JPS6387559A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS6387559A
JPS6387559A JP23231886A JP23231886A JPS6387559A JP S6387559 A JPS6387559 A JP S6387559A JP 23231886 A JP23231886 A JP 23231886A JP 23231886 A JP23231886 A JP 23231886A JP S6387559 A JPS6387559 A JP S6387559A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
refrigerant
compressor
heat
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23231886A
Other languages
Japanese (ja)
Other versions
JP2514936B2 (en
Inventor
正一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61232318A priority Critical patent/JP2514936B2/en
Publication of JPS6387559A publication Critical patent/JPS6387559A/en
Application granted granted Critical
Publication of JP2514936B2 publication Critical patent/JP2514936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は冷凍サイクルに係り、特に冷媒を2段圧縮する
冷凍サイクルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a refrigeration cycle, and particularly to a refrigeration cycle in which refrigerant is compressed in two stages.

(従来の技術) 圧縮機を2台直列に設けて冷媒を2段圧縮する2段圧縮
冷凍サイクルは圧縮効率の向上を目的として採用されて
いる。
(Prior Art) A two-stage compression refrigeration cycle in which two compressors are arranged in series to compress a refrigerant in two stages has been adopted for the purpose of improving compression efficiency.

第5図及び第6図は従来の2段圧縮冷凍サイクルを示す
ものであり、第5図及び第6図において符号1は低段側
圧縮機、2は高段側圧縮機、3は凝縮器、4は蒸発器、
5は中間冷却器、6.7は減圧装置(6は高段側、7は
低段側)である。第5図の冷凍サイクルでは、圧縮機1
より吐出された冷媒と凝縮器3を経て減圧装置6を出た
冷媒とは中間冷却器5で混合されて一方は蒸発器4側へ
流れ、他方は圧縮機2の吸込側へ流れる。また、第6図
の冷凍サイクルでは、圧縮機1より吐出された冷媒と凝
縮器3を経て減圧装置6を出た冷媒は中間冷却器5で混
合されて圧縮機2の吸込側へ流れる一方、凝縮器3より
中間冷却器5内を貫通する配管により蒸発器4側へ流れ
る。第5−(a)図及び第6−(a)図の冷凍サイクル
のモリエル線図はそれぞれ第5− (b)図及び第6−
 (b)図に示され、第5− (b)図におけるA−F
は第5−(a)図における各部所A−Fに対応したもの
であり、第6− (b)図におけるA−Fは第6−(a
)図における各部所A−Fに対応したものである。
Figures 5 and 6 show a conventional two-stage compression refrigeration cycle, and in Figures 5 and 6, reference numeral 1 is a low-stage compressor, 2 is a high-stage compressor, and 3 is a condenser. , 4 is an evaporator,
5 is an intercooler, and 6.7 is a pressure reducing device (6 is on the high stage side, 7 is on the low stage side). In the refrigeration cycle shown in Figure 5, compressor 1
The refrigerant discharged from the refrigerant and the refrigerant exiting the pressure reducing device 6 via the condenser 3 are mixed in the intercooler 5, and one of them flows to the evaporator 4 side, and the other flows to the suction side of the compressor 2. In addition, in the refrigeration cycle shown in FIG. 6, the refrigerant discharged from the compressor 1 and the refrigerant exiting the pressure reducing device 6 via the condenser 3 are mixed in the intercooler 5 and flow to the suction side of the compressor 2. The water flows from the condenser 3 to the evaporator 4 through a pipe that passes through the intercooler 5. The Mollier diagrams of the refrigeration cycle in Figures 5-(a) and 6-(a) are shown in Figures 5-(b) and 6-(a), respectively.
(b) A-F in Figure 5-(b)
correspond to each part A-F in Fig. 5-(a), and A-F in Fig. 6-(b) correspond to each part A-F in Fig. 6-(a).
) This corresponds to each part A to F in the figure.

第7図は従来の1段圧縮のガスインジェクションサイク
ルを示すものであり、圧縮機1より吐出された冷媒を凝
縮?=3に導き熱交換させた後、気液分離器5を介して
圧縮機1のシリンダ内へ噴射するように構成したもので
ある。第7−(a)図の冷凍サイクルのモリエル線図は
第7− (b)図に示され、第7− (b)図のA−F
は第7−(a)図の各部所A−Fに対応している。
FIG. 7 shows a conventional one-stage compression gas injection cycle, in which the refrigerant discharged from the compressor 1 is condensed. = 3 for heat exchange, and then injected into the cylinder of the compressor 1 via the gas-liquid separator 5. The Mollier diagram of the refrigeration cycle in Fig. 7-(a) is shown in Fig. 7-(b), and A-F in Fig. 7-(b) is shown in Fig. 7-(b).
correspond to each part A to F in FIG. 7-(a).

また、第8図は2段圧縮冷凍サイクルに蓄熱器を設けた
蓄熱サイクルの従来例を示すものであり、同図において
符号8は蓄熱器を示し、この蓄熱器8内には圧縮機2よ
り出た吐出ガスにより蓄熱ヰ49に蓄熱する蓄熱用熱交
換器10aと、凝縮器3を出た配管より分岐した放熱用
熱交換器10bとが設けられ、この放熱用熱交換器10
bで熱交換された冷媒は圧縮機2の吸込側に戻されるよ
うに構成されている。
Furthermore, FIG. 8 shows a conventional example of a heat storage cycle in which a heat storage device is provided in a two-stage compression refrigeration cycle. A heat storage heat exchanger 10a that stores heat in the heat storage pipe 49 by discharged gas, and a heat radiation heat exchanger 10b branched from the pipe exiting the condenser 3 are provided.
The refrigerant heat exchanged in b is configured to be returned to the suction side of the compressor 2.

さらに、第9図は従来の給湯ヒートポンプの冷凍サイク
ルを示す図であり、同図において符号11は四方弁、1
2は室内熱交換器、13は室外熱交換器、14は給湯用
熱交換器であり、圧縮機1は1台で1段サイクルである
。第9− (b)図は第9−(a)図の冷凍サイクルの
モリエル線図を示し、第9− (b)図のA−Dは第9
− (a)図の各部所A−Dに対応している。
Furthermore, FIG. 9 is a diagram showing a refrigeration cycle of a conventional hot water supply heat pump, in which reference numeral 11 is a four-way valve;
2 is an indoor heat exchanger, 13 is an outdoor heat exchanger, 14 is a hot water supply heat exchanger, and one compressor 1 has a one-stage cycle. Figure 9-(b) shows the Mollier diagram of the refrigeration cycle in Figure 9-(a), and A-D in Figure 9-(b) shows the Mollier diagram of the refrigeration cycle in Figure 9-(a).
- (a) Corresponds to each part A-D in the figure.

(発明が解決しようとする問題点) しかしながら、−I一連の第5図乃至第9図に図示した
各冷凍サイクルにはそれぞれ以下のような問題点がある
(Problems to be Solved by the Invention) However, each of the -I series of refrigeration cycles shown in FIGS. 5 to 9 has the following problems.

即ち、第5図の2段圧縮冷凍サイクルにあっては、モリ
エル線図から明らかなように中間冷却器5で中間液冷媒
を飽和状態まで冷却する場合であるが、油の回収に問題
があり、次第に低段側へ片寄る恐れがあり、効率向上及
び能力向上を図った冷凍サイクルであるにもかかわらず
、その効果は極くわずかであるという問題点がある。一
方、第6図の2段圧縮冷凍サイクルにあっては、モリエ
ル線図から明らかなように中間冷却器5で中間液冷媒を
飽和状態まで冷却できず蒸発器側エンタルピの損失が伴
い(第6− (b)図においてF′とFとの差で示され
る)、効率向−L及び能力向上の点で同様に問題がある
That is, in the two-stage compression refrigeration cycle shown in FIG. 5, as is clear from the Mollier diagram, the intermediate liquid refrigerant is cooled to a saturated state in the intercooler 5, but there is a problem in oil recovery. , there is a risk that the refrigeration cycle will gradually shift to the lower stage side, and even though the refrigeration cycle is designed to improve efficiency and capacity, the problem is that the effect is extremely small. On the other hand, in the two-stage compression refrigeration cycle shown in Fig. 6, as is clear from the Mollier diagram, the intercooler 5 cannot cool the intermediate liquid refrigerant to a saturated state, resulting in enthalpy loss on the evaporator side (6 - (b) (shown by the difference between F' and F in the figure), there are similar problems in terms of efficiency -L and capacity improvement.

また、第7図のガスインジェクションサイクルにあって
は、モリエル線図で示すように蒸発器側エンタルピは大
きくなるが、高段側吸込エンタルピが飽和状態にならず
(第7− (b)図においてB′となる)、即ち、吐出
温度が高くなり効率向−1及び能力向上の観点から問題
がある。
In addition, in the gas injection cycle shown in Fig. 7, the enthalpy on the evaporator side increases as shown in the Mollier diagram, but the suction enthalpy on the high stage side does not reach a saturated state (in Fig. 7-(b)). B'), that is, the discharge temperature becomes high, which poses a problem from the viewpoint of efficiency improvement -1 and capacity improvement.

一方、第8図の蓄熱器を設けた2段圧縮冷凍サイクルに
あっては、蓄熱用熱交換器と放熱用熱交換器が必要とな
り、構造が罠雑でコスト高になるという問題があり、又
、側熱交換器間の熱伝達リークが生ずるという効率上の
問題点もある。
On the other hand, in the two-stage compression refrigeration cycle equipped with a heat storage device as shown in Fig. 8, a heat exchanger for heat storage and a heat exchanger for heat radiation are required, and there is a problem that the structure is complicated and the cost is high. There is also an efficiency problem in that heat transfer leakage occurs between the side heat exchangers.

さらに、第9図の給湯ヒートポンプの冷凍サイクルにあ
っては、モリエル線図に示されるように給湯と暖房が同
一凝縮温度のため不必要に暖房の凝縮温度が上がり効率
が悪くなるという問題があり、又、冷房給湯時も給湯に
必要な凝縮温度まで圧力を上昇させねばならず、効率が
悪いという問題がある。
Furthermore, in the refrigeration cycle of the hot water heat pump shown in Figure 9, as shown in the Mollier diagram, hot water supply and heating have the same condensing temperature, so there is a problem that the condensing temperature of heating increases unnecessarily and efficiency deteriorates. Furthermore, even when hot water is being supplied for cooling, the pressure must be raised to the condensing temperature required for hot water supply, resulting in a problem of poor efficiency.

本発明は、上記りt情に鑑み創案されたもので、その目
的とする処は、1−述した従来の各冷凍サイクルが何す
る問題点を解消し、部品な構成で圧縮効率向上及び能力
向上を図ることができる冷凍サイクルを提供することに
ある。
The present invention has been devised in view of the above-mentioned circumstances, and its objectives are 1- to solve the problems of the conventional refrigeration cycles mentioned above, and to improve compression efficiency and capacity with a component structure; The object of the present invention is to provide a refrigeration cycle that can be improved.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上述した問題点を解決するため本発明は、冷媒を2段階
に互って圧縮する低段側圧縮機と、高段側圧縮機とを備
えた2段圧縮冷凍サイクルにおいて、上記低段側圧縮機
と高段側圧縮機との間の中間圧力部の冷媒の流れ方向を
n■逆となるように構成したことを特徴とするものであ
る。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a two-stage compressor comprising a low-stage compressor and a high-stage compressor that alternately compress refrigerant in two stages. In the compression refrigeration cycle, the flow direction of the refrigerant in the intermediate pressure section between the low-stage compressor and the high-stage compressor is configured to be reversed by n.

(作 用) 本発明はL記手段により、低段側圧縮機と高段側圧縮機
との間にその一端を接続した中間圧力部における冷媒の
流れを、圧縮機から減圧装置側へ流れる方向とこの逆h
°向との可逆とし、この中間圧力部に例えば中間熱交換
器として蓄熱器を設ければこの可逆の冷媒の流れにより
蓄熱及び放熱を行うことができ、又、中間圧力部に室内
外熱交換器を設け、高圧側に給湯用熱交換器を設ければ
この可逆の冷媒の流れにより圧縮効率の向[−が図れる
(Function) The present invention uses means L to direct the flow of refrigerant in an intermediate pressure section, one end of which is connected between a low-stage compressor and a high-stage compressor, from the compressor to the pressure reducing device. and this reverse h
If the refrigerant is reversible with respect to the ° direction, and a heat storage device is provided as an intermediate heat exchanger in this intermediate pressure section, heat storage and heat radiation can be performed by this reversible refrigerant flow. If a heat exchanger for hot water supply is provided on the high-pressure side, compression efficiency can be improved due to the reversible flow of refrigerant.

(実施例) 以下、本発明に係る冷凍サイクルの実施例を第1図乃至
第2図を参照して説明する。
(Example) Hereinafter, an example of a refrigeration cycle according to the present invention will be described with reference to FIGS. 1 and 2.

第1図は本発明の冷凍サイクルを示すものであり、71
号1は低段側圧縮機、2は高段側圧縮機、3は凝縮器、
4は蒸発器、6,7は減圧装置(6は高段側、7は低段
側)である。そして、圧縮機1.2間の中間圧力部には
熱交換器か設けられているが、ここでは熱交換器として
蓄熱器8を用いた場合を示す。
FIG. 1 shows the refrigeration cycle of the present invention, with 71
No. 1 is a low stage compressor, 2 is a high stage compressor, 3 is a condenser,
4 is an evaporator, and 6 and 7 are pressure reducing devices (6 is on the high stage side, 7 is on the low stage side). A heat exchanger is provided in the intermediate pressure section between the compressors 1 and 2, and here a case is shown in which a heat storage device 8 is used as the heat exchanger.

上記蓄熱器8は、その内部に蓄熱材9を充填したものか
らなっており、この中間熱交換器を構成する蓄熱器8は
、その管路の一端を圧縮機1.2間の配管に接続し、他
端を減圧装置46.7間の配管に接続している。
The heat storage device 8 has a heat storage material 9 filled therein, and one end of the heat storage device 8 constituting the intermediate heat exchanger is connected to the pipe between the compressors 1 and 2. The other end is connected to the pipe between the pressure reducing devices 46.7.

次に前述のように構成された冷凍サイクルの動作につい
て説明する。
Next, the operation of the refrigeration cycle configured as described above will be explained.

’3l−(a)図は蓄熱サイクル、即ち中間熱交換器を
凝縮器として使う場合を示し、このとき中間圧力PiI
! (液態圧力)とPig (ガス側圧力)の関係はP
ig<Pigとなるようにコントロールする。このコン
トロールは、圧縮機1は大容量に、圧縮機2は小容量に
コントロールすることによりガス側中間圧力Pigを上
昇させる一方、減圧装置6を高めに絞り、減圧装置7を
低めに絞ることにより液態中間圧力PiJ7を下降させ
ることにより行う。
Figure '3l-(a) shows a heat storage cycle, that is, a case where an intermediate heat exchanger is used as a condenser, and at this time, the intermediate pressure PiI
! The relationship between (liquid pressure) and Pig (gas side pressure) is P
Control so that ig<Pig. This control increases the gas side intermediate pressure Pig by controlling the compressor 1 to a large capacity and the compressor 2 to a small capacity, and at the same time, by restricting the pressure reducing device 6 to a high level and the pressure reducing device 7 to a low level. This is done by lowering the liquid intermediate pressure PiJ7.

しかして、上記コントロールによりPij7<Pigの
関係となり、矢印lで示すように凝縮器としての流れh
°向が設定され、中間熱交換器にて冷媒は熱交換が行わ
れて蓄熱材9に蓄熱される。
Therefore, due to the above control, the relationship Pij7<Pig is established, and as shown by the arrow l, the flow h as a condenser is
The refrigerant undergoes heat exchange in the intermediate heat exchanger and is stored in the heat storage material 9.

このときのモリエル線図は第1−(b)図に示され、こ
の場合中間熱交換器に流入する冷媒の温度Tiは、蓄熱
材9の温度よりも高く設定されている。また、圧縮機の
吐出容量を変える方法は種々あり、例えば圧縮機が独立
している場合はインバータによる回転数可変が都合良く
、又、−軸に2つの圧縮機構が設けられている2シリン
ダコンプレツサなどは一方又は両方にバイパス弁を介装
して8二制御をする。
A Mollier diagram at this time is shown in FIG. 1-(b), and in this case, the temperature Ti of the refrigerant flowing into the intermediate heat exchanger is set higher than the temperature of the heat storage material 9. In addition, there are various ways to change the discharge capacity of the compressor.For example, if the compressor is independent, it is convenient to use an inverter to vary the rotation speed, or if the compressor is a two-cylinder compressor with two compression mechanisms installed on the -shaft. Tsusa etc. are controlled by installing a bypass valve on one or both of them.

一方、第2図は、上述とは逆の冷媒の流れであり、即ち
、中間圧力PiΩ>Pigとなるようにコントロールす
る。このコントロールは、圧縮機1は小容量に、圧縮機
2は大容量にコントロールすることによりガス側中間圧
力Pigを下降させる一方、減圧装置6を低めに絞り、
減圧装置7を高めに絞ることにより液態中間圧力Pip
を上昇させることにより行う。そして、上記コントロー
ルによりPig>Pigの関係となり、矢印■で示すよ
うに蒸発器としての流れ方向が設定され、中間熱交換器
にて冷媒は蓄熱材から熱を吸収して蒸発し暖房能力を向
−I−させる。このときのモリエル線図は第1−(b)
図に示される。
On the other hand, FIG. 2 shows the flow of the refrigerant opposite to that described above, that is, the flow is controlled so that the intermediate pressure PiΩ>Pig. This control lowers the gas side intermediate pressure Pig by controlling the compressor 1 to a small capacity and the compressor 2 to a large capacity, while throttling the pressure reducing device 6 to a low level.
By restricting the pressure reducing device 7 to a higher level, the liquid intermediate pressure Pip
This is done by raising the . The above control results in a relationship of Pig > Pig, and the flow direction as an evaporator is set as shown by the arrow ■, and the refrigerant absorbs heat from the heat storage material and evaporates in the intermediate heat exchanger, increasing heating capacity. -I- let. The Mollier diagram at this time is 1-(b)
As shown in the figure.

上述のように第1図および第2図に示す実施例において
は、2段圧縮冷凍サイクルの中間圧力を制御し、中間熱
交換器における冷媒の流れ方向を可逆とし、流れ方向を
圧縮機から減圧装置にしたときに蓄熱し、逆方向とした
ときに放熱することにより冷凍サイクルの高能力、高効
率化が可能となる。また、熱交換器が1個で済み、同一
スペースで能力が大きくできるとともにコストが安価に
なる。しかも熱交換器間の熱移動がなくなり熱損失が減
少する。
As mentioned above, in the embodiment shown in FIGS. 1 and 2, the intermediate pressure of the two-stage compression refrigeration cycle is controlled, the flow direction of the refrigerant in the intermediate heat exchanger is made reversible, and the flow direction is changed from the compressor to the reduced pressure. By storing heat when the device is turned and dissipating it when the device is turned in the opposite direction, it is possible to increase the capacity and efficiency of the refrigeration cycle. In addition, only one heat exchanger is required, increasing capacity in the same space and reducing costs. Moreover, heat transfer between heat exchangers is eliminated, and heat loss is reduced.

次に、本発明の冷凍サイクルの別実施例を第3図乃至第
4図を参照して説明する。
Next, another embodiment of the refrigeration cycle of the present invention will be described with reference to FIGS. 3 and 4.

第″3図は別実施例の冷凍サイクルを示すものであり、
第1図の実施例と同一構成部品には同一符号を付し説明
を省略する。第3図において符号]1は四h”弁、12
は室内熱交換器、13は室外熱交換器、14は給湯用熱
交換器、15は減圧装置、16.17は逆IL弁である
。本実施例においては、中間圧力部に室内外熱交換器1
2.13を設け、高圧側に給湯用熱交換器14を設けた
構成である。そして、暖房給湯時は、中間圧力はPij
7<Pigで、且つ室内温度より高くなるように第1図
と同様の方法でコントロールし、このときのモリエル線
図がm4−(a)図に示される。
FIG. 3 shows a refrigeration cycle of another embodiment,
Components that are the same as those in the embodiment shown in FIG. 1 are given the same reference numerals and their explanations will be omitted. Code in Figure 3] 1 is a 4h" valve, 12
13 is an indoor heat exchanger, 13 is an outdoor heat exchanger, 14 is a hot water supply heat exchanger, 15 is a pressure reducing device, and 16.17 is a reverse IL valve. In this embodiment, an indoor/outdoor heat exchanger 1 is installed in the intermediate pressure section.
2.13 is provided, and a hot water supply heat exchanger 14 is provided on the high pressure side. During heating and hot water supply, the intermediate pressure is Pij
Control was performed in the same manner as in FIG. 1 so that 7<Pig and the temperature was higher than the room temperature, and the Mollier diagram at this time is shown in the m4-(a) diagram.

また、冷房給湯時は中間圧力はPlg>Pigで、1つ
室外温度より低くするようにコントロールし、このとき
のモリエル線図が第4− (b)図に示される。このよ
うに、本実施例においては暖房給湯時は暖房と給湯にそ
れぞれ凝縮温度を設定できるので無駄な圧縮を行うこと
がなく効率が向上する。
Further, during cooling hot water supply, the intermediate pressure is controlled so that Plg>Pig and is one level lower than the outdoor temperature, and the Mollier diagram at this time is shown in Fig. 4-(b). In this way, in this embodiment, the condensation temperatures can be set separately for heating and hot water supply during heating and hot water supply, so that unnecessary compression is not performed and efficiency is improved.

また、冷房給湯時は室内からの吸熱ばかりでなく室外か
らも吸熱できるため従来の給湯ヒートポンプの冷凍サイ
クルに比し高能力、高効率の運転が11J能となる。
In addition, when supplying hot water for cooling, heat can be absorbed not only from inside the room but also from outside, resulting in a high capacity and high efficiency operation of 11 J compared to the refrigeration cycle of conventional hot water heat pumps.

また、史に別の実施例として、第1図の中間熱交換器を
冷媒加熱器とすれば冷媒加熱ヒートポンプに応用できる
。さらに、中間熱交換器を室内機としたマルチ・エアコ
ンにも応用できる。
Furthermore, as another example, if the intermediate heat exchanger shown in FIG. 1 is used as a refrigerant heater, it can be applied to a refrigerant heating heat pump. Furthermore, it can be applied to multi-air conditioners that use intermediate heat exchangers as indoor units.

〔発明の効果〕〔Effect of the invention〕

以L1実施例の説明から明らかなように本発明は、低段
側圧縮機と高段側圧縮機との間にその一端を接続した中
間圧力部における冷媒の流れを、圧縮機から減圧装置側
へ流れる方向とこの逆方向。
As is clear from the description of the L1 embodiment below, the present invention directs the flow of refrigerant in the intermediate pressure section, one end of which is connected between the low stage compressor and the high stage compressor, from the compressor to the pressure reducing device side. the direction of flow and the opposite direction.

の可逆としたため、この中間圧力部に中間熱交換器とし
て蓄熱器を設けた蓄熱ヒートポンプの高能力、高効率化
が可能となる。また、熱交換器が1個で済み、同一スペ
ースで能力が大きくできるとともにコストが安価になる
。しかも熱交換器間の熱移動がなくなり熱損失が減少す
る。
Since this is made reversible, it is possible to increase the capacity and efficiency of a regenerative heat pump in which a heat storage device is provided as an intermediate heat exchanger in this intermediate pressure section. In addition, only one heat exchanger is required, increasing capacity in the same space and reducing costs. Moreover, heat transfer between heat exchangers is eliminated, and heat loss is reduced.

また、本発明の冷凍サイクルを給湯ヒートポンプに適用
すれば、暖房給湯時の圧縮効率向l〕と、冷房給湯時の
圧縮効率向1−及び能力向」−が可能となる。
Further, if the refrigeration cycle of the present invention is applied to a hot water supply heat pump, compression efficiency ratio 1] during heating hot water supply, compression efficiency ratio 1- and capacity ratio 1- during cooling hot water supply becomes possible.

さらに、本発明の冷凍サイクルを冷媒加熱ヒートポンプ
に適用すれば、室外で吸熱しながら冷媒加熱が可能とな
り能力及び効率が向上する。
Furthermore, if the refrigeration cycle of the present invention is applied to a refrigerant heating heat pump, it becomes possible to heat the refrigerant while absorbing heat outdoors, improving capacity and efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明に係る冷凍サイクルの実施例
を示す冷凍サイクル図とモリエル線図、第3図は本発明
の別実施例を示す冷凍サイクル図、第4図は第3図に示
す実施例のモリエル線図、第5図乃至第9図は従来の冷
凍サイクルの冷凍サイクル図及びモリエル線図である。 1・・・低段側圧縮機、2・・・高段側圧縮機、3・・
・凝縮器、4・・・蒸発器、6・・・高段側減圧装置、
7・・・低段側減圧装置、8・・・蓄熱器、9・・・蓄
熱材、12・・・室内熱交換器、13・・・室外熱交換
器、14・・・給湯用熱交換器。 出願人代理人  佐  藤  −雄 箒4 目 (a)  某7扇
1 and 2 are a refrigeration cycle diagram and Mollier diagram showing an embodiment of the refrigeration cycle according to the present invention, FIG. 3 is a refrigeration cycle diagram showing another embodiment of the present invention, and FIG. FIGS. 5 to 9 are refrigeration cycle diagrams and Mollier diagrams of conventional refrigeration cycles. 1...low stage side compressor, 2...high stage side compressor, 3...
・Condenser, 4... Evaporator, 6... High stage side pressure reducing device,
7...Low stage pressure reducing device, 8...Regenerator, 9...Heat storage material, 12...Indoor heat exchanger, 13...Outdoor heat exchanger, 14...Hot water supply heat exchanger vessel. Applicant's agent Sato - Yuhoki 4 eyes (a) Certain 7 fans

Claims (5)

【特許請求の範囲】[Claims] 1. 冷媒を2段階に亘って圧縮する低段側圧縮機と高
段側圧縮機とを備えた2段圧縮冷凍サイクルにおいて、
上記低段側圧縮機と高段側圧縮機との間の中間圧力部の
冷媒の流れ方向を可逆となるように構成したことを特徴
とする冷凍サイクル。
1. In a two-stage compression refrigeration cycle equipped with a low-stage compressor and a high-stage compressor that compress refrigerant in two stages,
A refrigeration cycle characterized in that the flow direction of refrigerant in an intermediate pressure section between the low-stage compressor and the high-stage compressor is configured to be reversible.
2. 上記中間圧力部の冷媒の流れ方向を可逆とする手
段として、低段側減圧装置と高段側減圧装置の絞り比を
変化させたことを特徴とする特許請求の範囲第1項記載
の冷凍サイクル。
2. A refrigeration cycle according to claim 1, characterized in that the throttling ratio of the low-stage pressure reducing device and the high-stage pressure reducing device is changed as means for making the flow direction of the refrigerant in the intermediate pressure section reversible. .
3. 上記中間圧力部の冷媒の流れ方向を可逆とする手
段として、低段側圧縮機と高段側圧縮機の吐出容量比を
変化させたことを特徴とする特許請求の範囲第1項記載
の冷凍サイクル。
3. Refrigeration according to claim 1, characterized in that the discharge capacity ratio of the low-stage compressor and the high-stage compressor is changed as means for making the flow direction of the refrigerant in the intermediate pressure section reversible. cycle.
4. 上記中間圧力部に蓄熱器を設け、冷媒が圧縮機か
ら減圧装置へ流れるときに上記蓄熱器に蓄熱し、逆方向
へ流れるときに上記蓄熱器から放熱するようにしたこと
を特徴とする特許請求の範囲第1項記載の冷凍サイクル
4. A patent claim characterized in that a heat storage device is provided in the intermediate pressure section, heat is stored in the heat storage device when the refrigerant flows from the compressor to the pressure reducing device, and heat is radiated from the heat storage device when the refrigerant flows in the opposite direction. The refrigeration cycle according to the range 1 above.
5. 上記中間圧力部に室内外熱交換器を設け、上記高
段側圧縮機の吐出側である高圧側に給湯用熱交換器を設
けたことを特徴とする特許請求の範囲第1項記載の冷凍
サイクル。
5. Refrigeration according to claim 1, characterized in that an indoor/outdoor heat exchanger is provided in the intermediate pressure section, and a hot water supply heat exchanger is provided on the high pressure side, which is the discharge side of the high stage compressor. cycle.
JP61232318A 1986-09-30 1986-09-30 Refrigeration cycle Expired - Fee Related JP2514936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61232318A JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61232318A JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS6387559A true JPS6387559A (en) 1988-04-18
JP2514936B2 JP2514936B2 (en) 1996-07-10

Family

ID=16937322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61232318A Expired - Fee Related JP2514936B2 (en) 1986-09-30 1986-09-30 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2514936B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229554A (en) * 1987-04-28 1990-01-31 Central Res Inst Of Electric Power Ind Heating water-heating cycle and cooling-heating water-heating cycle
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
WO2013046647A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Heat pump
JP2013092369A (en) * 2013-02-12 2013-05-16 Daikin Industries Ltd Heat pump
JP2013139902A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device
JP2014029237A (en) * 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd Two-stage-compression heat pump system
JP2020118317A (en) * 2019-01-21 2020-08-06 パナソニックIpマネジメント株式会社 Air conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229554A (en) * 1987-04-28 1990-01-31 Central Res Inst Of Electric Power Ind Heating water-heating cycle and cooling-heating water-heating cycle
JP2002005532A (en) * 1999-10-20 2002-01-09 Denso Corp Freezing cycle apparatus
WO2013046647A1 (en) * 2011-09-30 2013-04-04 ダイキン工業株式会社 Heat pump
JP2013076541A (en) * 2011-09-30 2013-04-25 Daikin Industries Ltd Heat pump
CN103842743A (en) * 2011-09-30 2014-06-04 大金工业株式会社 Heat pump
EP2770276A4 (en) * 2011-09-30 2015-07-22 Daikin Ind Ltd Heat pump
JP2013139902A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Refrigeration device
JP2014029237A (en) * 2012-07-31 2014-02-13 Mitsubishi Heavy Ind Ltd Two-stage-compression heat pump system
JP2013092369A (en) * 2013-02-12 2013-05-16 Daikin Industries Ltd Heat pump
JP2020118317A (en) * 2019-01-21 2020-08-06 パナソニックIpマネジメント株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2514936B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
EP1489367B1 (en) Refrigerating cycle device
JPS6343658B2 (en)
CN215638160U (en) Air conditioner heat exchange system and air conditioner
CA2426526C (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JPS6387559A (en) Refrigeration cycle
WO2002025179A1 (en) Refrigeration cycle
JP2001296068A (en) Regenerative refrigerating device
JP4608303B2 (en) Vapor compression heat pump
KR100520100B1 (en) refrigeration system
US20220252317A1 (en) A heat pump
JP2013124820A (en) Two-step heater and two-step cooler
JP2004143951A (en) Scroll compressor
KR200267157Y1 (en) refrigeration system
JP2808899B2 (en) Two-stage compression refrigeration cycle device
KR100613502B1 (en) Heat pump type air conditioner
JP4157027B2 (en) Heat pump refrigeration system
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
JPH04257660A (en) Two stage compression refrigerating cycle device
LU500968B1 (en) Cascade Heat Pump System with Variable Flow Single Working Medium Parallel Heat Exchanger
CN109869945B (en) Absorption type transcritical carbon dioxide double-stage compression refrigeration system
JPH062965A (en) Two-stage compression refrigerating cycle apparatus
JP3084918B2 (en) Heat pump water heater
JPH10267433A (en) Heat-storage type air conditioner
KR200362720Y1 (en) Refrigerant cycle system
KR200362722Y1 (en) Refrigerant cycle system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees