JPH02183769A - Refrigerater or heater integral type air conditioner and power supply circuit therefor - Google Patents

Refrigerater or heater integral type air conditioner and power supply circuit therefor

Info

Publication number
JPH02183769A
JPH02183769A JP31356288A JP31356288A JPH02183769A JP H02183769 A JPH02183769 A JP H02183769A JP 31356288 A JP31356288 A JP 31356288A JP 31356288 A JP31356288 A JP 31356288A JP H02183769 A JPH02183769 A JP H02183769A
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
refrigerator
air conditioner
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31356288A
Other languages
Japanese (ja)
Inventor
Katsuji Yamamoto
山本 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31356288A priority Critical patent/JPH02183769A/en
Priority to AU42562/89A priority patent/AU615347B2/en
Publication of JPH02183769A publication Critical patent/JPH02183769A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To provide a refrigerator for improving a cooling efficiency, releasing heat of condensation of refrigerant and not increasing a room temperature and further improve a rate of usage as a device by a method wherein a compressor, a condensor and refrigerant for an air conditioner are cooperatively applied with the refrigerator. CONSTITUTION:Gas of high temperature and high pressure of refrigerant R-22 compressed by a compressor 21 during a cooling operation and discharged through a discharging pipe 3 passes through a first four-way valve 4. The refrigerant is guided to an outdoor heat exchanger (a condensor) 7, condensed there and then liquefied. The liquefied refrigerant R-22 passes through a second four-way valve 24 and it is guided to electronic expansion valves 6 and 26. The liquid R-22 guided to the electronic expansion valve 6 is adiabatically expansioned, evaporated at an indoor heat exchanger (an evaporator) 5 and gasified there to cool a room. The gas of low temperature and low pressure passes through a first four-way valve 4 and again returns to the compressor 21. In turn, the liquid R-22 guided to the electronic expansion valve 26 is adiabatically expanded, evaporated at a cooling device (an evaporator) 27, gasified to cool the refrigerator. The gas of low temperature and low pressure is returned again to the compressor 21. During heating operation, the first and second four-way valves 4 and 24 are changed over to form a heating cycle of an air conditioner 28. In this case, the indoor heat exchanger 5 may act as a condensor and an outdoor heat exchanger 7 may act as an evaporator.

Description

【発明の詳細な説明】 〔渉業上の利用分野〕 この発明は、共通の冷媒を用い、冷蔵庫や温蔵庫を空気
調和装置の冷凍システムに組み込もうとするものである
[Detailed Description of the Invention] [Field of Industrial Application] This invention attempts to incorporate a refrigerator or a hot storage into a refrigeration system of an air conditioner using a common refrigerant.

〔従来の技術〕[Conventional technology]

第17図は例えば実開昭57−42335号公報に示さ
れた従来のヒートポンプ式冷暖房装置(以下空調機とい
う)の暖房時の動作であシ2図において、(1)は空調
機用密閉形圧縮機、(2)はその吸入管。
Figure 17 shows, for example, the operation of a conventional heat pump air-conditioning system (hereinafter referred to as an air conditioner) shown in Japanese Utility Model Application Publication No. 57-42335 during heating.In Figure 2, (1) is a sealed type air conditioner. Compressor, (2) is its suction pipe.

(3)はその吐出管、(4)は吐出管(3)から吐出さ
れる冷媒ガスの流れの方向を変える四方弁で、暖房時四
方弁(4)を通って室内側熱交換器(51に高温ガスが
導ひかれ、膨張弁(6)を通って室外側熱9:換器(7
)にガスが流れて圧縮機Tl+の吸入管(2)へ戻され
る。第1T図は暖房時の四方弁(4)の動作状況を示し
たものであるが、第18図は理解を助けるため(回路を
見やすくするため)四方弁(41の動作状況を簡略して
示した冷房時の基本回路である。
(3) is the discharge pipe, and (4) is a four-way valve that changes the flow direction of the refrigerant gas discharged from the discharge pipe (3). During heating, it passes through the four-way valve (4) to the indoor heat exchanger (51). The high-temperature gas is guided through the expansion valve (6) to the outdoor heat exchanger (7).
) and is returned to the suction pipe (2) of the compressor Tl+. Figure 1T shows the operating status of the four-way valve (4) during heating, but Figure 18 simply shows the operating status of the four-way valve (41) to aid understanding (to make the circuit easier to see). This is the basic circuit during cooling.

一方、従来の家庭用冷蔵庫の背面は第19図のように構
成されており、3ドアタイプの断面図は第21図のよう
に構成されている。
On the other hand, the back of a conventional household refrigerator is constructed as shown in FIG. 19, and the cross-sectional view of a three-door type refrigerator is constructed as shown in FIG. 21.

図において、(8)は冷蔵庫の箱体、(9)は機械室。In the figure, (8) is the box of the refrigerator, and (9) is the machine room.

alは圧縮機、+Iυは凝縮器、(I3は冷却器、  
(87) はドレイン蒸発用サブコンデンサー、  (
90)はドレインパン、  (91)は冷凍室、  (
92)は冷蔵室、  (93)は野菜室、  (94)
は低圧冷媒配管、  (95)は冷R庫の扉である。
al is the compressor, +Iυ is the condenser, (I3 is the cooler,
(87) is the sub-capacitor for drain evaporation, (
90) is the drain pan, (91) is the freezer compartment, (
92) is the refrigerator compartment, (93) is the vegetable compartment, (94)
(95) is the low pressure refrigerant pipe, and (95) is the door of the refrigerator.

そして、冷蔵庫の箱体(8)に機械室(9)が設けられ
A machine room (9) is provided in the refrigerator box (8).

この空間に冷蔵庫用圧縮機(9)が収納され、冷R庫箱
体(8)の背面にワイヤ形凝縮器(11が取9つけられ
ている。この家庭用冷蔵庫の冷却回路を第20図のよう
に示され、第18図に示された空調機の冷房時の冷却回
路と構成要素は同じことが理解できる。
A refrigerator compressor (9) is housed in this space, and a wire-type condenser (11) is attached to the back of the cold storage box (8). Figure 20 shows the cooling circuit of this household refrigerator. It can be understood that the components are the same as the cooling circuit shown in FIG. 18 during cooling of the air conditioner.

次に空調機及び冷蔵庫の動作について説明する。Next, the operation of the air conditioner and refrigerator will be explained.

今、冷蔵庫の動作原理は空調機の冷房時の動作原理と同
じ故、第18図を用いて説明する。
Since the operating principle of a refrigerator is the same as that of an air conditioner during cooling, it will be explained using FIG. 18.

まず、空調機の冷房時の動作原理を説明する。First, the operating principle of the air conditioner during cooling will be explained.

家庭用空調機は、一般に冷媒としてフロン22(以下、
R−22)が用いられ、第18図において空調機用圧縮
機(1)の吐出管+3)から吐き出される高温高圧ガス
が、室外側熱交換器(7)へ導ひかれ高温カスが冷却さ
れながら液化されてゆく。液化されたR−22は膨張弁
(6)によって断熱膨張し、室内側熱交換器(5)K液
が導ひかれながら、液化R−22は、室内の空気から熱
エネルギーを吸収し、その際R−22はガス状となって
圧@ @ (11の吸入管へ戻される。
Home air conditioners generally use Freon-22 (hereinafter referred to as
R-22) is used, and in Fig. 18, high-temperature, high-pressure gas discharged from the discharge pipe +3) of the air conditioner compressor (1) is guided to the outdoor heat exchanger (7), where the high-temperature scum is cooled. It becomes liquefied. The liquefied R-22 is adiabatically expanded by the expansion valve (6), and while the K liquid is guided to the indoor heat exchanger (5), the liquefied R-22 absorbs thermal energy from the indoor air, and at the same time R-22 becomes gaseous and returns to the suction pipe at pressure @@(11).

暖房時は、第16図において四方弁(4)によって冷媒
の流れ方向が切り換えられ、室内側熱交換器が高温状態
、室外側熱交換器が低温状態となって室内の暖房が行な
われる。
During heating, the flow direction of the refrigerant is switched by the four-way valve (4) in FIG. 16, and the indoor heat exchanger is in a high temperature state and the outdoor heat exchanger is in a low temperature state, thereby heating the room.

一方、家庭用冷蔵庫は、一般に冷媒としてフロン12(
以下R−12)が用いられる。 冷Itj庫は空調機と
異なり暖房機能は必要なく、第16図に示す四方弁(4
)は不要であシ、冷蔵庫は空調機のごと〈熱交換器が冷
房あるいは暖房時によって高温状態になったり低温状態
になったシすることがないことから、それぞれの熱交換
器には第13図及び第14図に示すごとく機能を示す名
称が名付けられている。前2したごとく冷蔵庫の動作は
第17図において説明した空調機の冷房時の動作原理と
同一である。
On the other hand, household refrigerators generally use Freon 12 (Freon-12) as a refrigerant.
R-12) is used below. Unlike an air conditioner, a cold Itj warehouse does not require a heating function, and is equipped with a four-way valve (4
) is unnecessary, and refrigerators are like air conditioners (heat exchangers do not become hot or cold during cooling or heating, so each heat exchanger has a As shown in the figure and FIG. 14, names indicating functions are given. As mentioned above, the operation of the refrigerator is the same as the operating principle of the air conditioner during cooling, which was explained in FIG. 17.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の家庭用空調機は冷房及び暖房の機能を有するもの
の、−年を通して運転される期間が限られているばかシ
でなく、運転を必要とする日に限っても−8中運転をし
ているのではなく9例えば夜間など運転されていない場
合が多い。即ち装置の使用嘉が小さいという問題点があ
る。
Although conventional home air conditioners have cooling and heating functions, they are not only operated for a limited period of time throughout the year, but also only on the days when they are required to be operated. There are many cases where the vehicle is not being operated, for example at night. That is, there is a problem that the usability of the device is small.

一方、従来の家庭用途′R庫は、空調機に一般的に使用
される冷媒R−22と異なシ、冷媒R−12が用いられ
ている。又、家庭用空調機として市場で受は入れられる
ようにするために、限られた冷蔵庫の製品容積の制限の
中で高圧と低圧カスとの圧縮比を小さくシ、長期の寿命
を確保するのに適しているのが、冷WIH用冷媒として
R−12と言えるが、同じ冷却動作原理である空調機と
冷媒を異にすることは、′!A造者からしても冷媒のチ
ャージイングスタンドを別に設けねばならないなどの問
題点がある。又、現在世界的に話題になっている大気圏
外でのR−12分解によるオゾンの減少公害に対しても
、R−12の使用には間覇がある。
On the other hand, conventional home storages use refrigerant R-12, which is different from the refrigerant R-22 commonly used in air conditioners. In addition, in order to be accepted in the market as a home air conditioner, we reduced the compression ratio between high pressure and low pressure waste within the limited product volume of the refrigerator, thereby ensuring a long service life. It can be said that R-12 is suitable as a refrigerant for cold WIH, but using a different refrigerant is different from that of an air conditioner, which has the same cooling operation principle. Even for manufacturers A, there are problems such as the need to separately provide a refrigerant charging stand. Furthermore, the use of R-12 has advantages over the reduction in ozone pollution caused by the decomposition of R-12 outside the atmosphere, which is currently a hot topic worldwide.

更に、第18図に示す如く冷蔵庫背面には#縮器aυが
設けられ1機械室(9)には圧縮機a1があり冷蔵庫の
内容積を小さくしているという問題点もある。
Furthermore, as shown in FIG. 18, a #compressor aυ is provided on the back of the refrigerator, and a compressor a1 is located in the first machine room (9), reducing the internal volume of the refrigerator.

周知の如く、家庭用冷M、庫は台所等の家屋内に置かれ
るのが大半で圧縮機の騒音は使用者に不快感を与えるな
どの欠点がある。
As is well known, most household refrigerators are placed inside the house, such as the kitchen, and the noise from the compressor causes discomfort to the user.

又、冷蔵庫の凝縮器fi11から放出される熱は、室内
温度を高める欠点もある。
Furthermore, the heat released from the condenser fi11 of the refrigerator also has the disadvantage of increasing the indoor temperature.

また、最近の冷蔵庫は大形化していると共K。Also, refrigerators are getting larger these days.

冷蔵庫内に収納される品物も多様化している。冷凍食品
などはなるべく急速に冷凍してしまうほうが、鮮度維持
にもよく、また、解凍して加工したときの味もよいとさ
れている。それゆえ、冷M庫製造者はなるべく冷却器の
蒸発温度を低くするよう設計する。しかし、冷却器温度
が低くなる(−船釣には、−411111C以下である
)と、従来の冷蔵庫は第19図及び第21図にしめされ
るように。
The items stored in refrigerators are also becoming more diverse. It is said that freezing foods as quickly as possible helps maintain their freshness and improves the taste when thawed and processed. Therefore, manufacturers of refrigerators design coolers to make the evaporation temperature as low as possible. However, when the cooler temperature becomes low (-411111C or less for fishing on a boat), the conventional refrigerator becomes as shown in FIGS. 19 and 21.

冷蔵庫背面に設けられる機械室(91に無比する低圧側
配管(冷蔵庫冷却器a3の出口から圧縮機Hまでの冷蔵
庫外に露出する配管)に空気中の水分が凝結することに
なる。即ち、霜付現象が発生する。
Moisture in the air will condense in the machine room (91) installed on the back of the refrigerator.In other words, moisture in the air will condense in the low-pressure side piping (piping exposed outside the refrigerator from the outlet of the refrigerator cooler a3 to the compressor H).In other words, frost A phenomenon occurs.

従来の冷it庫は、圧縮機αGが機械室(9)に据え付
けられるため、上記の霜付現象後の融解されるドレイン
水を貯水するドレイン・パンを上記霜付配管及び圧縮機
の下に設けるに困難な構造になっていることから、従来
の冷蔵庫は、急速冷却をやりたくても霜付現象を避ける
ために、冷蔵器の蒸発温度を一40′c以上にしなけれ
ばならなかった。
In conventional refrigerators, the compressor αG is installed in the machine room (9), so a drain pan for storing drain water that is thawed after the above-mentioned frosting phenomenon is placed below the above-mentioned frosting piping and the compressor. Due to the difficult structure of conventional refrigerators, even if rapid cooling is desired, the evaporation temperature of the refrigerator must be set to 140'C or higher to avoid frost formation.

