JPH0348253B2 - - Google Patents

Info

Publication number
JPH0348253B2
JPH0348253B2 JP62157519A JP15751987A JPH0348253B2 JP H0348253 B2 JPH0348253 B2 JP H0348253B2 JP 62157519 A JP62157519 A JP 62157519A JP 15751987 A JP15751987 A JP 15751987A JP H0348253 B2 JPH0348253 B2 JP H0348253B2
Authority
JP
Japan
Prior art keywords
metal
container
powder
matrix
matrix metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62157519A
Other languages
Japanese (ja)
Other versions
JPS644418A (en
Inventor
Takashi Oda
Minoru Fukazawa
Shige Ishikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP15751987A priority Critical patent/JPS644418A/en
Publication of JPS644418A publication Critical patent/JPS644418A/en
Publication of JPH0348253B2 publication Critical patent/JPH0348253B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、粉末治金法を用いてウイスカー強化
金属複合材を製造する方法に関する。 〔従来の技術〕 アルミニウム合金を粉末治金法により焼結する
方法として、次のようなプロセスが知られてい
る。 (1) 予め粒度および成分調整した合金粉末を、冷
間静水圧プレスにより所定密度に成形して予備
成形体をつくる。 (2) 予備成形体を缶の中に挿入し真空加熱して脱
ガスしたのち、缶全体を密封する。 (3) 密封した缶をホツトプレスあるいは熱間静水
圧プレスにより熱圧し予備成形体を完全に焼結
する。 このプロセスは、原料となる合金粉末をウイス
カーとマトリツクス金属粉末の混合物に置換えれ
ばそのままウイスカー強化金属複合材の製造に転
用することができる。 〔発明が解決しようとする問題点〕 ところが、上記のよち(2)の工程でなされる缶の
密封処理は、開口部を融着などの煩雑な手段を用
いて封止しなければならないため量産性の面から
は大きなマイナス要因となる。 本来、この密封処理は原料の予備成形体中に吸
蔵あるいは吸着されている水蒸気、水素、窒素な
どのガス成分を除去する脱ガス処理の後工程とし
てなされるもので、ガス成分の逆侵入を防止して
焼結体にポアやブリスター等の発生が起らないよ
うにするための手段である。したがつて、プロセ
スとしては、省略することのできない重要な工程
となる。 〔問題点を解決するための手段〕 本発明は、上記の問題点に鑑み鋭意研究を重ね
た結果、缶の密封処理を要しないで同等の脱ガス
効果を与えることができる方法を見出し、量産性
の高いウイスカー強化金属複合材の製造方法とし
て完成したものである。 すなわち、本発明によるウイスカー強化金属複
合材の製造方法は、ウイスカーとアルミニウムま
たはその合金からなるマトリツクス金属粉末を粉
末治金法を用いて複合化するにあたり、ウイスカ
ーとマトリツクス金属粉末の混合物もしくはこの
予備成形体を前記マトリツクス金属と同質の肉薄
金属で変形可能に形成した筒状金属容器に入れ、
上面にマトリツクス金属と同質で厚さ10〜30μm
の金属箔により形成した落蓋を置いたのち真空加
熱して脱ガスし、引き続き容器内部を不活性ガス
で置換し、ついで焼結処理することを構成上の特
徴とする。 原料成分となるウイスカーとしては、炭化けい
素、窒化けい素などの針状単結晶が、また、マト
リツクス金属粉末にはアルミニウムまたはその合
金の微粉末(粒度200メツシユ以下)が良好に用
いられる。ウイスカーとマトリツクス金属粉末
は、溶媒分散法、粉体攪拌法など適宜な手段を用
いて所定の比率に均質混合する。ついで混合物は
そのままもしくは冷間静水圧プレスのような圧縮
装置で予備成形体としたのち、筒状金属容器に入
れる。混合粉末の状態で入れる場合には、容器中
で圧縮して予め成形化しておくことが望ましい。 筒状金属容器は、マトリツクス金属と同質の厚
さ0.1〜1.0mm程度の肉薄金属を用い、容易に塑性
変形するように形成する。容器内に充填された混
合物あるいは予備成形体の上面には金属箔の落蓋
を置く。この金属箔の落蓋も、マトリツクス金属
と同質で厚さ10〜30μm程度の内薄金属シートで
形成する。 上記の原料充填状態を示したのが第1図で、1
は筒状金属容器、2は原料となる混合物または予
備成形体、そして3は金属箔の落蓋である。 ついで、この筒状金属容器を真空加熱装置内に
置いて脱ガス処理をおこなう。この過程で、原料
中に含まれるガス成分は除去されるが、その後さ
らに容器内部をアルゴン、窒素などの不活性ガス
で置換することより原料成分の酸化現象を一層防
止することができる。また、脱ガス処理および不
活性ガス置換をおこなつた段階で、筒状金属容器
の上端壁部4(第1図参照)を内側に折り曲げる
と、外部雰囲気との遮断に有効に作用する。 上記処理後の筒状金属容器は金型にセツトし、
常法により熱圧下で焼結処理する。 〔作用〕 本発明では第1図に示された態様で脱ガス処理
がおこなわれる。この過程では、原料中に含まれ
るガス成分は筒状金属容器の内壁と落蓋外周との
隙間から排出するが、ガス排出の進行に伴つて落
蓋の金属箔は漸次原料成分の上面に接触し、最終
的にその上面を被覆する状態に密着する。この作
用を介して従来技術による缶の密封処理と同等の
封止効果がもたらされる。 〔実施例〕 肉厚0.5mmのアルミニウム合金(3004)により
構成された円筒容器に、SiCウイスカー10%体積
率とマトリツクス金属としてのアルミニウム合金
粉(2024)90%体積率の均質混合粉末を入れ上面
から1Kg/mm2の加圧力で圧縮した。ついで、混合
粉末の充填面に、厚さ15μmのアルミニウム箔
(1100)を裁断して作つた落蓋を第1図の状態に
置き、真空加熱炉に移して真空度10-4Torr以下、
加熱温度300℃の条件下に10時間保持し脱ガス処
理をおこなつた。脱ガス処理後、温度を520℃に
上昇し系内にアルゴンガスを導入して、容器内部
を不活性ガスで置換した。 このようにして脱ガスおよび不活性ガス置換の
処理をおこなつた容器を直ちに520℃に加熱され
た金型内にセツトし、面圧1.ton/mm2で30分間に
亙に加熱焼結した。 比較のために、同一の条件で脱ガス後容器を密
封して焼結処理する例(従来例)、上記実施例の
うちアルミニウム箔の落蓋を使用しなかつた例
(比較例)により焼結体を作成した。 得られた各ウイスカー強化金属複合材の試片に
つき吸蔵ガス量と各種強度特性を測定し、結果を
下表に示した。
[Industrial Field of Application] The present invention relates to a method of manufacturing whisker-reinforced metal composites using powder metallurgy. [Prior Art] The following process is known as a method for sintering an aluminum alloy by powder metallurgy. (1) An alloy powder whose particle size and composition have been adjusted in advance is molded to a predetermined density by cold isostatic pressing to create a preform. (2) Insert the preform into a can, heat it under vacuum to degas it, and then seal the entire can. (3) Heat-press the sealed can using a hot press or hot isostatic press to completely sinter the preform. This process can be directly applied to the production of whisker-reinforced metal composites by replacing the raw material alloy powder with a mixture of whiskers and matrix metal powder. [Problems to be solved by the invention] However, the can sealing process performed in step (2) above requires sealing the opening using complicated means such as fusion. This is a major negative factor in terms of mass production. Originally, this sealing treatment was performed as a post-degassing process to remove gaseous components such as water vapor, hydrogen, and nitrogen that were occluded or adsorbed in the raw material preform, thereby preventing the reverse entry of gaseous components. This is a means to prevent the occurrence of pores, blisters, etc. in the sintered body. Therefore, it is an important process that cannot be omitted. [Means for Solving the Problems] The present invention, as a result of extensive research in view of the above problems, has discovered a method that can provide the same degassing effect without requiring sealing of the cans, and is capable of mass production. This method has been completed as a method for manufacturing whisker-reinforced metal composites with high properties. That is, the method for producing a whisker-reinforced metal composite according to the present invention is to combine whiskers and a matrix metal powder made of aluminum or an alloy thereof using a powder metallurgy method. placing the body in a deformable cylindrical metal container made of thin metal of the same quality as the matrix metal;
On the top surface, the matrix is the same as the metal and has a thickness of 10 to 30 μm.
The main feature of the structure is that after placing a drop lid made of metal foil, the container is heated in vacuum to degas it, the inside of the container is subsequently replaced with an inert gas, and then sintering is performed. Acicular single crystals such as silicon carbide and silicon nitride are preferably used as the whiskers serving as raw material components, and fine powders (particle size of 200 mesh or less) of aluminum or its alloys are preferably used as the matrix metal powder. The whiskers and the matrix metal powder are homogeneously mixed in a predetermined ratio using an appropriate method such as a solvent dispersion method or a powder stirring method. The mixture is then put into a cylindrical metal container either as it is or after being made into a preform using a compression device such as a cold isostatic press. When containing the powder in the form of a mixed powder, it is desirable to compact it in a container and shape it in advance. The cylindrical metal container is made of a thin metal with a thickness of about 0.1 to 1.0 mm, which is the same as the matrix metal, and is formed so as to be easily plastically deformed. A metal foil drop lid is placed on top of the mixture or preform filled in the container. This metal foil drop cover is also made of a thin metal sheet of the same quality as the matrix metal and about 10 to 30 μm thick. Figure 1 shows the above raw material filling state.
2 is a cylindrical metal container, 2 is a raw material mixture or preform, and 3 is a metal foil drop lid. Next, this cylindrical metal container is placed in a vacuum heating device and degassed. In this process, the gas components contained in the raw material are removed, but the oxidation phenomenon of the raw material components can be further prevented by subsequently replacing the inside of the container with an inert gas such as argon or nitrogen. Moreover, if the upper end wall portion 4 (see FIG. 1) of the cylindrical metal container is bent inward at the stage where degassing treatment and inert gas replacement have been performed, the container is effectively isolated from the external atmosphere. The cylindrical metal container after the above treatment is set in a mold,
Sintering is performed under heat and pressure using a conventional method. [Operation] In the present invention, degassing treatment is performed in the manner shown in FIG. In this process, the gas components contained in the raw material are discharged from the gap between the inner wall of the cylindrical metal container and the outer periphery of the drop lid, but as the gas discharge progresses, the metal foil of the drop lid gradually comes into contact with the top surface of the raw material component. Finally, it adheres tightly to cover its upper surface. Through this action, a sealing effect equivalent to that of the can sealing process according to the prior art is achieved. [Example] A homogeneous mixed powder with a 10% volume ratio of SiC whiskers and a 90% volume ratio of aluminum alloy powder (2024) as a matrix metal was placed in a cylindrical container made of aluminum alloy (3004) with a wall thickness of 0.5 mm, and the upper surface It was compressed with a pressure of 1 Kg/mm 2 . Next, a drop lid made by cutting aluminum foil (1100) with a thickness of 15 μm was placed on the filled surface of the mixed powder as shown in Figure 1, and transferred to a vacuum heating furnace where the vacuum level was 10 -4 Torr or less.
Degassing was performed by holding the sample at a heating temperature of 300°C for 10 hours. After the degassing treatment, the temperature was raised to 520°C, argon gas was introduced into the system, and the inside of the container was replaced with an inert gas. The container that had been degassed and replaced with inert gas in this way was immediately placed in a mold heated to 520℃, and heated and sintered for 30 minutes at a surface pressure of 1.ton/ mm2. did. For comparison, an example in which the container was sealed and sintered after degassing under the same conditions (conventional example), and an example in which the aluminum foil drop lid was not used in the above example (comparative example) were sintered. Created a body. The amount of occluded gas and various strength characteristics were measured for each sample of the whisker-reinforced metal composite material obtained, and the results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、脱ガス過程における落蓋の封
止作用によつて従来技術で有効とされている煩雑
な缶の密封処理を施したときと同等の脱ガス効果
を得ることができる。したがつて、プロセスの簡
易化に伴う改善された量産手段により高性能のウ
イスカー強化金属複合材を円滑かつ迅速に生産す
ることが可能となる。
According to the present invention, by the sealing action of the drop lid during the degassing process, it is possible to obtain the same degassing effect as when performing the complicated can sealing process that is effective in the prior art. Therefore, it becomes possible to smoothly and quickly produce high-performance whisker-reinforced metal composites by means of improved mass production due to process simplification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の脱ガス工程における原料充填
状態を示した筒状金属容器の縦断面図である。 1……筒状金属容器、2……原料、3……落
蓋、4……上端壁部。
FIG. 1 is a longitudinal cross-sectional view of a cylindrical metal container showing a state in which raw materials are filled in the degassing step of the present invention. 1... Cylindrical metal container, 2... Raw material, 3... Drop lid, 4... Upper end wall.

Claims (1)

【特許請求の範囲】[Claims] 1 ウイスカーとアルミニウムまたはその合金か
らなるマトリツクス金属粉末を粉末治金法を用い
て複合化するにあたり、ウイスカーとマトリツク
ス金属粉末の混合物もしくはこの予備成形体を前
記マトリツクス金属と同質の肉薄金属で変形可能
に形成した筒状金属容器に入れ、上面にマトリツ
クス金属と同質で厚さ10〜30μmの金属箔により
形成した落蓋を置いたのち真空加熱して脱ガス
し、引き続き容器内部を不活性ガスで置換し、つ
いで焼結処理することを特徴とするウイスカー強
化金属複合材の製造方法。
1. When compounding whiskers and matrix metal powder made of aluminum or an alloy thereof using a powder metallurgy method, a mixture of whiskers and matrix metal powder or a preformed body thereof can be deformed with a thin metal of the same quality as the matrix metal. Place it in the formed cylindrical metal container, place a drop lid made of metal foil with a thickness of 10 to 30 μm and the same quality as the matrix metal on the top surface, heat it in vacuum to degas it, and then replace the inside of the container with inert gas. A method for producing a whisker-reinforced metal composite material, which comprises the steps of:
JP15751987A 1987-06-26 1987-06-26 Production of whisker reinforced metal composite material Granted JPS644418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15751987A JPS644418A (en) 1987-06-26 1987-06-26 Production of whisker reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15751987A JPS644418A (en) 1987-06-26 1987-06-26 Production of whisker reinforced metal composite material

Publications (2)

Publication Number Publication Date
JPS644418A JPS644418A (en) 1989-01-09
JPH0348253B2 true JPH0348253B2 (en) 1991-07-23

Family

ID=15651445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15751987A Granted JPS644418A (en) 1987-06-26 1987-06-26 Production of whisker reinforced metal composite material

Country Status (1)

Country Link
JP (1) JPS644418A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042703A (en) * 1990-04-18 1992-01-07 Kobe Steel Ltd Manufacture of al-base composite material
WO1995012139A1 (en) * 1993-10-29 1995-05-04 O.G.K. Hanbai Co., Ltd. Sunglasses

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144805A (en) * 1977-05-24 1978-12-16 Kobe Steel Ltd Hermetically sealing method in metallic capsule for material to be treated in hot static pressure pressing method
JPS564512A (en) * 1979-06-22 1981-01-17 Yamada Kikai Kogyo Kk Knot beak floating preventor for bundling apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144805A (en) * 1977-05-24 1978-12-16 Kobe Steel Ltd Hermetically sealing method in metallic capsule for material to be treated in hot static pressure pressing method
JPS564512A (en) * 1979-06-22 1981-01-17 Yamada Kikai Kogyo Kk Knot beak floating preventor for bundling apparatus

Also Published As

Publication number Publication date
JPS644418A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US4108652A (en) Method for producing a sintered body of high density
CN1031723C (en) Method of forming compacts
EP0345045A1 (en) Method of making tungsten-titanium sputtering targets
JPH029081B2 (en)
JPH056780B2 (en)
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JP2001339022A (en) Heat sink material and its manufacturing method
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
US4719077A (en) Method for the preparation of an alloy of nickel and titanium
JP2849710B2 (en) Powder forming method of titanium alloy
US4943320A (en) Vapor phase redistribution in multi-component systems
JPH0348253B2 (en)
US3150975A (en) Method of making intermetallic compound-composition bodies
JPH03122059A (en) Preparation of powdered ceramic product
CN1373233A (en) Method for making porous Al sintered material
US3231344A (en) Sintered intermetallic bodies composed of aluminum and niobium or tantalum
JPS63255331A (en) Formation of ti-al intermetallic-compound member
JPS62109903A (en) Method for pressing and packing powder
JP2000203955A (en) Production of diamond-silicon carbide composite sintered body
JPH03173705A (en) Production of high density sintered body
JPS61264104A (en) Production of high melting point metallic sintered body
JPH08183661A (en) Production of silicon carbide sintered compact
JP2946350B2 (en) Method for producing sintered body made of amorphous alloy powder
US3150970A (en) Beryllium-tantalum composition
JPS61221303A (en) Production of oxide dispersed fe high alloy