Remainder: water Table 1 On the other hand, when a composite oxide film is not formed in advance, the average hydrogen gas generation is The speed is about αl
The flow rate was 5 ml/min. As is clear from the table, the rate of hydrogen gas generation is significantly lower in the high temperature regenerator with a coating. Since the generation of hydrogen gas accompanies the corrosion of iron-based materials within the refrigerator, it is clear that the refrigerator according to the present invention has extremely excellent corrosion resistance.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、腐食条件の最も厳しい高温再生器の内
壁に容易に腐食保護被膜を形成することができ、また事
前に防食被膜を形成することにより、耐食性の高い吸収
式冷凍機を得ることができた。
According to the present invention, it is possible to easily form a corrosion protection film on the inner wall of a high temperature regenerator which has the most severe corrosion conditions, and by forming the corrosion protection film in advance, an absorption refrigerator with high corrosion resistance can be obtained. was completed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の吸収式冷凍機の系統図、第
2図は電位−pHによるFe304とMoO2とから成
る複合酸化物の生成を表わすFe−Mo−H2O系の状
態図(150℃)、第3図は高温再生器炭素鋼内壁面に
形成された酸化皮膜の酸素、モリブデン及び鉄の鏝度を
示すグラフである。 1a・・・高温再生器、+b・・・低温再生器、2・・
・凝縮器、3・・・蒸発器、4・・・吸収器、5・・・
熱交換器、16・・・被膜形成液再循環配管、17a、
+7b。 +7c、17d、17e  ・・・パルプ、1 B −
・・冷媒供給配管 特許出願人 株式会社日立裏作所
Fig. 1 is a system diagram of an absorption refrigerator according to an embodiment of the present invention, and Fig. 2 is a phase diagram of the Fe-Mo-H2O system showing the formation of a composite oxide consisting of Fe304 and MoO2 due to potential-pH. 150° C.), and FIG. 3 is a graph showing the hardness of oxygen, molybdenum, and iron in the oxide film formed on the inner wall surface of the high-temperature regenerator carbon steel. 1a...High temperature regenerator, +b...Low temperature regenerator, 2...
・Condenser, 3... Evaporator, 4... Absorber, 5...
Heat exchanger, 16... Film forming liquid recirculation piping, 17a,
+7b. +7c, 17d, 17e...Pulp, 1 B-
...Refrigerant supply piping patent applicant Hitachi Urasakusho Co., Ltd.

Claims (1)