この発明は上記のような問題点を解消するためになされ
たもので、共通の冷媒によって空調機と冷M、庫を動作
させ、装置の使用出も向上させ、冷蔵庫の機械室に据え
付けられていた圧縮機を空調機の室外側に据え付けられ
ている圧縮機にて代用させ、更に冷M庫背面に設けられ
ていた凝縮器を空調機の高温側熱交換器(即ち凝縮器と
して作用している熱交換器で、冷房時は室外側熱交換器
This invention was made to solve the above-mentioned problems. It uses a common refrigerant to operate the air conditioner, refrigerator, and refrigerator, improves the usability of the device, and allows it to be installed in the machine room of the refrigerator. The compressor installed on the outdoor side of the air conditioner was replaced with a compressor installed on the outdoor side of the air conditioner, and the condenser installed on the back of the refrigerator was replaced with a heat exchanger on the high temperature side of the air conditioner (i.e., acting as a condenser). When cooling, the outdoor heat exchanger is used.

暖房時は室内側熱交換器)にて代用させてなる家この発
明に係る冷蔵庫一体形空気調和機は、空気調和機(以下
空調機という。)用に使用され。
The refrigerator-integrated air conditioner according to the present invention is used for an air conditioner (hereinafter referred to as an air conditioner).

かつ室外側に据えつけられる圧縮機を冷蔵庫用に共用し
、空調機用に使用され、かつ室内側または室外側で凝縮
器として機能する高温側熱交換器を冷蔵庫用に共用し、
空調機用に使用される冷媒を冷蔵庫用に共用するようと
構成したものである。
and the compressor installed on the outdoor side is shared for the refrigerator, the high temperature side heat exchanger used for the air conditioner and functioning as a condenser on the indoor side or the outdoor side is shared for the refrigerator,
It is configured so that the refrigerant used for the air conditioner is shared for the refrigerator.

また、この発明に係る冷蔵・空調装置は圧縮機と四方弁
と室外熱交換器と減圧装置と室内熱交換器とを有する冷
媒回路、前記室外熱交換器と前記室内熱交換器に入力端
が接続され、前記減圧装置に出力端が接続された切換装
置、前記四方弁と前記室内熱交換器と前記減圧装置とか
らなる空調機要素に並列に設けられ毛細管と蒸発器とか
らなる冷蔵庫要素を備え。
Further, the refrigeration/air conditioner according to the present invention includes a refrigerant circuit having a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, and an input terminal of the outdoor heat exchanger and the indoor heat exchanger. a switching device with an output end connected to the pressure reducing device; a refrigerator element including a capillary tube and an evaporator installed in parallel with an air conditioner element including the four-way valve, the indoor heat exchanger, and the pressure reducing device; Be prepared.

冷蔵・冷房時前記圧縮機にて圧縮された冷媒は前記室外
熱交換器にて凝縮した後前記空調機要素と前記冷蔵庫要
素に分流しそれぞれの要素にて蒸発後合流し前記圧縮機
に戻る回路を形成し。
During refrigeration/cooling, the refrigerant compressed by the compressor is condensed in the outdoor heat exchanger and then divided into the air conditioner element and the refrigerator element, evaporated in each element, and then merged and returned to the compressor. form.

冷蔵・暖房時前記圧縮機にて圧縮された冷媒は前記室内
熱交換器にて凝縮した後前記冷蔵庫要素と前記減圧装置
に分流しこの減圧装置に向う冷媒は減圧後前記室外熱交
換器にて蒸発し前記冷蔵庫要素で蒸発した冷媒と合流し
て前記圧縮機に戻る回路を形成したものである。
During refrigeration/heating, the refrigerant compressed by the compressor is condensed in the indoor heat exchanger and then divided into the refrigerator element and the pressure reducing device, and the refrigerant heading to this pressure reducing device is depressurized and sent to the outdoor heat exchanger. A circuit is formed in which the refrigerant evaporates and joins with the evaporated refrigerant in the refrigerator element and returns to the compressor.

またこの発明に係る塩蔵・空調装置は圧縮機と四方弁と
室外熱交換器と減圧装置と室内熱交換器とを有する冷媒
回路、前記室外熱交換器と前記室内熱交換器に入力端が
接続され、前記減圧装置に出力端が接続された切換装置
回路0m跋庫用放熱器を備え。
Further, the salt storage/air conditioner according to the present invention includes a refrigerant circuit including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, and an input end is connected to the outdoor heat exchanger and the indoor heat exchanger. and a switching device circuit 0m storage radiator whose output end is connected to the pressure reducing device.

温蔵・冷房時前記圧縮機にて圧縮された冷媒は前記圧縮
機から吐出された後前記冷媒回路の前記四方弁と前記室
外熱交換器からなる冷房時高圧回路と前記放熱器に分流
し、それぞれで#縮した後合流し前記減圧装置と前記室
内熱交換器と前記四方弁をこのII)ffに通り、圧縮
機に戻る回路を形成し。
During heating and cooling, the refrigerant compressed by the compressor is discharged from the compressor and then divided into the high-pressure circuit during cooling, which includes the four-way valve of the refrigerant circuit and the outdoor heat exchanger, and the radiator; After being compressed in each, they join together, pass through the pressure reducing device, the indoor heat exchanger, and the four-way valve to this II)ff, and form a circuit that returns to the compressor.

温蔵・暖房時前記圧縮機にて圧縮された冷媒は前記圧縮
機から吐出された後前記冷媒回路の前記四方弁と前記室
内熱交換器からなる暖房時高圧回路と前記放熱器に分流
し、それぞれで#縮した後合流し前記減圧装置と前記室
外熱交換器と前記四方弁をこのハ1に通り圧縮機に戻る
回路を形成したものである。
During warming and heating, the refrigerant compressed by the compressor is discharged from the compressor and then divided into the high-pressure circuit during heating, which includes the four-way valve of the refrigerant circuit and the indoor heat exchanger, and the radiator; A circuit is formed in which each compressor is compressed and then merged, passing through the pressure reducing device, the outdoor heat exchanger, and the four-way valve, and returning to the compressor.

そして圧縮機及び冷ltl&要素に設けられた圧力調整
手段のインバータ駆動時整流回路を共用したものである
The rectifier circuit is shared when the inverter is driven by the pressure regulating means provided in the compressor and cooling LTL&element.

〔作用〕[Effect]

(1)共用する圧縮機と凝縮器と冷媒は、空調機を運転
しないときでも、常時運転される冷M庫又は温蔵庫の冷
却サイクルを構成するので、装置としての使用率が高く
なる。
(1) The shared compressor, condenser, and refrigerant constitute the cooling cycle of the cold storage or hot storage, which is constantly operated even when the air conditioner is not operating, so the utilization rate of the device is increased.

(2)  空調機の冷媒を冷蔵又は温蔵庫用に共用する
ので、大気圏外で分解してオゾンを減少させる冷媒(R
−12)を使用する必要がなくなる、(3)空調機の圧
縮機を冷蔵又は湛1tust用に共用するので、冷i!
庫に圧縮機を収納するためのスペースをとる必要がなく
なシ、それだけ冷M庫の内容積を大きくすることができ
る。
(2) Since the refrigerant of air conditioners is shared for refrigerators and hot storages, refrigerants (R) that decompose outside the atmosphere and reduce ozone
-12) There is no need to use the air conditioner, and (3) the compressor of the air conditioner is shared for refrigeration or 1 tust, so there is no need to use cold i!
There is no need to take up space for storing a compressor in the refrigerator, and the internal volume of the cold storage can be increased accordingly.

(4)  室外側に据えつけられる空調機の圧縮機を冷
蔵又は温′RJlik用に共用するので、冷蔵又はm賊
軍に圧縮機を設置する必要がなくなυ、したがってその
運転による騒音が室内に発生しなくなる。
(4) Since the compressor of the air conditioner installed outside the room is shared for refrigeration or heating, there is no need to install a compressor for refrigeration or heating, and therefore the noise from its operation is reduced indoors. It will no longer occur.

(5)  冷房時は室外側で、暖房時は室内側でそれぞ
れ凝縮器として機能する高温側熱交換器を、冷蔵又は温
M、庫用の凝縮器とし共用するので、冷蔵又は温蔵庫に
凝縮器を取シ付ける必要がなくなる。
(5) The high-temperature side heat exchanger, which functions as a condenser on the outdoor side during cooling and on the indoor side during heating, is shared as a condenser for refrigeration, warm storage, and storage. There is no need to install a condenser.

このため、凝縮器から放出される凝縮熱が、夏期など暑
いときに、室内温度を高めるようなことはなくなるし、
ドレインパンを底部全域に位置させることができるので
ドレイン水をきにせず急速冷却が行なえ、野菜室も広く
とることができる。
For this reason, the condensation heat released from the condenser will not increase the indoor temperature during hot weather such as in the summer.
Since the drain pan can be placed over the entire bottom area, rapid cooling can be performed without draining the drain water, and the vegetable compartment can also be spacious.

(6)  空調機を使用しないときは、その熱交換器を
冷蔵又は温′R庫専用として使用できるので、冷Mヌは
mM庫の冷却助出を高くすることができる。
(6) When the air conditioner is not in use, the heat exchanger can be used exclusively for refrigerating or warming the refrigerator, so that the cold M can provide high cooling support for the mM refrigerator.

〔実施例] 以下、この発明の第1実施例を図について説明する。〔Example] A first embodiment of the present invention will be described below with reference to the drawings.

第1図は実施例による冷蔵庫一体形窒気調和装置の基本
サイクルを示す。その中の空調機は冷房運転時のサイク
ル、すなわち冷房サイクルで示しである。使用される冷
媒はR−22である。
FIG. 1 shows a basic cycle of a refrigerator-integrated nitrogen conditioner according to an embodiment. The air conditioner therein is shown in a cooling cycle, that is, a cooling cycle. The refrigerant used is R-22.

第1図において、4〜Tは第5図におけると同一部分を
示す。011は第1吸入管のと第2吸入管の及び吐出管
(3)を有する密閉形回転(ロータリ)圧縮機である。
In FIG. 1, 4 to T indicate the same parts as in FIG. 011 is a hermetic rotary compressor having a first suction pipe, a second suction pipe, and a discharge pipe (3).

吐出管(3)は第1四方弁(初の接続口(4a)に接続
され、室外側熱交換器(71は、第1 四方弁(4)の
接続口(4b)と、切換回路としての第2四方弁@の接
続口(24a)に接続されている。 ■は1字管であり
、その1つ目の接続口は第2四方弁@の接続口(z4b
)に、2つ目の接続口は空調機用電子膨張弁(6)に、
3つ目の接続口は冷蔵庫用電子膨張弁のにそれぞれ接続
されている。電子膨張弁+61は第2四方弁@の接続口
(24d)に接続されている。空調機の室内側熱交換器
(51は、第1四方弁(41の接続口(4d)と第2四
方弁@の接続口(24c)にそれぞれ接続され、圧縮機
011の第2吸入管■は電磁弁ωを介して第1四方弁(
4)の接続口(4C)K接続されている。一方、冷蔵庫
用冷却器(蒸発器)■は圧縮機f211の第1吸入管■
と電子膨張弁■にそれぞれ接続されている。このように
して、冷蔵庫■の冷却サイクルが空調機の冷暖房サイク
ルに組み込まれている。
The discharge pipe (3) is connected to the first four-way valve (first connection port (4a)), and the outdoor heat exchanger (71 is connected to the connection port (4b) of the first four-way valve (4) and the switching circuit). It is connected to the connection port (24a) of the second four-way valve @. ■ is a single-shaped pipe, and its first connection port is connected to the connection port (z4b) of the second four-way valve @.
), the second connection port is to the electronic expansion valve (6) for the air conditioner,
The third connection port is connected to each of the electronic expansion valves for the refrigerator. The electronic expansion valve +61 is connected to the connection port (24d) of the second four-way valve @. The indoor heat exchanger (51) of the air conditioner is connected to the connection port (4d) of the first four-way valve (41) and the connection port (24c) of the second four-way valve @, respectively, and the second suction pipe of the compressor 011. is the first four-way valve (
4) Connection port (4C) K is connected. On the other hand, the refrigerator cooler (evaporator) ■ is the first suction pipe of the compressor f211 ■
and an electronic expansion valve■, respectively. In this way, the cooling cycle of the refrigerator (1) is incorporated into the heating and cooling cycle of the air conditioner.

第2図は上記密閉形回転圧縮機I2+1の断面図である
。この圧縮機C211においては、従来の冷RIKと空
調機に広く用いられている密閉形回転圧縮機のベーン■
の回転方向側のシリンダ(至)に、第1吸入口(至)と
第2吸入口■の2つの吸入口が設けられており、ベーン
(に近い第1吸入口■には、吸入弁面が設けられている
。これらの第1吸入口ωと第2吸入口(至)に対応する
接続管が、前述した第1吸入管■と第2吸入管のである
FIG. 2 is a sectional view of the hermetic rotary compressor I2+1. This compressor C211 uses conventional cold RIK and hermetic rotary compressor vanes widely used in air conditioners.
Two suction ports, a first suction port (to) and a second suction port (■), are provided on the cylinder (toward) on the side in the rotational direction of the vane. Connecting pipes corresponding to the first suction port ω and the second suction port (to) are the first suction pipe ① and the second suction pipe described above.

なお、 Gl+は圧縮機シェル、  (52a)はシリ
ンダ■の内周面、田はローリングピストンで、  (3
3a)Uその外周面、(至)はベーンスプリング、@は
吐出口で、  (39a)はその弁、Aはシリンダ■と
ローリングピストン田の接触面である。
In addition, Gl+ is the compressor shell, (52a) is the inner circumferential surface of the cylinder ■, 2 is the rolling piston, and (3
3a) U's outer peripheral surface, (to) is the vane spring, @ is the discharge port, (39a) is its valve, and A is the contact surface between the cylinder ■ and the rolling piston field.

次に冷房時の動作について説明する。Next, the operation during cooling will be explained.

圧縮機c!11で圧縮され、吐出管(3)から吐き出さ
れたR−22の高温高圧の気体は、第1四方弁(41を
通って室外側熱交換器(凝縮器)(7)K導かれ、ここ
で凝縮して液化する。液化して中温・高圧の液体となっ
たR−22は、 第2四方弁のを経て電子膨張弁(61
へ導かれるとともに、電子膨張弁ωへも導かれる。電子
膨張弁(6)に導かれた液体のR−22は、ここで断熱
膨張して霧化し、室内側熱交換器(蒸発器)(5)で蒸
発して気化し、そのときの気化熱で室内を冷房する。そ
して、低温低圧となった気体は第1四方弁(41を通っ
て再び圧縮機+211へ戻る。
Compressor c! The high-temperature, high-pressure gas R-22 compressed in 11 and discharged from the discharge pipe (3) passes through the first four-way valve (41) and is led to the outdoor heat exchanger (condenser) (7) K. R-22 condenses and liquefies. R-22, which is liquefied and becomes a medium-temperature, high-pressure liquid, passes through the second four-way valve and then into the electronic expansion valve (61
At the same time, it is also guided to the electronic expansion valve ω. The liquid R-22 led to the electronic expansion valve (6) is adiabatically expanded and atomized here, and evaporated and vaporized in the indoor heat exchanger (evaporator) (5), and the heat of vaporization at that time is to cool the room. The low-temperature, low-pressure gas passes through the first four-way valve (41) and returns to the compressor +211.

一方、1M子膨張弁■に導かれた液体のR−22は、こ
こで、断熱膨張して精化し、冷却器(蒸発器)■で蒸発
して気化し、そのときの気化熱で庫内を冷却する。低温
低圧となった気体は再び圧縮機c111へ戻る。
On the other hand, the liquid R-22 led to the 1M expansion valve (■) is adiabatically expanded and refined, evaporated and vaporized in the cooler (evaporator) (■), and the heat of vaporization at that time causes the inside of the refrigerator. to cool down. The low-temperature, low-pressure gas returns to the compressor c111 again.

暖房時の動作は、第1.第2の両凸方弁(41,C14
1を切り換えることによって説明できる。すなわち。
The operation during heating is as follows. Second biconvex valve (41, C14
This can be explained by switching 1. Namely.

図面上、破線を実線に、実線を破線とすることによって
、空調機■の暖房サイクルが形成される。
In the drawing, the heating cycle of the air conditioner (2) is formed by making the broken lines into solid lines and the solid lines into broken lines.

この場合は、室内側交換器(5)が凝縮器として機能し
、室外側熱交換器())が蒸発器として機能することに
なる。
In this case, the indoor exchanger (5) will function as a condenser, and the outdoor heat exchanger () will function as an evaporator.

空調機■を使用しないときは、電子膨張弁(6)と電磁
弁■を常時閉じることによって、冷蔵庫■に専用の冷却
サイクルが形成される。
When the air conditioner (2) is not in use, the electronic expansion valve (6) and the solenoid valve (2) are always closed to create a dedicated cooling cycle for the refrigerator (2).

次に、冷M庫■の冷却サイクルと突−機■の冷房(却)
サイクルが、圧縮機と凝縮器と冷媒を共用することによ
って、どのように実現されるかを。
Next, we will discuss the cooling cycle of cold storage ■ and the cooling of cold storage machine ■.
How the cycle is realized by sharing the compressor, condenser, and refrigerant.

冷媒の圧力−エンタルピー曲線を用いて説明する。This will be explained using a refrigerant pressure-enthalpy curve.

現在、一般家庭で使用されている冷媒R−12を用いた
冷蔵庫の冷却サイクルの標準使用条件は次のとお)であ
る。
The standard operating conditions for the cooling cycle of a refrigerator using refrigerant R-12, which is currently used in general households, are as follows.

凝ai温度54.4℃、蒸発温度−212℃膨張弁前温
度3よ2℃、吸入カス温度32℃ 第3図は、この冷却サイクルを、R−22の圧カーエン
タルピー線図で示したものである。
Condensation temperature: 54.4°C, evaporation temperature: -212°C, expansion valve temperature: 3-2°C, suction gas temperature: 32°C. Figure 3 shows this cooling cycle in the pressure enthalpy diagram of R-22. It is.

図において2点A1及びB1の比エンタルピーは。In the figure, the specific enthalpy of two points A1 and B1 is.

それぞれ i 中108Kcal/kg、  iB1キ142Kc
al/kg^1 である。いま2点B1と点A1の比エンタルピー差をΔ
11とすると。
108Kcal/kg in i, 142Kc in iB1, respectively
al/kg^1. Now, the specific enthalpy difference between the two points B1 and A1 is Δ
If it is 11.

Δ11= jBl −IAI:34Kcal /’Q 
   −”・−(tlであシ、R−12を使用する冷蔵
庫用圧縮機の体積効率及び押のけ量をそれぞれ、η1.
 W 1 〔kg / hr ]とすると、冷蔵庫の冷
却能力Q、は次のように表わせる。
Δ11=jBl-IAI:34Kcal/'Q
-''.
When W 1 [kg/hr], the cooling capacity Q of the refrigerator can be expressed as follows.

Q1=η−w、Δ11    ・・−・・・・・−・−
1(2)−万、冷媒R−22を用いた家庭用空調機の冷
房時の冷却(房)サイクルの標準使用条件は次のとおり
である。
Q1=η−w, Δ11 ・−・・・・・−・−
1(2)-10,000, the standard operating conditions of the cooling cycle during cooling of a domestic air conditioner using refrigerant R-22 are as follows.

凝縮温度54.4’C’、  蒸発温度7.2℃膨張弁
前温度45.1′c、  吸入ガス温度35r:第4図
は、この冷却サイクルをR−22の圧力−エンタルピー
線図で示したものである。同因ノ点C2と点A2間の断
熱膨張工程を更に続けさせ。
Condensing temperature 54.4'C', evaporation temperature 7.2°C, temperature before expansion valve 45.1'C, suction gas temperature 35r: Figure 4 shows this cooling cycle in the pressure-enthalpy diagram of R-22. It is something that The adiabatic expansion process between point C2 and point A2 of the same cause is further continued.

第3図に示した蒸発工程A1B、間の蒸発温度−212
℃に等しくなる点が第4図の点A3である。
Evaporation step A1B shown in Figure 3, evaporation temperature between -212
The point where the temperature is equal to 0.degree. C. is point A3 in FIG.

一方、第4図のB2c2間の断熱圧縮工程の等混線と点
A3を通って横軸に平行な線との交点を点B3とすると
、蒸発工程A3B3は、第3図に示した蒸発工程AI 
B、と等しい蒸発温度−2λ3tをもつことKなる。こ
のとき2点A3と点B3 の比エンタルピーをそれぞれ
1A5e  ’BSとすると。
On the other hand, if point B3 is the intersection of the isomixture line of the adiabatic compression process between B2c2 in FIG.
B has an evaporation temperature of −2λ3t equal to K. At this time, let us assume that the specific enthalpies at the two points A3 and B3 are each 1A5e 'BS.

’A3中115 (Kcal/kg) 、  I Bs
中149 (Kcal 7kg )である。いま2点B
3と点A5の比エンタルピー差をΔi5とすると。
'A3 middle 115 (Kcal/kg), I Bs
Medium 149 (Kcal 7kg). Now 2 points B
Let Δi5 be the specific enthalpy difference between point A5 and point A5.

Δs s =: tB s  t AM ==:34 
(KCal/h ) ・・・・・”・・(3+であり、
冷却サイクルAs BS C2B2  を具現する圧縮
機の体積効率及び冷媒(R−22)  の押のけ量をそ
れぞれ?3. W3(kg/hr]とすると、冷却サイ
クルA3B3C2D2の冷却能力Q、は次のようKなる
Δs s =: tB s t AM ==: 34
(KCal/h)...”...(3+,
What are the volumetric efficiency and displacement of refrigerant (R-22) of the compressor that implements the cooling cycle As BS C2B2? 3. When W3 (kg/hr) is assumed, the cooling capacity Q of the cooling cycle A3B3C2D2 becomes K as follows.

Q、=η3・W3・Δi5 ・・・・・・・・・・・・
・・・(4)ここで、1’!−12を使用する従来の冷
ji!iの冷却能力Q1と上ae実施例の冷却サイクル
A3B。
Q, = η3・W3・Δi5 ・・・・・・・・・・・・
...(4) Here, 1'! - Conventional cold ji using 12! Cooling capacity Q1 of i and cooling cycle A3B of the above ae embodiment.

C2D2 の冷却能力Q3を比較した場合9式(11と
式(3)から、Δi1=Δl 5 (= 34 Kca
l /m)となっているのでe  Q 1” Q 3と
なるためには。
When comparing the cooling capacity Q3 of C2D2, from equation 9 (11 and equation (3)), Δi1=Δl 5 (= 34 Kca
l /m), so in order to obtain e Q 1” Q 3.

η、W、=ηSWS ・・・・・・・・・・・・・・・
(5)が満足されなければならない。そこで、実施例に
おいてη1=η3となるような圧縮機を具現すれば、冷
媒R−22の押のけZW、が冷媒R−12のそれWlと
なり、Q5=Q、とすることが可能である。
η, W, = ηSWS ・・・・・・・・・・・・・・・
(5) must be satisfied. Therefore, if a compressor is realized in which η1=η3 in the embodiment, the displacement ZW of refrigerant R-22 becomes that of refrigerant R-12 Wl, and it is possible to set Q5=Q. .

次に、従来の空調機と冷!i!庫の最も柳準的な冷却能
力Q2とQ、は、それぞれ2400Kcal/hrと2
00 Kcal /hrと考えられる。すなわち。
Next, conventional air conditioners and cold! i! The most typical cooling capacity Q2 and Q of the warehouse are 2400 Kcal/hr and 2,400 Kcal/hr, respectively.
00 Kcal/hr. Namely.

Q2=2400Kcal/hr、 Q5:=200Kc
al/hr テある。
Q2=2400Kcal/hr, Q5:=200Kc
al/hr There is.

いま、第4図の空調機の冷房サイクルA282C2D2
の押のけ量をW2とし9点A2.  B2  の比エン
タルピーをそれぞれiA□、  L12とすると。
Now, the cooling cycle of the air conditioner shown in Figure 4 is A282C2D2.
Let W2 be the displacement amount of 9 points A2. Let the specific enthalpies of B2 be iA□ and L12, respectively.

Δ12==iB2 1A2中155 115=40Kc
al/kg同様に。
Δ12==iB2 155 in 1A2 115=40Kc
Same as al/kg.

となり、η2=η3とすると、  Q2 = 2400
 Kcal/hrの冷房サイクルA282 C2B2と
QB= 200 Kcal/brの冷却サイクルA3B
3C2D2との必要押のけ量の比は。
So, if η2=η3, then Q2 = 2400
Kcal/hr cooling cycle A282 C2B2 and QB = 200 Kcal/br cooling cycle A3B
What is the ratio of the required displacement with 3C2D2?

w2:w3=so : 8=10 : 1 ・・・・・
・・・・・・・(6)となる。
w2: w3=so: 8=10: 1...
......(6).

なお、これらの冷却能力から決定される2例えば1式(
61の関係が第2図の第1吸入口ωと第2吸入口(至)
の位置関係を決定する1つの設計因子となる。
In addition, 2 determined from these cooling capacities, for example, 1 set (
The relationship of 61 is the first inlet ω and the second inlet (to) in Figure 2.
This is one design factor that determines the positional relationship between the two.

ここで、第4図の2つの冷却サイクルA2B2C2D2
(空調機Gの冷房サイクル)及びA3B3C2D2(冷
蔵庫■の冷却サイクル)と、第1図の基本サイクルを対
比すると1次のような対応関係になる。
Here, the two cooling cycles A2B2C2D2 in FIG.
(Cooling cycle of air conditioner G) and A3B3C2D2 (Cooling cycle of refrigerator 2) are compared with the basic cycle of FIG. 1, resulting in the following linear correspondence.

A2B2 :室内側熱交換器(5)にて冷媒が蒸発する
工程 B2C2:第2吸入管のよシ吸入された冷媒が圧縮機Q
l+にて圧縮される工程 C2D2 :室外側熱交換器(7)にて冷媒が凝縮する
工程 D2A2  :’!電子膨張弁61にて冷媒が断熱膨張
する工程 A3B3  :冷aSの冷却器のにて冷媒が蒸発する工
程 B5C2:第1吸入管■より吸入された冷媒が圧縮機c
!11にて圧縮される工程 C2D2 :室外側熱交換器(7)にて冷媒が凝縮する
工程 D2A、  :電子膨張弁■にて冷媒が断熱膨張する工
程 以上のことから分るように、空調機■と冷′IIL庫■
は圧縮機と凝縮器を共用することによって、それぞれの
冷却サイクルを実現していることになる。
A2B2: Process in which the refrigerant evaporates in the indoor heat exchanger (5) B2C2: The refrigerant sucked through the second suction pipe is transferred to the compressor Q.
Step C2D2 in which the refrigerant is compressed in l+: Step D2A2 in which the refrigerant is condensed in the outdoor heat exchanger (7): '! Step A3B3 in which the refrigerant is adiabatically expanded in the electronic expansion valve 61: Step B5C2 in which the refrigerant evaporates in the cooler of the cooling aS: The refrigerant sucked through the first suction pipe ■ is transferred to the compressor c
! Step C2D2 in which the refrigerant is compressed in step 11: Step D2A in which the refrigerant is condensed in the outdoor heat exchanger (7); Step D2A in which the refrigerant is adiabatically expanded in the electronic expansion valve ■As can be seen from the above, the air conditioner ■ and cold 'IIL storage ■
By sharing the compressor and condenser, each system achieves its own cooling cycle.

上述したそれぞれの冷却サイクルに必要とされる冷媒流
量は、11を子膨張弁(61,■と圧縮機011によっ
て調節される。電子膨張弁(6I、■は1例えば室内側
熱交換器(5)と冷却器いの蒸発温度の情報によって調
節される。
The refrigerant flow rate required for each of the above-mentioned cooling cycles is adjusted by the sub-expansion valve 11 (61, ■) and the compressor 011.The electronic expansion valve (6I, ■ is 1, for example, the indoor heat exchanger (5 ) and the information on the evaporation temperature of the cooler.

圧縮機Q+1による冷媒流量の調節は1次のようになさ
れる。第2図において、ローリングピストン■の外周面
(53a)とシリンダ■の内周面(32a )の接触面
Aがベーン[有]を通過して第1吸入口国に到ルト、ベ
ーン[有]とシリンダ(至)の内周面(52a)とロー
リングピストン(至)の外周面(55a)と接触面Aと
で囲まれるシリンダ内は、第1吸入管ωよシ流入する吸
入カス圧力よシ低いため、吸入弁■が開かれ冷媒が第1
吸入管■よシ第1吸入口ωを通って流入する。このとき
の第1吸入口tsnの圧力PB3は。
The refrigerant flow rate is adjusted by the compressor Q+1 in a first-order manner. In Fig. 2, the contact surface A between the outer circumferential surface (53a) of the rolling piston ■ and the inner circumferential surface (32a) of the cylinder ■ passes through the vane [with] and reaches the first suction port country, and the vane [with] The inside of the cylinder, which is surrounded by the inner circumferential surface (52a) of the cylinder (to), the outer circumferential surface (55a) of the rolling piston (to), and the contact surface A, is affected by the suction gas pressure flowing through the first suction pipe ω. Because the temperature is low, the suction valve ■ is opened and the refrigerant enters the first
It flows from the suction pipe ■ through the first suction port ω. The pressure PB3 at the first suction port tsn at this time is.

第4図の冷Miの冷却サイクルA3B3C2DのB3の
圧力で、PB3中22−/α2である。
The pressure of B3 in the cooling cycle A3B3C2D of cold Mi in FIG. 4 is 22-/α2 in PB3.

ローリングピストン■が更に回転し、第1吸入口ωから
第2吸入口(至)へ向い、接触面Aが第2吸入口(至)
に到ると、空調機■の第2吸入管のを通って冷媒が第2
吸入口■よりシリンダー内に流入する。何故なら、第3
図の空調機■の冷媒サイクルのB2の圧力PB2は、 
 6Jkxf/32であ夛、 pB2>PH1なるため
である。
The rolling piston ■ rotates further, moving from the first suction port ω to the second suction port (toward), and the contact surface A faces the second suction port (toward).
When the refrigerant reaches the second suction pipe of the air conditioner
It flows into the cylinder from the suction port ■. Because the third
The pressure PB2 of B2 in the refrigerant cycle of the air conditioner ■ in the figure is:
This is because with 6Jkxf/32, pB2>PH1.

空麹が不要なるときは、第1の1子膨張弁6及び雷礎弁
艷を共に常時閉路する。このようKすれば、第1図のサ
イクルを冷i2庫用専用の冷却サイクルとして利用でき
、圧縮機の吐出ガス温度を下げることが可能となる。こ
の場合、インバータ制御などによってモータの回転数あ
るいはトルク制御を行えば効塞の高い冷媒サイクルが得
られる。
When empty koji is no longer needed, both the first single-child expansion valve 6 and the thunder base valve are closed at all times. By doing so, the cycle shown in FIG. 1 can be used as a dedicated cooling cycle for the cold i2 storage, and the temperature of the gas discharged from the compressor can be lowered. In this case, if the rotational speed or torque of the motor is controlled by inverter control or the like, a highly effective refrigerant cycle can be obtained.

上述したように、この実施例においては。As mentioned above, in this example.

0)空調機(2)を運転しない場合でも、共用する圧縮
機+211と凝縮器(7)と冷媒R−22によって常時
運転する冷M庫θの冷却サイクルt−構成するので。
0) Even when the air conditioner (2) is not operated, the shared compressor +211, condenser (7), and refrigerant R-22 constitute the cooling cycle t- of the cold storage θ that is constantly operated.

装置としての使用出を高めることができる。It is possible to increase the usability of the device.

(2)冷媒R−22を冷蔵庫の冷媒として使用できるの
で、大気圏外で分解してオゾンを減少させる冷媒R−1
2を使用しなくて済む。
(2) Refrigerant R-22 can be used as a refrigerant in refrigerators, so refrigerant R-1 decomposes outside the atmosphere and reduces ozone.
There is no need to use 2.

(3)  室外に据える空調機aの圧縮機Qυを冷i!
庫■に共用するので、専用の圧縮機を冷M庫(ハ)に取
シ付ける必要がない。このため、その分、冷H,庫■の
内容積を大きくすることができる。
(3) Cool the compressor Qυ of air conditioner a installed outdoors.
Since it is shared with the refrigerator (C), there is no need to install a dedicated compressor in the cold M refrigerator (C). Therefore, the internal volumes of the cold H and refrigerator (2) can be increased accordingly.

(4)  室外に据えつけられる空調機■の圧縮機c2
11を冷′M庫用に共用するので、騒音の大きい圧縮機
を冷蔵庫■に取シ付ける必要がない。このため。
(4) Compressor c2 of the air conditioner installed outdoors
11 is shared for the cold storage, there is no need to attach a noisy compressor to the refrigerator. For this reason.

従来のように、圧縮機の騒音が室内で発生し1人に不快
感を与えるようなことはなくなる。
Unlike in the past, compressor noise no longer occurs indoors and causes discomfort to one person.

(5)冷房時は室外側で凝縮器として機能する室外側熱
交換器(7)を、冷蔵庫■の凝縮器として共用するので
、従来のように、冷ijL庫の#縮器から放出された凝
縮熱が、夏期などの暑いときに、室内の温度を高めると
いったことはなくなる。
(5) During cooling, the outdoor heat exchanger (7), which functions as a condenser on the outdoor side, is also used as a condenser for the refrigerator ■, so that the heat exchanger (7), which functions as a condenser on the outdoor side, is also used as a condenser for the refrigerator ■. Condensed heat will no longer raise the temperature inside the room during hot summer months.

(6)空調機を使用したときは、空調機用の大きな熱交
換器!51. +71を利用できるので、冷蔵庫の冷却
効果を高めることができる。
(6) When using an air conditioner, use a large heat exchanger for the air conditioner! 51. Since +71 can be used, the cooling effect of the refrigerator can be increased.

なお、上聞の実施例では、密閉形回転圧縮機c211に
第1吸入管■と第2吸入管■を設けたものを示したが、
圧縮機なりの代りに従来の空調機に用いられる1つの吸
入管を有するもの、すなわち標準的な密閉形回転式圧縮
機illと圧カポンプ卿及び逆止弁嘔を用いて構成する
ことができる。第5図に示す第2実施例がそれである。
In addition, in the above embodiment, the hermetic rotary compressor c211 is provided with the first suction pipe (■) and the second suction pipe (■), but
Instead of a compressor, it can be constructed using a single suction pipe used in conventional air conditioners, ie, a standard hermetic rotary compressor, a pressure pump, and a check valve. This is the second embodiment shown in FIG.

いま、冷蔵庫■の冷却器■よシ流れてくる圧力PB3(
:2.2−・f/z2)の冷媒を圧力ポンプ14DKよ
って圧力PB2 (= s、s−・f 7cm2)以上
にポンプアップすると、逆止弁りが開き、冷蔵庫■の冷
媒が空調機■の冷媒と共に吸入v(2)を通って標章密
閉形回転圧縮機(1)に吸入される。
Now, the pressure PB3 (
:2.2-・f/z2) is pumped up to a pressure of PB2 (= s, s-・f 7cm2) or higher using the pressure pump 14DK, the check valve opens and the refrigerant in the refrigerator is transferred to the air conditioner. The refrigerant is drawn into the hermetic rotary compressor (1) through the suction v (2).

第6図は、第3実施例を示す。これは、夜間など、空調
機■の空調が不要になるとき、冷蔵庫に必要とこれる冷
却能力(エネルギー)以外の冷却能力(エネルギー)を
ある媒体に蓄積(例えば。
FIG. 6 shows a third embodiment. This means that when the air conditioner's air conditioning is no longer needed, such as at night, cooling capacity (energy) other than that required by the refrigerator is stored in a certain medium (for example.

水を氷にするなど)しておき、必要に応じてこの蓄積エ
ネルギーを冷蔵庫の庫内あるいは部屋空間に放出するよ
うにしたものである。第6図において、N子膨張弁(6
)は完全に閉路され、ii子膨張弁f441は、蓄氷器
(43によって製氷されるよう冷媒t−詞節する。電磁
弁卿は開路、を磁弁■は閉路とする。
The stored energy is then released into the refrigerator or into the room as needed. In Fig. 6, the N-child expansion valve (6
) is completely closed, and the secondary expansion valve F441 uses the refrigerant so that ice is made by the ice storage device (43).

このようにすると、製氷された氷は冷jll庫の庫内を
冷却するのに用いることもできるし、氷によって冷風を
作力、これを室内に放出して室内空調に使用することも
できる。
In this way, the ice made can be used to cool the inside of the refrigerator, or the ice can be used to create cold air, which is then discharged into the room and used for indoor air conditioning.

第6図に於て9本考案の密閉形回転圧縮機!211を用
いたが、同じ効果を第5図の標章密閉形回転圧縮機(1
)、圧力ポンプ+411及び逆止弁Q3を用いた回路に
於ても実現可能である。これを第4実施例として第7図
に示す。即ち、圧カボンブI及び逆止弁143は電磁弁
(76)を介し、配管(61)によってバイパス(短絡
)されている。これは第6図に於て。
Figure 6 shows nine hermetic rotary compressors! 211 was used, but the same effect can be obtained by using the hermetic rotary compressor (1
), it can also be realized in a circuit using a pressure pump +411 and a check valve Q3. This is shown in FIG. 7 as a fourth embodiment. That is, the pressure bomb I and the check valve 143 are bypassed (short-circuited) by the piping (61) via the electromagnetic valve (76). This is shown in Figure 6.

冷i!Lffi(から帰還する冷媒をよシ多く吸収する
ために、を磁弁卿を開略し、第2吸入管のへも冷媒を流
す作用に匹敵する。ただし、第7図においては。
Cold i! In order to absorb more refrigerant returning from the Lffi, the magnetic valve is opened and the refrigerant is also allowed to flow into the second suction pipe. However, in FIG.

通常圧カボンブIは圧縮機0)より小ζい押しのけ量の
ポンプを用いるので、より多くの冷媒を冷蔵庫側へ流し
得る最大冷媒量となってしまう。このため、押しのけ量
のよシ大きい圧縮機(1)を効果的に使用するため、圧
カボンプ卿と逆止弁f43をバイパスする必要がある。
Since the normal pressure bomb I uses a pump with a smaller displacement than the compressor 0), the maximum amount of refrigerant that can flow more refrigerant to the refrigerator side becomes the maximum amount. Therefore, in order to effectively use the compressor (1) with a large displacement, it is necessary to bypass the pressure pump and the check valve f43.

以上のように構成し、圧カボンブ卿を運転せず。Configure as above and do not operate the pressure bomb.

圧縮機(1)のみを運転することKよって、第7図は第
5図と同じ効果を有することになる。
By operating only the compressor (1), FIG. 7 has the same effect as FIG. 5.

この場合、第6図と同様電子膨張弁(6)及び電磁弁■
は閉路されている。
In this case, the electronic expansion valve (6) and the solenoid valve ■
is closed.

ところで、冷R庫としての使用条件をよシ精度よく管理
するためと、ドレン水の処理の目的から。
By the way, this is for the purpose of precisely managing the usage conditions as a cold storage and for the purpose of treating drain water.

冷M庫■に専用の凝縮器を用いる場合は、第8図のごと
く構庶することができる。これを第5実施例とする。図
中、りは冷I!庫専用凝縮器又はキャビネット・パイプ
、畔はドレン水蒸発用コンデンサである。
If a dedicated condenser is used for the cold storage (2), it can be constructed as shown in FIG. This will be referred to as the fifth embodiment. In the picture, Ri is cold I! The storage condenser or cabinet pipe, and the ridge are the condensers for drain water evaporation.

冷M庫一体形空−機の利点は、大きく熱交換面積を有す
る空調機の高温側熱交換器を冷蔵庫の凝縮器として共用
でき、冷蔵庫冷却能力を高め効嵩よい冷却運転を実現す
ることにある。しかしながら、熱交換面積が大きいがた
めに高温側熱交換器出口の温度が低く成シ過ぎると、上
記第8図の冷蔵庫キャビネット・パイプに及びドレイン
蒸発用サブコンデンサ1471の冷媒温度が低くなシキ
ャビネット・バイグーによる冷xiキャビネット表面の
島付防止効果が低下したシ、ドレインの蒸発効果が低下
することKなる。第8図の冷房モードでは。
The advantage of the integrated cooling and M storage air machine is that the high-temperature side heat exchanger of the air conditioner, which has a large heat exchange area, can be used as the refrigerator condenser, increasing the refrigerator cooling capacity and realizing efficient cooling operation. be. However, because the heat exchange area is large, if the temperature at the outlet of the high-temperature side heat exchanger becomes too low, the temperature of the refrigerant in the drain evaporation sub-condenser 1471 will reach the refrigerator cabinet pipe shown in FIG. - The effect of preventing islands from forming on the surface of the cold cabinet due to Vigoo is reduced, and the evaporation effect of the drain is reduced. In the cooling mode shown in Figure 8.

室外側熱又換器(71が高温側熱交換器となるので。Outdoor side heat exchanger (71 is the high temperature side heat exchanger.

室外温度が低下するときなど室外側熱交換器(7)の出
口温度が低下する。この点を解決するようセした第6実
施例が第1図である。即ち、第1図においては圧縮機i
llの吐出管(3)から電磁弁Q!1を介し配?(62
)によってドレイン蒸発用サブコンデンサ1471の入
口に接続されている。室外側熱交換器(7)の出口温度
が低下しドレイン蒸発用サブコンデンサ+49の入口温
度が低下し過ぎると、電磁弁(79)が開かれドレイン
蒸発用サブコンデンサ14?1の入口温度が所定温度以
上になると、電磁弁(79)が開路される。このように
すると、冷tyhの電子膨張弁■前の温度をなるべく低
くおさえながら(冷蔵庫冷却性能を保持しながら)、キ
ャビネット・パイプに及びドレイン蒸発用サブコンデン
サ靜の温度を有効な温度に維持することができる。
When the outdoor temperature decreases, the outlet temperature of the outdoor heat exchanger (7) decreases. A sixth embodiment designed to solve this problem is shown in FIG. 1. That is, in FIG. 1, compressor i
From the discharge pipe (3) of ll to the solenoid valve Q! Intermediate 1? (62
) is connected to the inlet of the sub-condenser 1471 for drain evaporation. When the outlet temperature of the outdoor heat exchanger (7) drops and the inlet temperature of the drain evaporation sub-condenser +49 drops too much, the solenoid valve (79) is opened and the inlet temperature of the drain evaporation sub-condenser 14-1 is set to a predetermined value. When the temperature exceeds the temperature, the solenoid valve (79) is opened. In this way, while keeping the temperature in front of the electronic expansion valve as low as possible (while maintaining refrigerator cooling performance), the temperature in the cabinet pipe and drain evaporation sub-condenser can be maintained at an effective temperature. be able to.

ところで、これまでの実施例においては、切換回路とし
て四方弁@を用いた実施例を説明してきたが、四方弁@
は一般にその本体を金属管で構成し、接続口(24a)
、 (24b)、 (24c)及び(24d)は。
By the way, in the examples so far, an example using a four-way valve @ was explained as a switching circuit, but a four-way valve @
Generally, the main body is composed of a metal tube, and the connection port (24a)
, (24b), (24c) and (24d).

近接して作られ、冷房あるいは暖房時の切換えに応じ内
部のスライダーを電磁的に移動させるようになっている
。このため、金属管内で高温ガスと低温ガスが近接して
流れることによる熱的漏洩(熱損失)があり、容積的に
小ζい装置として構成されているため、運転中の圧力損
失も大きい。
They are made close to each other, and an internal slider is moved electromagnetically in response to switching between cooling and heating. For this reason, there is thermal leakage (heat loss) due to the high temperature gas and low temperature gas flowing close to each other in the metal tube, and since the device is configured as a small volumetric device, the pressure loss during operation is also large.

そこで、四方弁■の代シに逆止弁ブリッジを用いた実施
例を次に示す。
Therefore, an embodiment in which a check valve bridge is used in place of the four-way valve (2) will be shown below.

まず前記第5図に示した第2実施例において。First, in the second embodiment shown in FIG.

四方弁(財)の代りに逆止弁ブリッジωを用いた第7実
施例を第10図として次に示す。
A seventh embodiment in which a check valve bridge ω is used in place of the four-way valve is shown in FIG. 10 below.

第10図において、&Iは4個の逆止弁(121)。In FIG. 10, &I are four check valves (121).

(122)、 (125)及び(124)からなるブリ
ッジ回路である。相対向する逆止弁(121)及び(1
22)あるいは逆止弁(125)及び(124)は、そ
れぞれ互に同一極性(方向)を有し、4個の接続点(5
0a)。
This is a bridge circuit consisting of (122), (125) and (124). Opposed check valves (121) and (1
22) or the check valves (125) and (124) each have the same polarity (direction) and have four connection points (5
0a).

(50b)、 (50C)及び(sod)によって橋(
ブリッジ)状に構成されている。従来の空調機(第2図
)の如く1本発明の圧縮機(1)の吐出管(3)が四方
弁(4)を介し室外熱交換器(7)に導びかれている。
(50b), (50C) and (sod) by the bridge (
It is structured like a bridge. As in the conventional air conditioner (FIG. 2), the discharge pipe (3) of the compressor (1) of the present invention is led to an outdoor heat exchanger (7) via a four-way valve (4).

室外熱交換器(7)の他端はブリッジ端(50a)に接
続され、ブリッジの他端(50C)は室内熱交換器(5
)に接続されている。ブリッジの中間点(sob)はT
字管■を介して空調機要素■の電子膨張弁tel及び冷
蔵庫要素■の毛細管(12へと導ひかれ、他のブリッジ
中間点(sod)は、膨張弁(6)の他端へと接続され
ている。更に、室内熱交換器(5)の他端は四方弁(4
)を介して圧縮機(11の吸入管へ接続されている。
The other end of the outdoor heat exchanger (7) is connected to the bridge end (50a), and the other end of the bridge (50C) is connected to the indoor heat exchanger (50a).
)It is connected to the. The midpoint (sob) of the bridge is T
The electronic expansion valve tel of the air conditioner element ■ is led through the double tube ■ to the capillary tube (12) of the refrigerator element ■, and the other bridge midpoint (sod) is connected to the other end of the expansion valve (6). Furthermore, the other end of the indoor heat exchanger (5) is connected to a four-way valve (4).
) to the suction pipe of the compressor (11).

一方、冷蔵庫要素■の1つである毛細管(13の他端は
、冷却器a3に接続されると共に、この冷却器α3の他
端は圧力ポンプIの吸入側へ導ひかれ、この吐出側は逆
止弁りを介して圧縮機+11の吸入管(2)へと接続さ
れている。
On the other hand, the other end of the capillary tube (13), which is one of the refrigerator elements (2), is connected to the cooler a3, and the other end of this cooler α3 is led to the suction side of the pressure pump I, and the discharge side is reversed. It is connected to the suction pipe (2) of compressor +11 via a stop valve.

この逆止弁ブリッジωは9例えば冷房運転時逆止弁ブリ
ッジψに冷媒が流れるのは、逆止弁(121)に高温液
、逆止弁(122)に低温液であり、相対する逆止弁に
冷媒が流れる。このことは、逆止弁ブリッジωに於ける
熱的損失が四方弁@より小さくする効果がある。又、4
つの逆止弁は圧力損失を小さくする丸めに、空調機に用
いられる配管サイズと同一のものを用いることが可能で
ある。又。
This check valve bridge ω is 9. For example, during cooling operation, the refrigerant flows through the check valve bridge ψ as high temperature liquid in the check valve (121) and low temperature liquid in the check valve (122). Refrigerant flows through the valve. This has the effect of making the thermal loss in the check valve bridge ω smaller than that in the four-way valve @. Also, 4
The two check valves can be rounded to reduce pressure loss, and can be the same size as the piping used in air conditioners. or.

現在市販されている四方弁より4つの逆止弁を用る逆止
弁ブリッジの方が安価に構成できることのみならず、電
研力を必要としないので熱的発生源もないばかりか、消
費電力の低減にも寄与することになる。
A check valve bridge that uses four check valves is not only cheaper to construct than four-way valves currently on the market, but it also requires no electrical grinding force, so there is no heat generation source, and it also consumes less power. This will also contribute to the reduction of

ところで2本発明は、従来の空調機の冷却回路を共用し
、同一の冷媒を用いて冷蔵の冷却も行うものであるから
、従来の空調機の構成部品が空調機だけのものでなく、
冷H1k冷却のためKも必要となっている。一方9本発
明の冷M庫は、空調機の一部を共用することから、従来
冷ffi*に必要とされた部品を冷蔵庫本体の中に収納
されていない。
By the way, in the present invention, the cooling circuit of the conventional air conditioner is shared and the same refrigerant is used to cool the refrigerator, so the component parts of the conventional air conditioner are not only the air conditioner.
K is also required for cold H1k cooling. On the other hand, since the cold M refrigerator of the present invention shares a part of the air conditioner, the parts required for the conventional cold ffi* are not housed in the refrigerator body.

そこで1本発明の説明を容易にするために、空調機のた
めにだけ使用される構成部品を空調機要素。
Therefore, in order to facilitate the explanation of the present invention, components used only for air conditioners will be referred to as air conditioner elements.

室内に置かれる冷g庫本体の内に収納される構成部品を
冷蔵庫要素と呼ぶことにする。第1a図で。
The components stored in the refrigerator body placed indoors will be referred to as refrigerator elements. In Figure 1a.

破線で囲まれた■が空調機要素、■が冷WL庫要素であ
る。
■ surrounded by a broken line is an air conditioner element, and ■ is a cold WL storage element.

同一の冷媒を用いて空調機と冷1LJIEを構成する場
合、空調機の低温側圧力よシ冷賊軍の低温側圧力の方が
低い。このため、冷M庫要素■の冷却器fi3から戻っ
てくる冷媒圧力を、空調機の低温側圧力まで千カボンブ
帽1によって高める。逆止弁14zは。
When configuring an air conditioner and a cold 1LJIE using the same refrigerant, the low temperature side pressure of the refrigerant army is lower than the low temperature side pressure of the air conditioner. For this reason, the pressure of the refrigerant returning from the cooler fi3 of the cold storage element (2) is increased to the pressure on the low temperature side of the air conditioner by the 1,000-pound bomb cap 1. The check valve 14z.

空調機要!!■から戻ってくる低怒側冷媒が圧力ポンプ
姐1へ逆流しないために設けられている。
Air conditioner required! ! This is provided to prevent the low-temperature side refrigerant returning from (1) from flowing back to the pressure pump (2).

寧て、空調機の如く冷房及び暖房を行う機器と冷却のみ
を必要とする機器を組み合せる場合、空調機の冷暖房に
関係なく、冷xi要素静の毛細管a’aの入口、即ちT
字管四へ高温高圧カスが供給される必要がある。
On the contrary, when combining a device that performs cooling and heating such as an air conditioner with a device that only requires cooling, the entrance of the capillary tube a'a of the cooling element xi, that is, T
It is necessary to supply high-temperature, high-pressure waste to the four-way pipe.

空調機要素■が冷房運転を必要とするとき、四方弁(4
)は実線の回路をと)、圧縮機(1)の高温冷媒ガスは
吐出管(3)から4a→4b−室外側熱又換器(7)へ
導ひかれる。即ち、冷!運転のとき、室外側熱交換器(
))が高温側熱交換器となる。室外熱交換器(7)から
逆止弁ブリッジωの接続点(SOa)に導ひかれた高温
ガスは逆止弁(124)の方向へは行けず。
When the air conditioner element ■ requires cooling operation, the four-way valve (4
) is a solid line circuit), the high temperature refrigerant gas of the compressor (1) is guided from the discharge pipe (3) to the outdoor heat exchanger (7) from 4a to 4b. In other words, cold! During operation, the outdoor heat exchanger (
)) becomes the high temperature side heat exchanger. The high-temperature gas led from the outdoor heat exchanger (7) to the connection point (SOa) of the check valve bridge ω cannot go toward the check valve (124).

逆止弁(121)へ向う。又、逆止弁(121)のあと
高温ガスは逆止弁(125)によって閉じられているた
め接続点(sob)へ向い、高温ガスはT字管(125
)へ導ひかれることになる。T字管(125)のあとの
冷蔵庫要素のへ向う高温ガスは9毛細’1+121→冷
却器α3→圧カポンブ帽1→逆止弁ゆ→圧縮機+11へ
と流れ、従来の冷Raの第10図で説明した如く、冷却
回路を形成し冷蔵庫要素が冷蔵庫として作用することに
なる。一方、T字管(125)のあと空調機要素■へ向
う高温ガスは、膨張弁(61を通過し、低圧液体冷媒と
なシ逆止弁ブリッジ(50d)へ向う。
Head to the check valve (121). Also, after the check valve (121), the high temperature gas is closed by the check valve (125), so it goes to the connection point (sob), and the high temperature gas flows through the T-shaped pipe (125).
). The high-temperature gas heading to the refrigerator element after the T-tube (125) flows from 9 capillary '1 + 121 → cooler α 3 → pressure cap 1 → check valve yu → compressor + 11, and passes through the conventional cold Ra 10 As explained in the figure, a cooling circuit is formed so that the refrigerator element acts as a refrigerator. On the other hand, the high-temperature gas heading to the air conditioner element (2) after the T-tube (125) passes through the expansion valve (61) and becomes a low-pressure liquid refrigerant and heads to the check valve bridge (50d).

ここで、低圧冷媒は逆止弁(+24)の接続点(50a
)側が高圧側なるため、逆止弁(124)へは行かず逆
止弁(122)を通って室内慈父換器(5)へ導びかれ
Here, the low pressure refrigerant is connected to the connection point (50a) of the check valve (+24).
) side is the high pressure side, so it does not go to the check valve (124), but instead passes through the check valve (122) and is guided to the indoor ventilation exchanger (5).

そのあと四方弁(4)の4d→4C→圧縮機(1)の吸
入管(2)へと流れる。即ち、従来の空調機と同様冷房
運転が行なわれていることになる。
After that, it flows from 4d to 4C of the four-way valve (4) to the suction pipe (2) of the compressor (1). In other words, cooling operation is performed in the same way as a conventional air conditioner.

次に、空調機要素のが暖房運転を必要とするとき、四方
弁(4)は破線の回路をとシ、高温冷媒カスは圧縮機(
1)の吐出管(3)から4a→4d→室内側熱交換器(
5)へ導ひかれる。即ち、暖房運転のとき、室内側熱又
換器(5)が高温側熱交換器となる。室内側熱交換器(
5シから逆止弁ブリッジωの接続点(50c)K導びか
れ高温高圧ガスは、逆止弁(122)の方向へは行けず
、逆止弁(123)へ向う。又、逆止弁(125)のあ
と高温高圧ガスは逆止弁(121)Kよって閉じられて
いるため接続点(sob)へ向い、高温ガスはT字管(
125)へ導ひかれることKなる。即ち、空調機要素ω
が暖房運転のときも冷房運転のときと同様に高温高圧ガ
スが、冷蔵庫要素■へ供給されることが分る。T字管(
125)のあと空調機要素■へ向う高温高圧ガスは、膨
張弁(6)を通過し低圧液体冷媒となり逆止弁ブリッジ
(50d)へ向う。
Next, when the air conditioner elements require heating operation, the four-way valve (4) closes the circuit shown by the broken line, and the high-temperature refrigerant scum is transferred to the compressor (
1) from the discharge pipe (3) to 4a → 4d → indoor heat exchanger (
5). That is, during heating operation, the indoor heat exchanger (5) becomes a high temperature side heat exchanger. Indoor heat exchanger (
The high-temperature, high-pressure gas guided from No. 5 to the connection point (50c) K of the check valve bridge ω does not go toward the check valve (122), but toward the check valve (123). Also, after the check valve (125), the high-temperature, high-pressure gas is closed by the check valve (121) K, so it goes to the connection point (sob), and the high-temperature gas flows through the T-shaped pipe (
125). That is, the air conditioner element ω
It can be seen that during heating operation, high-temperature, high-pressure gas is supplied to refrigerator element (2) in the same way as during cooling operation. T-tube (
After 125), the high-temperature, high-pressure gas heading to the air conditioner element (2) passes through the expansion valve (6), becomes a low-pressure liquid refrigerant, and heads to the check valve bridge (50d).

ここで、低圧冷媒は逆止弁(122)の接続点(50d
)側が高圧側なるため、逆止弁(122)へは行かず逆
止弁(124)を通って室外熱交換器(7)へ導ひかれ
Here, the low pressure refrigerant is connected to the connection point (50d) of the check valve (122).
) side is the high pressure side, so it does not go to the check valve (122) but is guided to the outdoor heat exchanger (7) through the check valve (124).

そのあと四方弁(4)の4b→4C→圧縮機(1)の吸
入管(2)へと流れる。即ち、暖房運転のときも従来の
空調機と同様、暖房運転が行なわれることが分る。
After that, it flows from 4b of the four-way valve (4) to 4C to the suction pipe (2) of the compressor (1). That is, it can be seen that even during heating operation, heating operation is performed in the same way as in the conventional air conditioner.

なお、上記実施例では圧縮機(1)及び圧カボンブIを
共に用いて空調機要素■及び冷蔵庫要素■を運転する場
合を示したが、空調機要素■の運転が不要となるとき第
11図に示す第8実施例の如く構成すれば、冷N庫要素
■を効率よく運転できる。
In the above embodiment, the compressor (1) and the pressure bomb I are used together to operate the air conditioner element (2) and the refrigerator element (2), but when the air conditioner element (2) does not need to be operated If configured as shown in the eighth embodiment, the cold N storage element (2) can be operated efficiently.

即ち、圧カボンブ1111と逆止弁9zの間から電磁弁
■を介して圧縮機illの吐出管(3)へ配管(6o)
を接続し。
That is, a pipe (6o) is connected from between the pressure bomb 1111 and the check valve 9z to the discharge pipe (3) of the compressor ill via the solenoid valve (■).
Connect.

この吐出管(3)との接続点の間に電磁弁−を設ける。A solenoid valve is provided between the connection point with this discharge pipe (3).

又、四方弁(4)の4cから圧縮機(1)の吸入管(2
)へ接続されている配管の途中に電磁弁■を設ける。こ
のように構成した場合、圧縮機(1)を用いることなく
圧力ポンプ卿のみで、冷ff1Ji[要素■を冷却する
ことができる。もちろん、圧縮機(1)のみを用いて冷
蔵庫要素のを冷却することも可能であるが、押しのけ量
の大きな圧縮機を用いて、小さな冷却負荷を冷却するの
は一般に9jJ高が悪い。故に、冷蔵庫要素の冷却の場
合、小さな押しのけ量の圧力ポンプのみを運転し、電磁
弁ω、O及び膿を閉じ。
Also, connect the suction pipe (2) of the compressor (1) from 4c of the four-way valve (4).
) Install a solenoid valve in the middle of the piping connected to ). With this configuration, the cold ff1Ji [element 2] can be cooled only by the pressure pump without using the compressor (1). Of course, it is also possible to cool the refrigerator element using only the compressor (1), but it is generally inefficient to cool a small cooling load using a compressor with a large displacement. Therefore, in the case of cooling the refrigerator element, only the pressure pump with small displacement is operated, and the solenoid valves ω, O and pus are closed.

電磁弁−を開くことによって冷蔵Jk要素のみが冷却さ
れることが分る。本発明の回路を用い圧カボンブを運転
のみを運転すると、高温側熱交換器(7)の放熱面積が
従来の冷M&で使用されてい友ワイヤ・コンデンサaυ
に比しはるかに大きいため、室外の温度が43℃という
真夏時でも、冷媒がR−22の場合、高温側熱交換器(
7)の飽和絶対圧力は約18 #/as2absであシ
、一方冷却器+11)蒸発温度が一30℃とするとその
飽和絶対圧力は約3−/>2absであることから、圧
力ポンプの圧縮比は約6となり、従来R−12で冷R庫
を冷却するのに用いている圧m機の圧縮比約10よりも
小さく。
It can be seen that by opening the solenoid valve only the refrigeration Jk element is cooled. When the circuit of the present invention is used to operate the pressurized bomb only, the heat dissipation area of the high temperature side heat exchanger (7) is reduced compared to that used in the conventional cold M&.
Because it is much larger than the heat exchanger (
The saturated absolute pressure of 7) is about 18 #/as2abs, while the saturated absolute pressure of cooler + 11) is about 3-/>2abs when the evaporation temperature is 130°C, so the compression ratio of the pressure pump is is approximately 6, which is smaller than the compression ratio of approximately 10 of the conventional R-12 compressor used to cool the refrigerator.

圧力ポンプの信頼性及び寿命向上という観点からも有利
であると言える。
This can be said to be advantageous from the viewpoint of improving the reliability and life of the pressure pump.

次に、空調機要素の運転が不要なることは上記と同様で
あるが、冷1m要素の冷却能力が大きく必要なる場合上
記と例とは逆に、圧力ポンプ帽)を停止させ圧縮機(1
)のみを運転して冷蔵庫要素■を冷却する第1実施例が
第12図に示しである。aち、圧力ポンプ1411の吸
入側配管から電磁弁−を介して逆止弁りと圧縮機+11
の吸入管(2)の間へ接続する配管(61)を設ける。
Next, it is the same as above that operation of the air conditioner element is not required, but when a large cooling capacity of the cold 1m element is required, contrary to the above and example, the pressure pump cap) is stopped and the compressor (1m
) is operated to cool the refrigerator element (2), as shown in FIG. 12. a, from the suction side piping of the pressure pump 1411 to the check valve and the compressor +11 via the solenoid valve -.
A pipe (61) connecting between the suction pipes (2) is provided.

電磁弁ωは前記実施例と同じく、空調機要素へ冷媒が循
環しないようにするためのものである。このように大き
な押しのけ量の圧縮機(鳳)を冷[庫要素■の冷却に用
いると。
As in the previous embodiment, the solenoid valve ω is for preventing refrigerant from circulating to the air conditioner elements. When a compressor with such a large displacement is used to cool the refrigerator element (■).

大きな冷蔵庫容積を有する冷′R庫にも適用できるばか
りでなく、短時間に冷却をしたいという急速冷却又は急
速冷凍も可能となる。
Not only can it be applied to refrigerators with a large refrigerator capacity, but also rapid cooling or rapid freezing is possible when cooling is desired in a short period of time.

一方、冷蔵鳳要素■の運転が不要なるとき、第13図に
示す第10実施例のごとく構成することによって、圧力
ポンプを空調機要素■の冷房又は暖房に寄与させること
が可能となる。即ち、第15図に更に[8弁aηを介し
四方弁(4)の4dと圧力ポンプ卿の吸入側を配管(6
2)にて接続する。又。
On the other hand, when the operation of the refrigerator element (2) is unnecessary, by configuring it as in the tenth embodiment shown in FIG. 13, it becomes possible to make the pressure pump contribute to cooling or heating the air conditioner element (2). That is, in Fig. 15, the piping (6) is further connected to the suction side of the four-way valve (4) and the pressure pump via the
2) Connect. or.

T字管■と毛細管α2の間KW電磁弁Sを設け、冷媒が
冷′R尾要素へ移動しないように構成しである。
A KW electromagnetic valve S is provided between the T-shaped tube (2) and the capillary tube (α2) to prevent the refrigerant from moving to the refrigeration tail element.

即ち、冷蔵庫要素の運転が不要なるとき、圧縮機+11
と圧力ポンプlをz動的に運転し、空調機要素の冷房又
は暖房能力を高めるようにした。この場合、電磁弁ω、
(2)、卿及び147+は開き、電磁弁QJ及び咽は閉
路である。冷房運転の場合を例にとってその動作を説明
すると、低圧側黙契換器となる室内側熱交換器(5)か
ら帰ってくる冷媒は四方弁(4)の4dを通り1通常の
サイクルの如く圧縮機illへ戻る。同時に室内側熱交
換器(51から帰ってくる冷媒は、配管(62)を通汎
圧カポンプ(7)→配管(61)−四方弁(4)へと流
れ、圧縮機(11と並列運転する。
That is, when the refrigerator element does not need to be operated, the compressor +11
and the pressure pump l were operated dynamically to increase the cooling or heating capacity of the air conditioner element. In this case, the solenoid valve ω,
(2), Sir and 147+ are open, and solenoid valve QJ and throat are closed. To explain the operation using the case of cooling operation as an example, the refrigerant returning from the indoor heat exchanger (5), which is a silent exchanger on the low pressure side, passes through 4d of the four-way valve (4) and is compressed as in a normal cycle. Return to machine ill. At the same time, the refrigerant returning from the indoor heat exchanger (51) flows through the pipe (62) to the general pressure pump (7) → pipe (61) - four-way valve (4), and is operated in parallel with the compressor (11). .

上記第10図〜第13図に示す実施例の冷蔵・空調装置
は圧縮機と四方弁と室外熱交換器と減圧装置と室内熱交
換器とを有する冷媒回路、前記室外熱交換器と前記室内
熱交換器に入力端が接続され、前記減圧装置に出力端が
接続された逆止弁からなるブリッジ整流回路、前記四方
弁と前P室内熱交換器と前記減圧装置とからなる空調機
要素に並列に設けられ毛細管と蒸発器とからなる冷蔵庫
要素を備え。
The refrigeration/air conditioning system of the embodiment shown in FIGS. 10 to 13 has a refrigerant circuit including a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, the outdoor heat exchanger and the indoor heat exchanger. A bridge rectifier circuit consisting of a check valve whose input end is connected to the heat exchanger and whose output end is connected to the pressure reducing device, an air conditioner element consisting of the four-way valve, the front P indoor heat exchanger, and the pressure reducing device. Equipped with a refrigerator element consisting of a capillary tube and an evaporator arranged in parallel.

冷蔵・冷房時前記圧縮機にて圧縮された冷媒は前記室外
熱交換器にて凝縮した後前記空調機要素と前記冷蔵庫要
素に分流しそれぞれの要素にて蒸発後合流し前記圧縮機
に戻る回路を形成し。
During refrigeration/cooling, the refrigerant compressed by the compressor is condensed in the outdoor heat exchanger and then divided into the air conditioner element and the refrigerator element, evaporated in each element, and then merged and returned to the compressor. form.

冷蔵・暖房時前記圧縮機にて圧縮された冷媒は前記室内
熱交換器にて凝縮した後前記冷ffi庫要素と前記減圧
装置に分流しこの減圧装置に向う冷媒は減圧後前記室外
熱交換器にて蒸発し前記冷]!庫要素で蒸発した冷媒と
合流して前記圧縮機に戻る回路を形成した構成によシ空
調機要素の冷房及び暖房運転に拘らず冷蔵庫要素を冷却
できる効果を奏する。
During refrigeration/heating, the refrigerant compressed by the compressor is condensed in the indoor heat exchanger and then divided into the cold ffi storage element and the pressure reducing device, and the refrigerant heading to this pressure reducing device is depressurized and transferred to the outdoor heat exchanger. evaporated and cooled]! The configuration in which a circuit is formed in which the refrigerant evaporated in the refrigerator element joins and returns to the compressor has the effect that the refrigerator element can be cooled regardless of whether the air conditioner element is in cooling or heating operation.

以上、逆止弁ブリッジωを冷H&一体形空気調和機に用
いる場合について説明したが、冷房及び暖房の可逆運転
する第1空調サイクルと一方向(即ち、冷房又は暖房)
運転のみを行う第2空調サイクルを結合するシステムに
於て、逆止弁ブリッジが有効である。
The case where the check valve bridge ω is used in a cooling H&integrated air conditioner has been described above.
A check valve bridge is useful in systems that combine a second air conditioning cycle that only operates.

第14図にその実施例の回路構成図を示す。FIG. 14 shows a circuit configuration diagram of this embodiment.

第1空調サイクルは、冷暖両用回#8.第2空調サイク
ルとして温蔵庫の放熱器(80)が適用されている。放
熱器(80)の一端は、 圧縮機(1)の吐出管(3)
と四方弁(4)の接続口(4a)との中間点に接続され
、放熱器(80)の他端は逆止弁ブリッジωの接続口(
sob)と電子膨張弁(61の中間点に接続されている
。温蔵庫の放熱器(80)は、 圧縮機(11の吐出ガ
ス金堂は高温になりタオルなどを温めるようになってい
る。第1空調サイクルが冷FFi!1転のとき。
The first air conditioning cycle is the cooling/heating cycle #8. A heat radiator (80) of a hot storage is used as the second air conditioning cycle. One end of the radiator (80) is connected to the discharge pipe (3) of the compressor (1).
and the connection port (4a) of the four-way valve (4), and the other end of the radiator (80) is connected to the connection port (4a) of the check valve bridge ω.
sob) and the electronic expansion valve (61. When the first air conditioning cycle is cold FFi!1 turn.

高温冷媒は、室外側慈父換器(7)→逆止弁121→電
子膨張弁(6:→へと流れる。一方第29調サイクルを
通る高温冷媒も、放熱器(80)→電子膨張弁fi+へ
と流れ、第1空調サイクルの高温冷媒と合流し。
The high-temperature refrigerant flows from the outdoor ventilation exchanger (7) to the check valve 121 to the electronic expansion valve (6:).On the other hand, the high-temperature refrigerant passing through the 29th adjustment cycle also flows from the radiator (80) to the electronic expansion valve. fi+ and joins the high temperature refrigerant of the first air conditioning cycle.

第1空調サイクルと第2空調サイクルとが矛盾なく運転
されることがわかる。
It can be seen that the first air conditioning cycle and the second air conditioning cycle are operated without contradiction.

更に、第1窒調サイクルが暖房運転なるとき。Furthermore, when the first nitrogen adjustment cycle is a heating operation.

高温冷媒は室内側熱交換器(5)→接続点(5OC)→
逆止弁O→接続点(5ob)→電子膨張弁(6)へと流
れ。
High-temperature refrigerant is transferred to the indoor heat exchanger (5) → connection point (5OC) →
Flows from check valve O → connection point (5ob) → electronic expansion valve (6).

mH,jkからくる高温冷媒が前記と同様電子膨張弁(
61前で合流することによシ第1空調サイクルとしての
暖房機と第2空調サイクルとしての温蔵庫が共に運転可
能となる。
The high-temperature refrigerant coming from mH, jk flows through the electronic expansion valve (
By merging before 61, both the heater as the first air conditioning cycle and the hot storage as the second air conditioning cycle can be operated.

第14図に示す実施例の温蔵・空調装置は、圧縮機と四
方弁と室外熱交換器と減圧装置と室内熱交換器とを有す
る冷媒回路、前記室外熱交換器と前記室内熱交換器に入
力端が接続され、前記減圧装置に出力端が接続された逆
止弁からなるブリッジ整流回路、温蔵庫用放熱器を備え
The heating/air conditioning system of the embodiment shown in FIG. 14 includes a refrigerant circuit having a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, the outdoor heat exchanger and the indoor heat exchanger. A bridge rectifier circuit consisting of a check valve whose input end is connected to the pressure reducing device and whose output end is connected to the pressure reducing device, and a radiator for a hot storage.

温蔵・冷房時前記圧縮機にて圧縮された冷媒は前記圧縮
機から吐出された後前P冷媒回路の前記四方弁と前記室
外熱交換器からなる冷房時高圧回路と前記放熱器に分流
し、それぞれで凝縮した後合流し前記減圧装置と前記室
内熱交換器と前記四方弁をこの順に通り圧縮機に戻る回
路を形成し。
During heating and cooling, the refrigerant compressed by the compressor is discharged from the compressor and then divided into the high-pressure circuit during cooling, which includes the four-way valve of the front P refrigerant circuit and the outdoor heat exchanger, and the radiator. , and after condensing in each, they join together to form a circuit that passes through the pressure reducing device, the indoor heat exchanger, and the four-way valve in this order and returns to the compressor.

温蔵・暖房時前記圧縮機にて圧縮された冷媒は前記圧縮
機から吐出源れた後前記冷媒回路の前記四方弁と前記室
内熱交換器からなる暖房時高圧回路と前記放熱器に分流
しそれぞれで凝縮した後合流し前記減圧装置と前記室外
熱交換器と前記四方弁をこの順に通り圧縮機に戻る回路
を形成した構成によ勺空調機要素の冷房及び暖房運転に
拘らず湛跋庫放熱器を加熱できる効果を奏する。
During warming and heating, the refrigerant compressed by the compressor is discharged from the compressor and then divided into the high-pressure circuit during heating, which is comprised of the four-way valve of the refrigerant circuit and the indoor heat exchanger, and the radiator. By forming a circuit in which the condensation occurs in each and then joins and passes through the pressure reducing device, the outdoor heat exchanger, and the four-way valve in this order and returns to the compressor, the air conditioner remains saturated regardless of the cooling or heating operation of the air conditioner elements. It has the effect of heating the radiator.

次に、圧縮機fl+及び圧力ポンプIの回転数を制御す
る本発明の実施例を第15図に示す。本発明は、冷媒循
環を調節し祷る圧縮機+11と圧カボンブ■を有するこ
とにより、これらの回転数をそれぞれに変化させて色々
な運転を実現し、空調機要素の及び冷am要素■の運転
状況を変化させることが可能となる。この場合、インバ
ーター誘導電動機駆動あるいは直流−プレッジレス電動
機駆動を用いるとき、第15図の如く駆動電源の整流回
路(71)を共用し、圧縮機(11にはパワートランジ
スタ回路(72)、圧力ポンプにはパワートランジスタ
回路(75)をそれぞれ用いる回路を構成すれば。
Next, an embodiment of the present invention for controlling the rotational speed of the compressor fl+ and the pressure pump I is shown in FIG. The present invention has a compressor +11 and a pressure bomb (2) that adjust and regulate the refrigerant circulation, thereby realizing various operations by changing the rotational speed of these components, and controlling the air conditioner elements and the cooling AM element (2). It becomes possible to change the driving situation. In this case, when using an inverter induction motor drive or a DC-pledgeless motor drive, the rectifier circuit (71) of the drive power source is shared as shown in Fig. 15, and the compressor (11 has a power transistor circuit (72), a pressure pump In this case, circuits each using a power transistor circuit (75) are configured.

圧縮機(1)及び圧力ポンプを独自に回転数を制御する
ことができ、整流回路を共用することによって安価な回
転数制御回路が実現できる。
The rotation speeds of the compressor (1) and the pressure pump can be independently controlled, and by sharing the rectifier circuit, an inexpensive rotation speed control circuit can be realized.

この第15図に示す実施例の冷蔵・空調装置の電源回路
は圧縮機及び冷蔵*要素に設けられた圧力調整手段のイ
ンバータ駆動時整流回路を共用する構成にしたので電源
回路が安価になる効果を奏する。
The power supply circuit of the refrigeration/air conditioner of the embodiment shown in Fig. 15 is configured to share the rectification circuit when the inverter is driven for the pressure regulating means provided in the compressor and the refrigeration element, which has the effect of reducing the cost of the power supply circuit. play.

第15図の実施例において、空調機の運転不要なるとき
、′l電子膨張弁6)及び電磁弁ω、i43及び卿は閉
路される。従って電子膨張弁(61と圧縮機fi1間の
低圧回路には、一部の冷媒が閉じ込められることになる
。しかし、一般に冷g*csの冷却に要する冷媒量は、
非常に少ないので、冷M、庫■の運転のために必要な冷
媒i以上に、圧力ボンブト・・四方弁(4)−室外側黙
契換器(7)−逆止弁ブリッヂω−冷蔵庫■の回路に冷
媒が封入された状態になることがある。この場合、iI
磁弁■を開略し圧縮機(1)を再度運転させ、N予膨張
弁(6)の開口度を調節することによって圧縮機(1)
及び室内側熱交換器(51に冷媒を更に引き込むことが
可能となる。即ち、圧縮機!11が再運転されると、室
内側熱交換器(51に残留している低温低圧の冷媒が圧
縮機(11の吸入管(2)を通って、圧縮機(11へ戻
される。圧縮機(11内には。
In the embodiment shown in FIG. 15, when the air conditioner does not need to be operated, the electronic expansion valve 6) and the electromagnetic valves ω, i43 and ω are closed. Therefore, some refrigerant will be trapped in the low-pressure circuit between the electronic expansion valve (61) and the compressor fi1.However, in general, the amount of refrigerant required to cool the cold g*cs is
Since the amount of refrigerant is very small, the pressure bomb, four-way valve (4) - outdoor silent exchanger (7) - check valve bridge ω - the refrigerator The circuit may be filled with refrigerant. In this case, iI
The compressor (1) is operated by opening the magnetic valve ■ and operating the compressor (1) again, and adjusting the opening degree of the N pre-expansion valve (6).
It becomes possible to further draw refrigerant into the indoor heat exchanger (51).In other words, when the compressor 11 is restarted, the low temperature and low pressure refrigerant remaining in the indoor heat exchanger (51) is compressed. The air is returned to the compressor (11) through the suction pipe (2) of the compressor (11).

冷媒とよく混ざる冷凍機油が封入されていることよシ、
低温冷媒が圧縮機(1)に溜られることになる(電磁弁
−は閉路されている)。一方、室内側熱交換器(5:は
圧縮機(1)によって更に低圧にされることから9M電
子膨張弁6)より冷媒が室内側熱交換器(5)に溜られ
る。圧縮機Tl)の吐出圧力は、圧縮機(1)が冷媒を
貯めるに従って高くなるから、圧縮機(1)の運転電流
が次第に増加するので、この圧縮機電流を感知すること
によって圧縮機(11の運転を停止させるか、もしくは
、吐出圧力を感知することによって圧縮機+11を停止
することができる。又は。
Make sure it contains refrigeration oil that mixes well with the refrigerant.
Low-temperature refrigerant will be stored in the compressor (1) (the solenoid valve is closed). On the other hand, since the pressure of the indoor heat exchanger (5) is further lowered by the compressor (1), refrigerant is stored in the indoor heat exchanger (5) from the 9M electronic expansion valve 6. The discharge pressure of the compressor Tl) increases as the compressor (1) stores refrigerant, so the operating current of the compressor (1) gradually increases. The compressor +11 can be stopped by stopping the operation of the compressor +11 or by sensing the discharge pressure.

一定の時間によって圧縮機(りを停止してもよい。The compressor may be stopped after a certain period of time.

この圧縮機+1)の停止をもって空調機回路への冷媒蓄
積(アキュムレート)が完了したとして、電磁弁ω及び
電子膨張弁(6)を閉路すれば、冷ffi庫c’lK必
要な冷媒量を適切に調整することが可能となる。
Assuming that the accumulation of refrigerant in the air conditioner circuit is completed with the stop of this compressor It becomes possible to make appropriate adjustments.

四方弁(41が暖房モード(第15図四方弁(4)破線
)では、冷房モードに説明した室内側熱交換器(5)が
室外側黙契換器(7)と置きかえられるだけで、効果は
同じように祷られる。
In the four-way valve (41 is the heating mode (dashed line in Figure 15, four-way valve (4)), the indoor heat exchanger (5) described in the cooling mode is simply replaced with the outdoor silent exchanger (7), and the effect is The same is prayed for.

この発明による上記各実施例に適用される冷蔵庫の断面
図を第16図に示す。
FIG. 16 shows a sectional view of the refrigerator applied to each of the above embodiments according to the present invention.

図において従来例の第21図と相違する点のみ示す。(
96)は、ドレインパン、  (9B)はドレイン蒸発
用サブコンデンサー (97)は野菜室である。
In the figure, only the points that are different from the conventional example shown in FIG. 21 are shown. (
96) is the drain pan, (9B) is the sub-condenser for drain evaporation, and (97) is the vegetable compartment.

まず、第21図と比較し、凝縮器fiυが背面から除か
れている。
First, compared to FIG. 21, the condenser fiυ is removed from the back.

その上1機械室に圧縮機を設ける必要がないことから、
従来のドレイン・パン(96)及びドレイン蒸発用サブ
コンデンサーを背面まで延ばすことが可能となるので、
霜付現象後のドレイン水を気にすることなく、急速冷却
が可能となるし、野菜室(97)も奥行きが大巾に広く
とることができる。
Furthermore, since there is no need to install a compressor in one machine room,
It is now possible to extend the conventional drain pan (96) and sub-condenser for drain evaporation to the back.
Rapid cooling is possible without worrying about drain water after frosting occurs, and the vegetable compartment (97) can also be wide and deep.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、空調機の圧縮機と凝
縮器と冷媒を、冷蔵庫と共用するように構成したので、
大気圏外で分解してオゾンを減少させるような冷媒を使
用する必要がなく、内容積が大きく、圧縮機による騒音
がなく、冷却助出が高く、冷媒の凝縮熱を放出して夏期
など暑いときに室温を高めない冷H,庫を得ることがで
きるとともに、装置としての使用協を高くすることがで
き。
As described above, according to the present invention, the compressor, condenser, and refrigerant of the air conditioner are configured to be shared with the refrigerator.
There is no need to use a refrigerant that decomposes outside the atmosphere and reduces ozone, the internal volume is large, there is no noise from the compressor, the cooling output is high, and the heat of condensation of the refrigerant is released, so it can be used in hot weather such as summer. It is possible to obtain a cold storage that does not raise the room temperature, and it is also possible to increase the usability of the device.

冷ilL!#Lの背面がすつきシし、ドレイン水を気に
ぜず急速冷却が行なえ、野菜室も広くすることができる
Cold ill L! The back of #L is flush, allowing rapid cooling without worrying about drain water, and the vegetable compartment can be expanded.

また、冷蔵・冷房時前記圧縮機にて圧縮された冷媒は前
記室外熱交換器にて凝縮した後前記空調機要素と前記冷
ah要素に分流しそれぞれの要素にて蒸発後合流し前記
圧縮機に戻る回路を形叙し。
Further, during refrigeration/cooling, the refrigerant compressed by the compressor is condensed in the outdoor heat exchanger and then divided into the air conditioner element and the cooling ah element, evaporated in each element, and then merged into the compressor. Describe the circuit back to.

冷蔵・暖房時前記圧縮機にて圧縮された冷媒は前記室内
熱交り器にて凝縮した後前記空調機要素と前ICI減圧
装置に分流しこの減圧装置に向う冷媒は減圧後前記室外
熱交換器にて蒸発し前記冷蔵庫要素で蒸発した冷媒と合
流して前記圧縮機に戻る回路を形成した構成によシ空調
機要素の冷房及び暖房運転に拘らず冷蔵庫要素を冷却で
きる効果を奏し。
During refrigeration/heating, the refrigerant compressed by the compressor is condensed in the indoor heat exchanger and then divided into the air conditioner element and the front ICI pressure reducing device, and the refrigerant heading to this pressure reducing device is decompressed and then heat exchanged with the outdoor heat exchanger. By forming a circuit in which the refrigerant evaporated in the refrigerator element is combined with the refrigerant evaporated in the refrigerator element and returned to the compressor, the refrigerator element can be cooled regardless of whether the air conditioner element is in a cooling or heating operation.

また、温蔵・冷房時前記圧縮機にて圧縮された冷媒は前
記圧縮機から吐出された後前記冷媒回路の前記四方弁と
前記室外熱交換器からなる冷房時高圧回路と前記放熱器
に分流し、それぞれで凝縮した後合流し前y減圧装置と
前記室内熱交換器と前記四方弁をこの順に通り圧縮機に
戻る回路を形成し。
Further, during heating and cooling, the refrigerant compressed by the compressor is discharged from the compressor and then divided into the high-pressure circuit during cooling, which includes the four-way valve of the refrigerant circuit and the outdoor heat exchanger, and the radiator. After flowing and condensing at each, they join to form a circuit that passes through the pre-pressure reducing device, the indoor heat exchanger, and the four-way valve in this order and returns to the compressor.

温蔵・暖房時前記圧縮機にて圧縮された冷媒は前記圧縮
機から吐出された後前記冷媒回路の前記四方弁と前記室
内熱交換器からなる暖房時高圧回路と前記放熱器に分流
しそれぞれで凝縮した後合流し前記減圧装置と前F室外
熱交換器と前記四方弁をこの順に通り圧縮機に戻る回路
を形成した構+1i12により空調機要素の冷房及び暖
房運転に拘らず温M庫放熱器を加熱できる効果を奏する
During warming and heating, the refrigerant compressed by the compressor is discharged from the compressor and then divided into a heating high-pressure circuit consisting of the four-way valve of the refrigerant circuit and the indoor heat exchanger, and the radiator, respectively. After condensing, the circuit forms a circuit that passes through the decompression device, the front F outdoor heat exchanger, and the four-way valve in this order and returns to the compressor.This system allows heat to be dissipated from the warm room regardless of whether the air conditioner elements are in cooling or heating operation. It has the effect of heating the vessel.

そしてこの発明による冷蔵・空調装置の電源回路は圧縮
機及び冷R庫要素に設けられた圧力調整手段のインバー
タ駆動時整流回路を共用する構成にしたので電源回路が
安価になる効果を奏する。
The power supply circuit of the refrigeration/air conditioning system according to the present invention is configured to share the rectifying circuit when the inverter is driven by the pressure regulating means provided in the compressor and the cold storage element, so that the power supply circuit can be made inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例による冷蔵庫−体形空気
調和装置の基本サイクルの構成図、第2図は第1図にお
ける圧縮機の断面図、第3図は従来の冷W庫の冷媒R−
12の圧カーエンタルピー線図、第4図は第1実施例の
冷媒R−22の圧カーエンタルピー線図、第5図は第2
実施例のサイクルの構成図、第6図は第3実施例のサイ
クル構成図、第7図は第4実施例のサイクル構成図、第
8図は第5実施例のサイクル構成図、第1図は第6実施
例のサイクル構成図、第10図〜第15 図は逆止弁ブ
リッジを用いた実施例を示す図であシ。 第10図はこの発明の冷蔵・空調装置の第7実施例を示
す回路構成図、第11図〜第13図は第 8〜10実施
例を示す回路構成図、第14図はこの発明の温蔵・空調
装置の一実施例を示す回路構成図、第15図はこの発明
の冷蔵・空調装置の電源回路の一実施例を示す回路図、
第16図はこの発明による3ドア冷蔵庫の断面図、第1
7図は従来の空調機の回路構成図、第18図はs1y図
の冷房時の回路構成図、第19図は従来の冷蔵庫の背面
を見た要部斜視図、第20図は同回路構叙図。 第21図は第19図の断面図である。 (11は標準の密閉形回転圧縮機、 +41.のは四方
弁。 (5)は室内側熱交換器、 +61.■、1441は電
子膨張弁。 (7)は室外側熱交換器、Q】1は密閉形回転圧縮機、
■は第1吸入管、Oは第2吸入管、c5はT字管、■は
冷却器、■は空調機、c!1は冷賊庫、■、嘘。 (74)、 (79)は電磁弁、(至)は第1吸入口、
−は吸入弁、3)は第2吸入口、 f4mは圧力ポンプ
、りは逆止弁、Oは蓄氷器、&mは冷tth専用凝縮器
又はキャビネットパイプ、畔はドレイン水蒸発用サラコ
ンデンサ、  (121)〜(124)は逆止弁、61
1は逆止弁ブリッジ、  (61)、 (62)は配管
、  (9G)、 (96)トドレインパン、  (9
5)、 (97)は野菜室、  (87)、 (98)
はドレイン蒸発用サブコンデンサーである。 なお、各図中、同一符号は同一または相当部分を示す。
Fig. 1 is a block diagram of a basic cycle of a refrigerator-type air conditioner according to a first embodiment of the present invention, Fig. 2 is a sectional view of the compressor in Fig. 1, and Fig. 3 is a diagram showing the refrigerant of a conventional cold storage. R-
12, FIG. 4 is the pressure car enthalpy diagram of refrigerant R-22 of the first example, and FIG.
6 is a cycle configuration diagram of the third embodiment, FIG. 7 is a cycle configuration diagram of the fourth embodiment, FIG. 8 is a cycle configuration diagram of the fifth embodiment, and FIG. 1 is a cycle configuration diagram of the sixth embodiment, and FIGS. 10 to 15 are diagrams showing an embodiment using a check valve bridge. FIG. 10 is a circuit configuration diagram showing a seventh embodiment of the refrigerator/air conditioner of the present invention, FIGS. 11 to 13 are circuit configuration diagrams showing eighth to tenth embodiments, and FIG. FIG. 15 is a circuit diagram showing an example of the power supply circuit of the refrigerator/air conditioner of the present invention;
FIG. 16 is a sectional view of a three-door refrigerator according to the present invention, the first
Figure 7 is a circuit configuration diagram of a conventional air conditioner, Figure 18 is a circuit configuration diagram of the s1y diagram during cooling, Figure 19 is a perspective view of the main parts of a conventional refrigerator as seen from the back, and Figure 20 is the same circuit configuration. Diagram. FIG. 21 is a sectional view of FIG. 19. (11 is a standard hermetic rotary compressor, +41. is a four-way valve. (5) is an indoor heat exchanger, +61.■, 1441 is an electronic expansion valve. (7) is an outdoor heat exchanger, Q] 1 is a hermetic rotary compressor;
■ is the first suction pipe, O is the second suction pipe, c5 is the T-tube, ■ is the cooler, ■ is the air conditioner, c! 1 is a cold storage, ■, a lie. (74), (79) are solenoid valves, (to) is the first intake port,
- is the suction valve, 3) is the second suction port, f4m is the pressure pump, ri is the check valve, O is the ice storage unit, &m is the cold tth dedicated condenser or cabinet pipe, and the ridge is the Sara condenser for drain water evaporation. (121) to (124) are check valves, 61
1 is check valve bridge, (61), (62) are piping, (9G), (96) drain pan, (9
5), (97) is the vegetable compartment, (87), (98)
is a sub-capacitor for drain evaporation. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (10)

【特許請求の範囲】[Claims] (1)冷媒を圧縮して高温・高圧の気体にする圧縮機と
、前記気体を冷却して中温・高圧の液体にする凝縮器と
、前記液体を断熱膨張させて低温・低圧の霧状の液体に
する第一の膨張弁と、前記霧状の液体を蒸発させて低温
・低圧の気体とし、これを再び前記圧縮機へ戻す第一の
蒸発器とよりなるサイクルを有する空気調和機と、前記
圧縮機と、前記凝縮器と、前記凝縮器からの液体を断熱
膨張させて低温・低圧の霧状の液体にする第二の膨張弁
と、この第二の膨張弁からの霧状の液体を蒸発させて低
温・低圧の気体とし、これを前記圧縮機に戻す第二の蒸
発器とよりなるサイクルを有する冷蔵庫とによつて構成
した冷蔵庫一体形空気調和装置。
(1) A compressor that compresses a refrigerant into a high-temperature, high-pressure gas; a condenser that cools the gas into a medium-temperature, high-pressure liquid; and adiabatic expansion of the liquid to form a low-temperature, low-pressure mist. An air conditioner having a cycle consisting of a first expansion valve that converts the atomized liquid into a liquid, and a first evaporator that evaporates the atomized liquid into a low-temperature, low-pressure gas and returns it to the compressor; the compressor, the condenser, a second expansion valve that adiabatically expands the liquid from the condenser to turn it into a low-temperature, low-pressure atomized liquid, and the atomized liquid from the second expansion valve. A refrigerator-integrated air conditioner comprising a refrigerator having a cycle consisting of a second evaporator that evaporates the gas into a low-temperature, low-pressure gas and returns the gas to the compressor.
(2)空気調和機は、これを使用しないとき、そのサイ
クルを閉じる手段を備えていることを特徴とする特許請
求の範囲第1項に記載の冷蔵庫一体形空気調和装置。
(2) The refrigerator-integrated air conditioner according to claim 1, wherein the air conditioner is provided with means for closing its cycle when not in use.
(3)圧縮機は、シリンダの低圧側に複数の吸入口を有
し、これらのうちベーンに近い吸入口が吸入弁または逆
止弁を有していることを特徴とする特許請求の範囲第1
項または第2項に記載の冷蔵庫一体形空気調和装置。
(3) The compressor has a plurality of suction ports on the low-pressure side of the cylinder, and among these suction ports, the suction port near the vane has a suction valve or a check valve. 1
The refrigerator-integrated air conditioner according to item 1 or 2.
(4)圧縮機は、1つの吸入口を有する圧縮機と圧力ポ
ンプと逆止弁とで構成したことを特徴とする特許請求の
範囲第1項または第2項に記載の冷蔵庫一体形空気調和
装置。
(4) The refrigerator-integrated air conditioner according to claim 1 or 2, wherein the compressor is composed of a compressor having one suction port, a pressure pump, and a check valve. Device.
(5)冷蔵庫は、冷却に必要とするエネルギー以外のエ
ネルギーを蓄積しておき、必要に応じ放出できるエネル
ギー蓄積手段を備えていることを特徴とする特許請求の
範囲第1項ないし第4項のいずれかに記載の冷蔵庫一体
形空気調和装置。
(5) The refrigerator is equipped with energy storage means that can store energy other than energy required for cooling and release it as necessary. Refrigerator-integrated air conditioner according to any of the above.
(6)圧縮機と四方弁と室外熱交換器と減圧装置と室内
熱交換器とを有する冷媒回路、前記室外熱交換器と前記
室内熱交換器に入力端が接続され、前記減圧装置に出力
端が接続された切換回路、前記四方弁と前記室内熱交換
器と前記減圧装置とからなる空調機要素に並列に設けら
れ毛細管と蒸発器とからなる冷蔵庫要素を備え、 冷蔵・冷房時前記圧縮機にて圧縮された冷媒は前記室外
熱交換器にて凝縮した後前記空調機要素と前記冷蔵庫要
素に分流しそれぞれの要素にて蒸発後合流し前記圧縮機
に戻る回路を形成し、冷蔵・冷房時前記圧縮機にて圧縮
された冷媒は前記室内熱交換器にて凝縮した後前記冷蔵
庫要素と前記減圧装置に分流しこの減圧装置に向う冷媒
は減圧後前記室外熱交換器にて蒸発し、前記冷蔵庫要素
で蒸発した冷媒と合流して前記圧縮機に戻る回路を形成
したことを特徴とする冷蔵庫一体形空気調和装置。
(6) A refrigerant circuit having a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, an input end connected to the outdoor heat exchanger and the indoor heat exchanger, and an output to the pressure reducing device. A switching circuit having one end connected thereto, a refrigerator element comprising a capillary tube and an evaporator installed in parallel to an air conditioner element comprising the four-way valve, the indoor heat exchanger, and the pressure reducing device, The refrigerant compressed by the compressor is condensed in the outdoor heat exchanger, then divided into the air conditioner element and the refrigerator element, evaporated in each element, and then merged to form a circuit that returns to the compressor. During cooling, the refrigerant compressed by the compressor is condensed in the indoor heat exchanger and then divided into the refrigerator element and the pressure reducing device, and the refrigerant heading to the pressure reducing device is decompressed and then evaporated in the outdoor heat exchanger. . A refrigerator-integrated air conditioner, characterized in that a circuit is formed in which the refrigerant evaporated in the refrigerator element joins and returns to the compressor.
(7)切換回路を逆止弁からなるブリッジ整流回路にて
構成したことを特徴とする特許請求の範囲第6項記載の
冷蔵庫一体形空気調和装置。
(7) The refrigerator-integrated air conditioner according to claim 6, wherein the switching circuit is constituted by a bridge rectifier circuit including a check valve.
(8)圧縮機及び冷蔵庫要素に設けられた圧力調整手段
のインバータ駆動時整流回路を共用することを特徴とす
る特許請求の範囲第1項記載の冷蔵庫一体形・空気調和
装置の電源回路。
(8) A power supply circuit for a refrigerator-integrated air conditioner as set forth in claim 1, characterized in that a rectifier circuit is shared during inverter drive of the pressure regulating means provided in the compressor and the refrigerator element.
(9)圧縮機と四方弁と室外熱交換器と減圧装置と室内
熱交換器とを有する冷媒回路、前記室外熱交換器と前記
室内熱交換器に入力端が接続され、前記減圧装置に出力
端が接続された逆止弁からなるブリッジ整流回路、温蔵
庫用放熱器を備え、温蔵・冷房時前記圧縮機にて圧縮さ
れた冷媒は前記圧縮機から吐出された後前記冷媒回路の
前記四方弁と前記室外熱交換器からなる冷房時高圧回路
と前記放熱器に分流し、それぞれ凝宿した後合流し前記
減圧装置と前記室内熱交換器と前記四方弁をこの順に通
り圧縮機に戻る回路を形成し、温蔵・冷房時前記圧縮機
にて圧縮された冷媒は前記圧縮機から吐出された後前記
冷媒回路の前記四方弁と前記室内熱交換器からなる暖房
時高圧回路と前記放熱器に分流し、それぞれで凝縮した
後合流し前記減圧装置と前記室外熱交換器と前記四方弁
をこの順に通り圧縮機に戻る回路を形成したことを特徴
とする温蔵庫一体形空気調和装置。
(9) A refrigerant circuit having a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, and an indoor heat exchanger, an input end of which is connected to the outdoor heat exchanger and the indoor heat exchanger, and an output to the pressure reducing device. It is equipped with a bridge rectifier circuit consisting of a check valve connected at one end, and a radiator for a hot storage. The water is divided into the cooling high-pressure circuit consisting of the four-way valve and the outdoor heat exchanger and the radiator, and after condensing and condensing respectively, the water flows through the pressure reducing device, the indoor heat exchanger, and the four-way valve in this order to the compressor. A return circuit is formed, and the refrigerant compressed by the compressor during heating and cooling is discharged from the compressor and then connected to a high-pressure circuit during heating consisting of the four-way valve of the refrigerant circuit and the indoor heat exchanger; The air conditioner integrated with a hot storage is characterized in that the flow is divided into a radiator, condensed in each, and then merged to form a circuit that passes through the pressure reducing device, the outdoor heat exchanger, and the four-way valve in this order and returns to the compressor. Device.
(10)切換回路を逆止弁からなるブリッジ整流回路に
て構成したことを特徴とする特許請求の範囲第1項記載
の温蔵庫一体形空気調和装置。
(10) The heating storage integrated air conditioner according to claim 1, wherein the switching circuit is constituted by a bridge rectifier circuit consisting of a check valve.
JP31356288A 1987-12-23 1988-12-12 Refrigerater or heater integral type air conditioner and power supply circuit therefor Pending JPH02183769A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31356288A JPH02183769A (en) 1987-12-23 1988-12-12 Refrigerater or heater integral type air conditioner and power supply circuit therefor
AU42562/89A AU615347B2 (en) 1988-10-17 1989-10-04 Air conditioning device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-325751 1987-12-23
JP32575187 1987-12-23
JP63-193978 1988-08-03
JP31356288A JPH02183769A (en) 1987-12-23 1988-12-12 Refrigerater or heater integral type air conditioner and power supply circuit therefor

Publications (1)

Publication Number Publication Date
JPH02183769A true JPH02183769A (en) 1990-07-18

Family

ID=26567619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31356288A Pending JPH02183769A (en) 1987-12-23 1988-12-12 Refrigerater or heater integral type air conditioner and power supply circuit therefor

Country Status (1)

Country Link
JP (1) JPH02183769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240980A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Refrigerator/air conditioner
JP2002181406A (en) * 2000-12-08 2002-06-26 Daikin Ind Ltd Refrigerating equipment and heat source unit for refrigerating equipment
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device
CN104896785A (en) * 2015-05-15 2015-09-09 广东美的暖通设备有限公司 Enhanced vapor injection multi-online air conditioning system and control method thereof
JP2019215120A (en) * 2018-06-12 2019-12-19 三菱電機株式会社 Show case

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000240980A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Refrigerator/air conditioner
JP2002181406A (en) * 2000-12-08 2002-06-26 Daikin Ind Ltd Refrigerating equipment and heat source unit for refrigerating equipment
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device
CN104896785A (en) * 2015-05-15 2015-09-09 广东美的暖通设备有限公司 Enhanced vapor injection multi-online air conditioning system and control method thereof
CN104896785B (en) * 2015-05-15 2017-06-09 广东美的暖通设备有限公司 A kind of air injection enthalpy-increasing multi-online air-conditioning system and its control method
JP2019215120A (en) * 2018-06-12 2019-12-19 三菱電機株式会社 Show case

Similar Documents

Publication Publication Date Title
CA2193688A1 (en) Heating and cooling systems incorporating thermal storage
CA2485757A1 (en) Thermo-siphon chiller refrigerator for use in cold district
EP3995758B1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
US4944156A (en) Air conditioning system into which a refrigerator or a warming cabinet is integrated, and power source circuit therefor
CN108895691A (en) A kind of SAPMAC method that freezed combines power supply device and method with charge cycle
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
CN100371662C (en) Refrigerator
US7574872B2 (en) Capacity-variable air conditioner
JP3461736B2 (en) refrigerator
CN208968080U (en) A kind of SAPMAC method that freezed combines power supply device with charge cycle
CN108106045B (en) Air conditioner and refrigerator combined system capable of achieving centralized refrigeration and split cooling
JPH02183769A (en) Refrigerater or heater integral type air conditioner and power supply circuit therefor
CN112229095A (en) Heat pump set
JP4169080B2 (en) Freezer refrigerator
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
CN113154566A (en) Fluorine pump air conditioner control method, device, equipment and system
CN113108428A (en) Multi-split central air conditioning system and control method thereof
JPS6387559A (en) Refrigeration cycle
CN110925913A (en) Mobile water chiller integrating refrigeration and water air conditioning
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
CN218955220U (en) Outdoor unit and multi-connected air conditioning system
JP2003207250A (en) Refrigerator
EP3995760A1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JPH04257660A (en) Two stage compression refrigerating cycle device