JPH02182805A - Compression molding method for metal powder or the like - Google Patents

Compression molding method for metal powder or the like

Info

Publication number
JPH02182805A
JPH02182805A JP42089A JP42089A JPH02182805A JP H02182805 A JPH02182805 A JP H02182805A JP 42089 A JP42089 A JP 42089A JP 42089 A JP42089 A JP 42089A JP H02182805 A JPH02182805 A JP H02182805A
Authority
JP
Japan
Prior art keywords
powder
degassing
metal
pipe
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP42089A
Other languages
Japanese (ja)
Inventor
Hidemiki Matsumoto
松本 英幹
Shigenori Asami
浅見 重則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP42089A priority Critical patent/JPH02182805A/en
Publication of JPH02182805A publication Critical patent/JPH02182805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a true density sintered material without need for a cold compression process by filling a mixture of metal powder and ceramic powder into a degassed metallic vessel and providing a filter between a vessel part provided with a degassing pipe and the powder. CONSTITUTION:The mixture 3 of metal powder (Al, Cu, Fe, etc.,) and ceramic powder (SiC, WC, etc.,) is filled into the degassed metallic vessel 1 consisting of a metallic pipe 2. At this time, the mixing ratio of the ceramic powder to metal powder is preferably controlled to <about 50vol.%. The filter 4 (made of steel wool, etc.,) is placed on the upper surface of the mixed powder in the vessel 1, an upper lid 5 provided with a degassing pipe 6 is welded to the upper opening of the metallic pipe 2 to cover the filter 4, and the mixed powder is heated and degassed. By this method, a cold compression molding process can be dispensed with, and an excellent true-density sintered material is pro duced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は粉末冶金における圧縮成形方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a compression molding method in powder metallurgy.

(従来の技術) 粉末冶金法は本来金属などの粉末を金型にいれて圧縮成
形し、これを溶融温度以下の温度で焼結する方法である
が、この方法は焼結体に微小な空隙が残存し靭性などに
劣るためその用途は超硬合金やタングステン線などの難
加工材料または高融点材料などの粉末冶金法でないと製
造が困難なものに限られていた。
(Prior art) Powder metallurgy is originally a method in which metal powder is placed in a mold, compression molded, and then sintered at a temperature below the melting temperature. remains and has poor toughness, so its use has been limited to materials that are difficult to process, such as cemented carbide and tungsten wire, or materials that are difficult to manufacture without using powder metallurgy, such as high melting point materials.

しかし、近年金属などの粉末な冷間圧縮した後これを金
属容器にいれて真空排気して密封し金属容器ごと熱間加
工する方法が開発され、これにより空隙のないm密な組
織が得られるようになり、真密度焼結合金と称されて各
方面で使用されつつある。
However, in recent years, a method has been developed in which after cold-compressing a powder of metal, it is placed in a metal container, evacuated, sealed, and hot-processed together with the metal container.This method allows a dense structure with no voids to be obtained. As a result, it is called a true density sintered alloy and is being used in various fields.

上述の金属製容器を用いる方法は、特にアルミニウム合
金などの酸化し易い合金では有効である。すなわちアル
ミニウム合金などの酸化し易い合金では、一般に粉末表
面に酸化皮膜が存在するため各粉末間の接触部での金属
原子及びガス拡散が起こりにくい、したがって真空状態
で加工し粉末表面の酸化皮膜を破壊して焼結する先述の
方法が特に有効である0例えばアルミニウム合金粉末に
SiC,AM  OまたはA14C3等の微粒子を分散
させた複合材は、耐摩耗性、耐熱性などに優れており自
動車などの部品として開発が進められている。
The method using a metal container described above is particularly effective for alloys that are easily oxidized, such as aluminum alloys. In other words, with alloys that are easily oxidized, such as aluminum alloys, there is generally an oxide film on the powder surface, which makes it difficult for metal atoms and gas to diffuse at the contact points between the powders. The above-mentioned method of breaking and sintering is particularly effective.For example, composite materials made by dispersing fine particles such as SiC, AMO, or A14C3 in aluminum alloy powder have excellent wear resistance and heat resistance, and are used in automobiles, etc. Development is progressing as a component for

(発明が解決しようとする課題) 上記の真密度焼結合金の製造方法においては、粉末な冷
間圧11を形した後に真空排気し、粉末間の空隙の空気
および粉末表面に吸着しているガス、水分などを除去す
る必要がある。このとき冷間圧縮成形を高い密度比まで
行なうと粉末粒子間にガスの気泡が孤立し易くなり、こ
の状態のものを熱開成形するとその空隙は圧着されてな
くなったかのように見える。しかし、その後溶体化処理
等の熱処理を行うとガスが膨張、凝集しふくれや割れな
どの欠陥を生じる。よって、冷間圧11成形は内部の空
気が排出され易いようにある程度低めの密度比に成形さ
れるが、このため冷間圧縮成形体を金型から取り出す際
またはこれを金属容器へ挿入する際に割れたり崩れたり
しないように冷開成形を行なわなければならない。
(Problems to be Solved by the Invention) In the method for manufacturing true density sintered alloy described above, after forming the powder cold pressure 11, it is evacuated, and the air in the gaps between the powders and the powder surface are adsorbed. It is necessary to remove gas, moisture, etc. At this time, when cold compression molding is performed to a high density ratio, gas bubbles tend to become isolated between powder particles, and when a product in this state is hot-open molded, it appears as if the voids have been compressed and disappeared. However, when heat treatment such as solution treatment is subsequently performed, the gas expands and coagulates, causing defects such as blisters and cracks. Therefore, in cold pressure 11 molding, the density ratio is relatively low so that the internal air can be easily discharged, but for this reason, when taking out the cold compression molded product from the mold or inserting it into a metal container, Cold-open molding must be performed to prevent cracking or collapse.

したがって上記冷間圧縮成形工程およびこれに引き続く
冷間圧縮成形体を金属容器へ挿入する工程は種々の難点
を有していた。
Therefore, the cold compression molding step and the subsequent step of inserting the cold compression molded product into a metal container have various drawbacks.

そこで、このような難点の回避の意味からも、前記冷間
圧縮成形工程の省略ができれば最も望ましい、しかし、
粉末を冷開成形せずに金属容器に充填した場合、粉末が
十分固化されていないために、ハンドリング時に容器の
外へ粉末が流出したり、上蓋及び脱ガス管を溶接によっ
て取り付ける際に粉末が飛散して粉塵爆発を生じる危険
性があることや、脱ガスの際金属容器内部の空気と共に
粉末が真空装置にもたらされ真空装置の故障の原因とな
るなどの問題を生じる。
Therefore, in order to avoid such difficulties, it would be most desirable if the cold compression molding process could be omitted.
If the powder is filled into a metal container without cold-open molding, the powder may not solidify sufficiently, causing the powder to flow out of the container during handling, or when attaching the top cover and degassing tube by welding. Problems arise such as there is a risk of scattering and causing a dust explosion, and the powder is brought into the vacuum device along with the air inside the metal container during degassing, causing a failure of the vacuum device.

さらに、脱ガス性を考慮して冷開成形を低い密度で行っ
た場合あるいはプレス機の能力の関係で高い密度まで冷
間成形できない場合も粉末が十分に固化されていないた
めに同様の問題が生じる。
Furthermore, similar problems may occur if cold-open molding is performed at a low density due to degassing considerations, or if cold molding is not possible to a high density due to the capacity of the press, as the powder is not sufficiently solidified. arise.

本発明はかかる問題に鑑みなされたもので、真密度粉末
冶金材料製造工程における冷間圧縮成形工程を省略ある
いは低い密度で行なった場合においても上述の問題を生
じることなく脱ガスが行なえ、製造コストの低減ができ
る粉末の圧縮成形方法を提供することを目的とするもの
である。
The present invention was made in view of such problems, and even when the cold compression molding step in the true density powder metallurgy material manufacturing process is omitted or performed at a low density, degassing can be performed without causing the above problems, and the manufacturing cost is reduced. It is an object of the present invention to provide a powder compression molding method that can reduce the amount of powder.

(課題を解決するための手段) 本発明は金属粉末または金属とセラミックスの混合粉末
を金属製脱ガス容器に充填したのち、脱ガス管を取り付
けた部分の脱ガス容器と粉末との間にフィルターを配設
して脱ガスを行なう脱ガス処理工程を有していることを
特徴とする粉末の圧縮成形方法を提供するものである。
(Means for Solving the Problems) The present invention involves filling a metal degassing container with metal powder or a mixed powder of metal and ceramics, and then filtering the powder between the degassing container and the powder at a portion where a degassing pipe is attached. The present invention provides a method for compression molding powder, characterized in that it includes a degassing step in which degassing is performed by disposing a powder.

次に本発明方法を図面に従って説明する。Next, the method of the present invention will be explained with reference to the drawings.

まず本発明方法において粉末の充填は第1図に示す金属
製脱ガス容器を用いて行なうことができ、充填抜脱ガス
を行なう。
First, in the method of the present invention, powder can be filled using a metal degassing container shown in FIG. 1, and filling and degassing are performed.

図中1は金属製脱ガス容器、2は金属パイプ、3は粉末
、4はフィルター、5は上蓋、6は脱ガス管である。ま
た2aは金属バイブ下端開口部に溶接した底蓋である。
In the figure, 1 is a metal degassing container, 2 is a metal pipe, 3 is powder, 4 is a filter, 5 is an upper lid, and 6 is a degassing tube. Moreover, 2a is a bottom cover welded to the lower end opening of the metal vibrator.

金属製容器lに粉末3を充填した後、この粉末3の上面
にフィルター4を載置し、このフィルター4を覆って脱
ガス管6付きの上蓋5を金属パイプ2上端開口に溶接等
により接続し、上記脱ガス管6に連結した真空装M(図
示せず)により脱ガスする。
After filling a metal container l with powder 3, a filter 4 is placed on top of the powder 3, and a top cover 5 with a degassing pipe 6 is connected to the top opening of the metal pipe 2 by welding or the like, covering the filter 4. Then, the gas is degassed by a vacuum device M (not shown) connected to the degassing pipe 6.

金属製脱ガス容器lの形状(断面形状)は従来のものと
同じでよく、特に限定するものではない。
The shape (cross-sectional shape) of the metal degassing container 1 may be the same as a conventional one, and is not particularly limited.

本発明に使用される金属粉末はAnのほかにCu、Fe
、Co、W、Mo等の金属及びその合金からなる粉末の
いずれでもよく、その製造方法もガスアトマイズ法、円
心噴霧法、回転カップ法、回転電極法など任意の方法で
製造されたものでよい。
In addition to An, the metal powder used in the present invention is Cu, Fe.
, Co, W, Mo, and other metals and their alloys, and may be produced by any method such as gas atomization, circular atomization, rotating cup method, or rotating electrode method. .

またそれらの粒径も従来使用されるものと同等のもので
よく、特に限定するものではない。
Further, the particle size thereof may be the same as that conventionally used, and is not particularly limited.

セラミックス粉末としてはSiC,WC,B4C等の炭
化物系、Si3N4.A又N、BN、TiNなどの窒化
物系、AJI  O、Zr0z 。
Ceramic powders include carbides such as SiC, WC, B4C, Si3N4. Nitride-based materials such as A or N, BN, TiN, AJI O, Zr0z.

2コ MgO1SiO2,BeOなどの酸化物系または上記の
複合化合物などが適用される。セラミックス粉末の形状
は粒状に限らず長繊維、短繊維など任意のものでよくま
たウィスカーなどを用いてもよい。
Oxide-based materials such as 2-MgO1SiO2, BeO, or the above-mentioned composite compounds are applicable. The shape of the ceramic powder is not limited to granules, but may be any shape such as long fibers or short fibers, and whiskers or the like may also be used.

さらにセラミックス粉末の金属粉末への混合比率は50
容量%程度までが好ましく、必要によりこの範囲以上含
有させてもよい。
Furthermore, the mixing ratio of ceramic powder to metal powder is 50.
The content is preferably up to about % by volume, and it may be contained in amounts greater than this range if necessary.

本発明に使用されるフィルタ=は、スチールウール、ス
テンレスウールなどの金属繊維製のものの他、グラスフ
ァイバーウール、セラミックファイバーウール、炭素t
a維ウールなど、脱ガス時の加熱によってその組織が分
解せず有害なガス放出を生じないものならばいずれでも
使用できる。
Filters used in the present invention include those made of metal fibers such as steel wool and stainless wool, as well as glass fiber wool, ceramic fiber wool, and carbon fiber.
Any material, such as A-fiber wool, can be used as long as its structure does not decompose when heated during degassing and does not release harmful gases.

また脱ガス管6に連結する真空装置としてはロータリー
ポンプ等が挙げられ、脱ガスは従来と同等の条件で行な
えばよい。
Further, a rotary pump or the like may be used as a vacuum device connected to the degassing pipe 6, and degassing may be performed under the same conditions as conventional ones.

なお、第2図、第3図は、本発明の他の態様を示す脱ガ
ス容器の説明図である。第2図は脱ガス容器lの底板2
aに脱ガス管取り付は用の孔7を予め設けてあり、その
上にフィルター4を挿入してから粉末3を充填し、さら
に粉末上端面をフィルターで覆ってから上蓋5を取り付
けるものである。第3図は脱ガス容器lの2カ所に脱ガ
ス管6を取り付けた場合のものである。この場合脱ガス
容器内に還元性ガスまたは不活性ガスなどを流しながら
脱ガスを行なうこともてきる。
Note that FIGS. 2 and 3 are explanatory diagrams of a degassing container showing another embodiment of the present invention. Figure 2 shows the bottom plate 2 of the degassing container l.
A hole 7 for attaching the degassing pipe is pre-prepared in A, a filter 4 is inserted into the hole 7, the powder 3 is filled in, and the upper end surface of the powder is covered with the filter, and then the top cover 5 is attached. be. FIG. 3 shows a case where degassing pipes 6 are attached to two locations in the degassing container l. In this case, degassing may be performed while flowing a reducing gas or an inert gas into the degassing container.

本発明法によって脱ガスされた粉末はこの後金属容器ご
と加熱され、油圧プレスまたは熱間静水圧成形などによ
り熱間圧縮され緻密化される。この圧1i!#、形は常
法と同様に行なうことができる。
The powder degassed by the method of the present invention is then heated together with the metal container, and hot-pressed and densified by a hydraulic press or hot isostatic pressing. This pressure is 1i! #, the shape can be done in the same way as the regular method.

(実施例) 以下に本発明を実施例に基づいてさらに詳細に説明する
(Examples) The present invention will be described in more detail below based on Examples.

第1図に示す金属パイプ2を純アルミ製とし、同じく純
アルミ製の底蓋2aを金属パイプ2下端に溶接した。こ
の一端を閉じた金属バイブの寸法は外径200mm、肉
厚5mm、高さ625mmて、底蓋2aの肉厚は3mm
である。実験に使用した粉末3は、粒子径1105IL
以下の7091An合金粉末、およびこのAi粒粉末1
51Lm以下のSiC粉末をlO容容量板添加た混合粉
末の2種類である。
The metal pipe 2 shown in FIG. 1 was made of pure aluminum, and a bottom cover 2a also made of pure aluminum was welded to the lower end of the metal pipe 2. The dimensions of this metal vibrator with one end closed are 200 mm in outer diameter, 5 mm in wall thickness, and 625 mm in height, and the wall thickness of the bottom cover 2a is 3 mm.
It is. Powder 3 used in the experiment had a particle size of 1105IL.
The following 7091An alloy powder and this Ai grain powder 1
There are two types of mixed powders in which 51 Lm or less of SiC powder is added to the 1O capacity plate.

上記の混合粉末3を純アルミ製の金属パイプ2に真密度
にした場合300mmの高さとなる量の粉末を充填した
。この時の粉末の充填密度は約50%であった。次に粉
末上端面を厚さ20mmのスチールウール製フィルター
4で覆った後、純アルミ製の上蓋5を金属パイプ2上端
に溶接により取り付けた。この上蓋5にはあらかじめ孔
を穿設しておき、この孔に連通ずるように純アルミ製の
脱ガス管6を溶接により上蓋5に取り付けた。
A metal pipe 2 made of pure aluminum was filled with the mixed powder 3 in an amount that would have a height of 300 mm when the true density was made. The packing density of the powder at this time was about 50%. Next, the upper end surface of the powder was covered with a steel wool filter 4 having a thickness of 20 mm, and then a pure aluminum upper cover 5 was attached to the upper end of the metal pipe 2 by welding. A hole was previously drilled in the upper lid 5, and a degassing pipe 6 made of pure aluminum was attached to the upper lid 5 by welding so as to communicate with the hole.

次に脱ガス管6から400°Cに加熱しながら金属パイ
プ2内をロータリーポンプを用いてlx 10−”To
rrまで真空排気して密封した。このような成形体を1
0個作製し、これらを400℃で熱間成形プレスして1
00%密度とした後、外周部の金属製脱ガス容器及びフ
ィルタ一部を切削除去して直径175mm、長さ280
mmのビレットとした。
Next, while heating the metal pipe 2 to 400°C from the degassing pipe 6, the inside of the metal pipe 2 is heated to lx 10-”To
It was evacuated to rr and sealed. 1 such molded body
0 pieces were made, and these were hot-formed and pressed at 400°C to make 1
After achieving a density of 0.00%, the metal degassing container and part of the filter on the outer periphery were removed to make a diameter of 175 mm and a length of 280 mm.
It was made into a billet of mm.

比較のため、従来の方法により混合粉末の冷間成形体を
作製した。すなわち上記の混合粉末を内径190mmの
金型に直接充填し相対密度が85%になるように冷間圧
縮成形し、これを金型から取り出して前記と同じ純アル
ミ製の金属パイプに挿入しこれを400℃に加熱しなが
らlXl0−2Torrに排気し密封した。この成形体
を10個作製し、これらを400℃で熱間成形プレスし
て100%密度とした後、外周部の金属製脱ガス容器を
切削除去して直径175mm、長さ280mmのビレッ
トとした。
For comparison, a cold compact of mixed powder was produced using a conventional method. That is, the above mixed powder was directly filled into a mold with an inner diameter of 190 mm, cold compression molded so that the relative density was 85%, and this was taken out from the mold and inserted into the same pure aluminum metal pipe as above. While heating it to 400°C, it was evacuated to 1X10-2 Torr and sealed. Ten pieces of this molded body were produced, and after hot forming and pressing at 400°C to give 100% density, the metal degassing container on the outer periphery was cut off to obtain a billet with a diameter of 175 mm and a length of 280 mm. .

A1合金粉末についても上記の混合粉末と同じ条件で冷
開成形した後、熱間圧縮成形してビレットに加工した。
The A1 alloy powder was also cold-open molded under the same conditions as the mixed powder, and then hot compression molded to form a billet.

これらのビレットを420℃の温度で直径70mmに押
出加工した。この押出材を488℃で1時間溶体化処理
した後水冷し、さらに120’(:X24時間のT6時
効処理をほどこした後、押出材表面のふくれの有無を観
察し、押出材の強度を測定した。溶体化処理後のふくれ
の有無およびT6本発明法ではプレスを用いた冷間圧1
1成形を行っていないにもかかわらず、脱ガスを行う際
に粉末充填後のハンドリング時に粉末が流出したり。
These billets were extruded to a diameter of 70 mm at a temperature of 420°C. This extruded material was solution-treated at 488°C for 1 hour, cooled with water, and then subjected to T6 aging treatment for 120' (:24 hours).Then, the presence or absence of blisters on the surface of the extruded material was observed, and the strength of the extruded material was measured. Presence or absence of blistering after solution treatment and T6 In the method of the present invention, cold pressure using a press 1
1. Even though no molding was performed, powder leaked out during handling after powder filling during degassing.

上蓋及び脱ガス管溶接時に粉末の飛散や、脱ガス時に粉
末が真空装置に持ち込まれるなどの問題は生じなかった
。さらに第1表により明らかなように、溶体化処理でふ
くれを生じることなくまた強度も従来法で製造された粉
末冶金材料と同等であり、製造工程を簡略化したことに
よる悪影響は生じていないことがわかる。
There were no problems such as powder scattering during welding of the top cover and degassing tube, or powder being carried into the vacuum equipment during degassing. Furthermore, as is clear from Table 1, the solution treatment did not cause blistering and the strength was equivalent to that of powder metallurgy materials manufactured by conventional methods, so there were no adverse effects due to the simplified manufacturing process. I understand.

(発明の効果) 本発明によれば真密度焼結材料製造工程のうち冷間圧縮
成形工程を省略しても粉末状態で従来のような問題を生
じることなく脱ガスが可能であるから、製造コストの低
減に顕著な効果を奏する。
(Effects of the Invention) According to the present invention, even if the cold compression molding step is omitted in the true density sintered material manufacturing process, degassing is possible without causing problems like in the past in the powder state. This has a remarkable effect on cost reduction.

さらに冷間圧縮成形を低い密度で行った場合においても
問題なく脱ガスを行うことができる。
Further, even when cold compression molding is performed at a low density, degassing can be performed without problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一態様を示す斜視図、第2図及び第3
図はその他の態様を示す斜視図である。 l・・・金属製脱ガス容器、2・・・金属パイプ、3・
・・粉末、2a・・・底蓋、4・・・フィルター、5・
・・上蓋、6・・・脱ガス管、7・・・孔 第 図 第 図
FIG. 1 is a perspective view showing one embodiment of the present invention, FIG. 2 and FIG.
The figure is a perspective view showing another aspect. l... Metal degassing container, 2... Metal pipe, 3...
...Powder, 2a...Bottom lid, 4...Filter, 5.
... Upper cover, 6... Degassing pipe, 7... Hole diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 金属粉末または金属とセラミックスの混合粉末を金属製
脱ガス容器に充填したのち、脱ガス管を取り付けた部分
の脱ガス容器と粉末との間にフィルターを配設して脱ガ
スを行なう脱ガス処理工程を有していることを特徴とす
る粉末の圧縮成形方法。
A degassing process in which a metal powder or mixed powder of metal and ceramics is filled into a metal degassing container, and then a filter is placed between the powder and the degassing container where the degassing pipe is attached to perform degassing. 1. A powder compression molding method comprising the steps of:
JP42089A 1989-01-06 1989-01-06 Compression molding method for metal powder or the like Pending JPH02182805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP42089A JPH02182805A (en) 1989-01-06 1989-01-06 Compression molding method for metal powder or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP42089A JPH02182805A (en) 1989-01-06 1989-01-06 Compression molding method for metal powder or the like

Publications (1)

Publication Number Publication Date
JPH02182805A true JPH02182805A (en) 1990-07-17

Family

ID=11473312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP42089A Pending JPH02182805A (en) 1989-01-06 1989-01-06 Compression molding method for metal powder or the like

Country Status (1)

Country Link
JP (1) JPH02182805A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2549785A (en) * 2016-04-29 2017-11-01 Advanced Interactive Mat Science Ltd Methods and apparatus for hot isostatic pressing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2549785A (en) * 2016-04-29 2017-11-01 Advanced Interactive Mat Science Ltd Methods and apparatus for hot isostatic pressing
US11278961B2 (en) 2016-04-29 2022-03-22 Sagittite Limited Containment for hot isostatic pressing and vacuum degassing apparatus

Similar Documents

Publication Publication Date Title
US6048432A (en) Method for producing complex-shaped objects from laminae
US8329093B2 (en) Method for preparing metal-matrix composite and device for implementing said method
RU2329122C2 (en) Method of items production from metal alloys without melting
KR100886111B1 (en) Powder metal scrolls
US6933531B1 (en) Heat sink material and method of manufacturing the heat sink material
CN1031723C (en) Method of forming compacts
US5119729A (en) Process for producing a hollow charge with a metallic lining
EP2376247B1 (en) Process for manufactirung multilevel parts from agglomerated spherical metal powder
RU2633418C2 (en) Method of metal product manufacture without melting
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US6080341A (en) Process for making an indium-tin-oxide shaped body
JPS5842703A (en) Manufacture of preform of one body powder alloy part from more than two kinds of powder alloy
EP0741194B1 (en) Pneumatic isostatic compaction of sintered compacts
US3359095A (en) Sintering of loose particulate aluminum metal
JP2849710B2 (en) Powder forming method of titanium alloy
JPH02182805A (en) Compression molding method for metal powder or the like
EP0380973A1 (en) Reinforced materials
US3798740A (en) Method of extruding a porous compacted mass of metal powder having a sealed outer surface
JPS62109903A (en) Method for pressing and packing powder
JPH02182806A (en) Method for extruding powder metallurgical material
JPS63118003A (en) Compression molding method for powder
JPH02149604A (en) Manufacture of compression molding of powder
JPH0348253B2 (en)
JPS63282201A (en) Method for forging powder metallurgical material
JPH0140082B2 (en)