【特許請求の範囲】 1、密閉循環型吸収式冷凍機において、吸収液と接する
機器構成部材のうち少なくとも再生器表面に、モリブデ
ン酸化物と鉄酸化物の複合被膜が形成されていることを
特徴とする密閉循環型吸収式冷凍機。 2、請求項1記載において、前記複合被膜は吸収液に接
する表面が、部材内部よりモリブデン酸化物が多くなつ
ており、前記複合被膜は吸収液に接する表面より、部材
内部になるに従つて鉄酸化物量が多くなつていることを
特徴とする密閉循環型吸収式冷凍機。 3、請求項1記載において、吸収液は臭化リチウムを主
成分とし、若干量のアルカリ金属水酸化物と、微量のモ
リブデン酸塩、硝酸塩と高級アルコールの一種とを含む
水溶液であることを特徴とする密閉循環型吸収式冷凍機
。 4、請求項1記載において、吸収液は臭化リチウム50
〜70wt%、水酸化リチウム0.05〜1.0wt%
、モリブデン酸リチウムをモリブデン酸イオンとして1
0〜150ppm、硝酸リチウムを硝酸イオンとして5
〜350ppm、残部が水であることを特徴とする密閉
循環型吸収式冷凍機。 5、請求項1記載において、吸収液は臭化リチウム50
〜70wt%、水酸化リチウム0.05〜1.0wt%
、モリブデン酸リチウムをモリブデン酸イオンとして1
0〜400ppm、sec−オクチルアルコール0.3
wt%、残部が水からなることを特徴とする密閉循環型
吸収式冷凍機。 6、請求項1記載において、吸収液は臭化リチウム50
〜70wt%、水酸化リチウム0.05〜0.5wt%
、硝酸リチウムを硝酸イオンとして50〜350ppm
、残部が水からなることを特徴とする密閉循環型吸収式
冷凍機。 7、密閉循環型吸収式冷凍機の再生器内に、pH7.5
〜11に調整されたモリブデン酸イオンを含む水溶液を
被膜形成液として封入し、再生器を加熱することによつ
て再生器内壁に防食複合被膜を形成することを特徴とす
る密閉循環型吸収式冷凍機用の防食被膜形成方法。 8、密閉循環型吸収式冷凍機において、再生器に液の再
循環と冷媒供給系路を設け、再生器内にpH7.5〜1
1に調整されたモリブデン酸イオンを含む水溶液を被膜
形成液として封入し、再生器を加熱しながら、再生器内
の被膜形成液を再循環系路を用いて循環させ、冷媒の供
給系路から前記被膜形成液の蒸発量に釣り合う量の冷媒
を供給しながら、前記再生器のみを被膜形成運転し、再
生器の鉄系部材の表面に防食複合被膜を形成することを
特徴とする密閉循環型吸収式冷凍機用の防食被膜形成方
法。 9、密閉循環型吸収式冷凍機の少なくとも再生器構成部
材を、脱脂、脱スケールした後、加圧下にpH7.5〜
11に調整されたモリブデン酸イオンを含む水溶液の被
膜形成液に浸漬して構成部材表面に防食被膜を形成し、
次いで、該部材を組立てることにより、少なくとも再生
器内壁に防食複合被膜を形成することを特徴とする密閉
循環型吸収式冷凍機用の防食被膜形成方法。 10、請求項7又は8記載において、再生器の加熱を被
膜形成液の沸点又はそれ以上の温度で行なうことを特徴
とする密閉循環型吸収式冷凍機用の防食被膜形成方法。 11、請求項9記載において、再生器構成部材の浸漬を
被膜形成液を満たした処理槽中で密閉下で行ない、かつ
再生器構成部材の被膜形成液中への浸漬を沸点又はそれ
以上の温度で行なう密閉循環型吸収式冷凍機用の防食被
膜形成方法。
[Claims] 1. A closed circulation absorption refrigerator, characterized in that a composite film of molybdenum oxide and iron oxide is formed on at least the surface of the regenerator among the component parts that come into contact with the absorption liquid. A closed circulation absorption refrigerator. 2. In claim 1, the surface of the composite film in contact with the absorption liquid has more molybdenum oxide than the inside of the member, and the composite film has iron content in the interior of the member from the surface in contact with the absorption liquid. A closed circulation absorption refrigerator characterized by a large amount of oxides. 3. In claim 1, the absorption liquid is an aqueous solution containing lithium bromide as a main component, a small amount of alkali metal hydroxide, a trace amount of molybdate, nitrate, and a type of higher alcohol. A closed circulation absorption refrigerator. 4. In claim 1, the absorption liquid is 50% lithium bromide.
~70wt%, lithium hydroxide 0.05~1.0wt%
, lithium molybdate as molybdate ion 1
0 to 150 ppm, lithium nitrate as nitrate ion
A closed circulation absorption refrigerating machine characterized by containing up to 350 ppm and the remainder being water. 5. In claim 1, the absorption liquid is 50% lithium bromide.
~70wt%, lithium hydroxide 0.05~1.0wt%
, lithium molybdate as molybdate ion 1
0-400ppm, sec-octyl alcohol 0.3
A closed circulation absorption refrigerating machine characterized by wt% and the balance being water. 6. In claim 1, the absorption liquid is 50% lithium bromide.
~70wt%, lithium hydroxide 0.05-0.5wt%
, 50 to 350 ppm of lithium nitrate as nitrate ion
, a closed circulation absorption refrigerator characterized in that the remainder consists of water. 7. In the regenerator of the closed circulation absorption refrigerator, pH 7.5
A closed circulation type absorption refrigeration system characterized by forming an anti-corrosion composite film on the inner wall of the regenerator by sealing an aqueous solution containing molybdate ions adjusted to 11 as a film forming liquid and heating the regenerator. Method of forming anti-corrosion coating for aircraft. 8. In a closed circulation absorption refrigerator, the regenerator is equipped with liquid recirculation and refrigerant supply lines, and the regenerator has a pH of 7.5 to 1.
An aqueous solution containing molybdate ions adjusted to a concentration of A closed circulation type characterized in that only the regenerator is operated to form a film while supplying an amount of refrigerant commensurate with the amount of evaporation of the film forming liquid, thereby forming an anti-corrosion composite film on the surface of the iron-based member of the regenerator. A method for forming an anti-corrosion coating for absorption refrigerators. 9. After degreasing and descaling at least the regenerator components of the closed circulation absorption refrigerator, the pH is adjusted to 7.5 to 7.5 under pressure.
forming an anticorrosive film on the surface of the component by immersing it in a film forming solution of an aqueous solution containing molybdate ions adjusted to
A method for forming an anti-corrosion coating for a closed circulation type absorption refrigerator, comprising: then assembling the members to form an anti-corrosion composite coating on at least the inner wall of the regenerator. 10. A method for forming an anticorrosive coating for a closed circulation type absorption refrigerator according to claim 7 or 8, characterized in that the regenerator is heated at a temperature equal to or higher than the boiling point of the coating forming liquid. 11. In claim 9, the regenerator components are immersed in a treatment tank filled with a film-forming liquid under closed conditions, and the regenerator components are immersed in the film-forming liquid at a temperature equal to or higher than the boiling point. A method for forming an anticorrosion coating for closed circulation absorption refrigerators.
JP1002821A 1989-01-11 1989-01-11 Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator Expired - Fee Related JPH0762578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002821A JPH0762578B2 (en) 1989-01-11 1989-01-11 Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002821A JPH0762578B2 (en) 1989-01-11 1989-01-11 Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH02183778A true JPH02183778A (en) 1990-07-18
JPH0762578B2 JPH0762578B2 (en) 1995-07-05

Family

ID=11540079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002821A Expired - Fee Related JPH0762578B2 (en) 1989-01-11 1989-01-11 Closed circulation absorption refrigerator and method for forming anticorrosion film for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPH0762578B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180532A (en) * 1991-06-24 1993-07-23 Sharp Corp Heat exchanger and corrosion preventing method for the same
US6038882A (en) * 1997-10-24 2000-03-21 Ebara Corporation Absorption chiller-heater and method for forming initial anticorrosive film therefor
US6813901B2 (en) 1995-10-06 2004-11-09 Hitachi, Ltd. Absorption refrigerator and production method thereof
US7381281B2 (en) 2001-11-21 2008-06-03 Chiyoda Chemical Co., Ltd Surface treatment method of metal member, and metal goods
CN103018290A (en) * 2011-09-22 2013-04-03 株式会社日立建筑*** Inhibitor concentration management method in absorption liquid, device thereof, and absorption type cold/warm water machine with the device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755170A (en) * 1953-05-29 1956-07-17 Servel Inc Corrosion inhibitor
JPS5297460A (en) * 1976-02-13 1977-08-16 Hitachi Ltd Corrosion preventing method for absorption type refrigerator
JPS58224187A (en) * 1982-06-24 1983-12-26 Showa Denko Kk Corrosion preventive lithium bromide composition
JPS6033461A (en) * 1983-08-02 1985-02-20 株式会社荏原製作所 Corrosion inhibitor for absorbing solution of absorption type refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755170A (en) * 1953-05-29 1956-07-17 Servel Inc Corrosion inhibitor
JPS5297460A (en) * 1976-02-13 1977-08-16 Hitachi Ltd Corrosion preventing method for absorption type refrigerator
JPS58224187A (en) * 1982-06-24 1983-12-26 Showa Denko Kk Corrosion preventive lithium bromide composition
JPS6033461A (en) * 1983-08-02 1985-02-20 株式会社荏原製作所 Corrosion inhibitor for absorbing solution of absorption type refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180532A (en) * 1991-06-24 1993-07-23 Sharp Corp Heat exchanger and corrosion preventing method for the same
US6813901B2 (en) 1995-10-06 2004-11-09 Hitachi, Ltd. Absorption refrigerator and production method thereof
US7165418B2 (en) 1995-10-06 2007-01-23 Hitachi, Ltd. Absorption refrigerator and production method thereof
US6038882A (en) * 1997-10-24 2000-03-21 Ebara Corporation Absorption chiller-heater and method for forming initial anticorrosive film therefor
US7381281B2 (en) 2001-11-21 2008-06-03 Chiyoda Chemical Co., Ltd Surface treatment method of metal member, and metal goods
CN103018290A (en) * 2011-09-22 2013-04-03 株式会社日立建筑*** Inhibitor concentration management method in absorption liquid, device thereof, and absorption type cold/warm water machine with the device

Also Published As

Publication number Publication date
JPH0762578B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US4311024A (en) Hermetically circulating, absorption type refrigerator
US4912934A (en) Hermetically closed circulation type, vapor absorption refrigerator
JP3593268B2 (en) Absorption refrigerator and method for forming initial anticorrosion film
US3609086A (en) Arsenic trioxide corrosion inhibitor for absorption refrigeration system
JP2769657B2 (en) Heat exchange device and its corrosion prevention method
US5653117A (en) Absorption refrigeration compositions containing thiocyanate, and absorption refrigeration apparatus
JPH02183778A (en) Method for forming corrosion-proof film for closed circulation type absorption refrigerator and absorption refrigerator
JPH0335384B2 (en)
US3555841A (en) Arsenic trioxide corrosion inhibitor for absorption refrigeration system
US4470272A (en) Hermetically circulating, absorption type refrigerator
US3097978A (en) Method of coating zinc surfaces
CN100371503C (en) Anodic rare-earth oxide membrane closing method of aluminium alloy
JPS63187073A (en) Lean solution for absorption type refrigerator
JPH11142012A (en) Absorption refrigerating machine and absorbing liquid therefor
US6033595A (en) Corrosion inhibiting solutions and processes for refrigeration systems comprising halides of a Group Va metallic element
JP3218156B2 (en) Operating method of absorption refrigerator and absorption liquid
JPH07239159A (en) Absorption refrigerating machine and absorption liquid for it
KR100458762B1 (en) Absorption refrigerator and manufacturing method thereof
CN112390385A (en) Corrosion inhibitor and preparation method and application thereof
JPS6334386B2 (en)
JP3547915B2 (en) Absorption refrigerator and manufacturing method thereof
JP2756521B2 (en) Absorption liquid for absorption refrigerator
JPH1144466A (en) Ammonia absorption type heat pump
JPS6029872B2 (en) absorption refrigerator
JPS6226357B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees