JPH02179880A - Production of thin oxide ceramic superconducting film - Google Patents

Production of thin oxide ceramic superconducting film

Info

Publication number
JPH02179880A
JPH02179880A JP33505788A JP33505788A JPH02179880A JP H02179880 A JPH02179880 A JP H02179880A JP 33505788 A JP33505788 A JP 33505788A JP 33505788 A JP33505788 A JP 33505788A JP H02179880 A JPH02179880 A JP H02179880A
Authority
JP
Japan
Prior art keywords
substrate
oxide ceramic
oxygen plasma
superconducting
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33505788A
Other languages
Japanese (ja)
Other versions
JPH0349985B2 (en
Inventor
Akinori Koketsu
明伯 纐纈
Yasuharu Kamioka
上岡 泰晴
Hisashi Seki
関 寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Sanso Ltd
Original Assignee
Toyo Sanso Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Sanso Ltd filed Critical Toyo Sanso Ltd
Priority to JP33505788A priority Critical patent/JPH02179880A/en
Publication of JPH02179880A publication Critical patent/JPH02179880A/en
Publication of JPH0349985B2 publication Critical patent/JPH0349985B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin oxide ceramic superconducting film by a simple process by spraying an aq. soln. of salts contg. metals as starting materials, feeding the resulting mist into oxygen plasma and depositing formed oxide ceramic on a substrate. CONSTITUTION:An ag. soln. 1 of salts contg. metals as starting materials is introduced into a sprayer 2 and sprayed by ultrasonic spraying or other method to form mist of about 0.3-2.0mum particle size. This mist is introduced into the upper part of a reaction tube 4 with a first carrier gas 3 and a second carrier gas 5 is also introduced into the upper part. At this time, gaseous oxygen for generating oxygen plasma is incorporated into one or both of the carrier gases 3, 6 and the tube 4 is evacuated by a vacuum pump 11. Microwaves from a microwave oscillator 6 are guided with a waveguide 7, passed through the tube 4 and returned to the tube 4 by a plunger 8 to generate oxygen plasma 9. A thin oxide ceramic film having superior superconducting characteristics is formed on a substrate 10 set under the oxygen plasma generating region with high productivity.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は各種超電導機器や超電導素子、例えば超電導
量子干渉計(SQUID)やジョセフソン素子、その他
用電導線等として使用される超電導薄膜を製造する方法
に関し、特に酸化物セラミック系の超電導材料からなる
薄膜を形成する方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for manufacturing superconducting thin films used as various superconducting devices and superconducting elements, such as superconducting quantum interferometers (SQUID), Josephson devices, and other conductive wires. In particular, the present invention relates to a method for forming a thin film made of an oxide ceramic superconducting material.

従来の技術 各種超電導材料のうちでも、Y系複合酸化物やBi系複
合酸化物のような酸化物セラミック系超電導材料は、臨
界温度(Tc)が高い高温超電導物質として近年注目を
浴びている。
BACKGROUND OF THE INVENTION Among various superconducting materials, oxide ceramic superconducting materials such as Y-based composite oxides and Bi-based composite oxides have attracted attention in recent years as high-temperature superconducting materials with high critical temperatures (Tc).

従来の酸化物セラミック系超電導材料の製造方法として
は、超電導酸化物を構成する原料金属(例えばY等)を
含む塩の水溶液を超音波噴霧器等により噴霧化し、その
霧状の液滴を100〜500℃に加熱した基板上に供給
して塩を堆積させ、その塩が堆積した基板を空気あるい
は酸素気流中で900〜1000℃に加熱(アニール)
することによって酸化物セラミック系超電導物質を合成
する方法(例えば8.にawai et al、、 J
JAP 26 (1987) L 1740−L 17
42) 、あるいは原料金属を含む塩の水溶液を超音波
q4霧器により噴霧して900〜1000℃に加熱され
た抵抗加熱炉中に導入し、その炉内で酸化物セラミック
系超電導物質の微粒子を合成し、その後その微粒子を集
めて成形し、焼結する方法(例えばT、 T、にoda
s et al、、Δpp1. Phys、 Lett
A conventional method for manufacturing oxide ceramic superconducting materials involves atomizing an aqueous solution of a salt containing a raw material metal (for example, Y, etc.) constituting the superconducting oxide using an ultrasonic atomizer, and producing atomized droplets of 100 to 100 ml. Salt is deposited by supplying it onto a substrate heated to 500℃, and the substrate on which the salt is deposited is heated to 900 to 1000℃ in air or oxygen stream (annealing).
A method for synthesizing oxide ceramic superconducting materials by
JAP 26 (1987) L 1740-L 17
42) Alternatively, an aqueous solution of a salt containing raw material metal is atomized by an ultrasonic Q4 atomizer and introduced into a resistance heating furnace heated to 900 to 1000°C, and fine particles of an oxide ceramic superconducting material are formed in the furnace. A method of synthesizing, then collecting, molding, and sintering the fine particles (for example, T, T, oda
s et al, Δpp1. Phys, Lett
.

52 (1988) 1622;  あるいはN、 T
ohge et at。
52 (1988) 1622; or N, T
ohge et at.

JJAP 27 (1988) L 1086)などが
知られている。
JJAP 27 (1988) L 1086) are known.

発明が解決しようとする課題 前述のような従来の酸化物セラミック系超電導材料の製
造方法のうち、曲者の方法では噴霧による原料の堆積後
、アニーリングを行なうことによってはじめて酸化物セ
ラミック系超電導物質を生成することかでき、また後者
の方法では高温炉内への噴霧により超電導微粒子を生成
させた後に微粒子の成形や焼結を施す必要があり、いず
れの方法も多数のプロセスを必要とし、そのためコスト
上昇をJEかざるを得ない問題があった。
Problems to be Solved by the Invention Among the conventional methods for manufacturing oxide ceramic superconducting materials as described above, the method of the author is to deposit raw materials by spraying and then annealing to produce the oxide ceramic superconducting materials. In addition, in the latter method, it is necessary to form superconducting fine particles by spraying them into a high-temperature furnace, and then mold and sinter the fine particles. Both methods require numerous processes, and are therefore costly. There was a problem that forced JE to increase the price.

この発明は以上の事情を前頭としてなされたもので、極
めて簡単なプロセスで酸化物セラミック系超電導薄膜を
形成することができる、低コストで量産化可能な酸化物
セラミック系超電導簿膜の製造方法を提供することを目
的とするものである。
This invention was made with the above circumstances in mind, and it provides a method for manufacturing an oxide ceramic superconducting thin film that can be mass-produced at low cost and that can form an oxide ceramic superconducting thin film using an extremely simple process. The purpose is to provide

問題点を解決するための手段 この発明の酸化物セラミック系超電導薄膜の製造方法は
、酸化物セラミック系超電導材料を構成する金属を含む
塩の水溶液を噴霧化し、得られた霧状の液滴を酸素プラ
ズマ中に供給して、その酸素プラズマ中もしくは酸素プ
ラズマ近傍に配置された基板上に酸化物セラミック系、
Vlll電導薄膜を生成させることを特徴とするもので
ある。
Means for Solving the Problems The method for producing an oxide ceramic superconducting thin film of the present invention involves atomizing an aqueous solution of a salt containing a metal constituting the oxide ceramic superconducting material, and atomizing the resulting atomized droplets. An oxide ceramic system is supplied into an oxygen plasma and placed on a substrate placed in or near the oxygen plasma.
This method is characterized by producing a Vllll conductive thin film.

作   用 酸素プラズマはその酸化性が極めて強く、そのため酸素
プラズマ中に供給された原料金[水溶液の噴霧液滴は、
ただちに酸化されて酸化物、すなわち超電導物質となる
とともに、その酸素プラズマ中に配置された高温の基板
上に堆積され、基板上に酸化物セラミック系の超電導薄
膜が生成される。
Oxidation plasma has extremely strong oxidizing properties, and therefore the raw material supplied into the oxygen plasma [atomized droplets of aqueous solution]
It is immediately oxidized to become an oxide, that is, a superconducting material, and is deposited on a high-temperature substrate placed in the oxygen plasma, producing an oxide ceramic superconducting thin film on the substrate.

ここで、原料金属塩水溶液の噴霧液滴は、基板上に到達
する以前の段階で酸素プラズマによって酸化されて超電
導物質微粒子となり、その超電導物質微粒子の状態で基
板上に到達することも、あるいは基板上に到達した債に
酸化が完了して基板上で超電導物質となることもある。
Here, the sprayed droplets of the raw metal salt aqueous solution may be oxidized by oxygen plasma and become superconducting material fine particles before reaching the substrate, and may reach the substrate in the state of superconducting material fine particles, or may reach the substrate in the form of superconducting material fine particles. The bond that reaches the top may complete oxidation and become a superconducting material on the substrate.

いずれにしても原料金属塩の酸化による超電導物質の生
成と基板上への堆積による薄膜生成とが一工程で連続的
もしくは同時的になされることになる。
In any case, the production of a superconducting material by oxidation of a raw metal salt and the production of a thin film by deposition on a substrate are performed continuously or simultaneously in one step.

実施例 第1図にこの発明の方法を実施するための装置の一例を
概略的に示す。
Embodiment FIG. 1 schematically shows an example of an apparatus for carrying out the method of the present invention.

第1図において、原料金属を含む塩の水溶液1は噴霧器
2に導入されて、超音波噴霧あるいは高速気流噴霧等に
より噴霧されて0,3〜2,0顯程度の霧状の液滴とな
り、第1キヤリヤガス3によって石英等からなる反応管
4の上部に導入される。
In FIG. 1, an aqueous salt solution 1 containing a raw metal is introduced into a sprayer 2, and is atomized by ultrasonic spraying or high-speed air spraying to form mist-like droplets of about 0.3 to 2.0 mm. The first carrier gas 3 is introduced into the upper part of a reaction tube 4 made of quartz or the like.

またその反応管4の上部には別に第2キヤリヤガス5も
導入される。ここで第1キrリヤガス3と第2キセリヤ
ガス5とのうち、いずれか一方または双方には、酸素プ
ラズマを生成させるための酸素ガスを含んでいるものと
する。
A second carrier gas 5 is also separately introduced into the upper part of the reaction tube 4. Here, it is assumed that either one or both of the first quenching gas 3 and the second quenching gas 5 contains oxygen gas for generating oxygen plasma.

一方反応管4の側方に配設されたマイクロ波発振器6に
より発振されたマイクロ波(例えば周波数2450 H
I3)は、導波管7を介して反応管4内を通り、さらに
反対側に配置されたマイクロ波プランジt8により反射
ゼしめられて再び反応管4内へ戻る。このようなマイク
ロ波によって前述の第1キヤリヤガス3もしくは第2キ
rリヤガス5に含まれる酸素ガスがプラズマ化し、反応
管4内に酸素プラズマ9が発生せしめられる。なおこの
酸素プラズマ発生領域内下部には基板10が配置されて
おり、また反応管内は真空ポンプ11により減圧されて
いる。
On the other hand, microwaves (for example, frequency 2450
I3) passes through the reaction tube 4 via the waveguide 7, is further reflected by the microwave plunge t8 disposed on the opposite side, and returns to the reaction tube 4 again. The oxygen gas contained in the first carrier gas 3 or the second carrier gas 5 is turned into plasma by such microwaves, and oxygen plasma 9 is generated in the reaction tube 4. Note that a substrate 10 is placed in the lower part of this oxygen plasma generation region, and the pressure inside the reaction tube is reduced by a vacuum pump 11.

前述のようにして反応管4内に導入された原料金属の塩
の水溶液の噴霧液滴は、酸素プラズマ9によって急速に
酸化され、原料金属の酸化物が基板10上に析出される
。すなわち酸化物セラミック系の超電導薄膜が基板10
上に生成される。
The spray droplets of the aqueous solution of the raw metal salt introduced into the reaction tube 4 as described above are rapidly oxidized by the oxygen plasma 9, and the oxide of the raw metal is deposited on the substrate 10. That is, the oxide ceramic superconducting thin film is the substrate 10.
generated above.

なおここでは酸素プラズマ9はマイクロ波によって発生
させるものとしたが、それに限るものではなく、高周波
プラズマブT生装置等も利用できることはもちろんであ
る。
Here, the oxygen plasma 9 is generated using microwaves, but the present invention is not limited to this, and it goes without saying that a high-frequency plasma generator or the like can also be used.

また第1図中の例では基板10は酸素プラズマ領域内に
配置して、酸素プラズマ9によって基板自体も加熱する
ものとしたが、場合によっては基板10は別の加熱源、
例えば抵抗加熱ヒータ等によって加熱するようにしても
良く、この場合は基板iot、を酸素プラズマ領域の直
下に配置しておくことができる。なお基板10の温度は
800〜1200℃程度になるように制御することが好
ましい。
Further, in the example shown in FIG. 1, the substrate 10 is placed in an oxygen plasma region, and the substrate itself is heated by the oxygen plasma 9, but in some cases, the substrate 10 may be heated by another heating source,
For example, heating may be performed using a resistance heater or the like, and in this case, the substrate iot can be placed directly below the oxygen plasma region. Note that the temperature of the substrate 10 is preferably controlled to be about 800 to 1200°C.

なおこの発明において製造する対象となる超電4薄膜は
、要は酸化物セラミック系のものであれば良く、例えば
Y−Ba−Cu−0系酸化物(具体的にはYBa2 C
u307など)、アルイハ8 i −8r−Ca−Cu
−0系酸化物(具体的にはB z Sr+ Cat C
Cl20X 、あるイハB i4 (Sr+−xCax
 )s Cu40yなど)、さらにはTf−Ba−Ca
−Cu−0系酸化物(具体的にはT&  Ba  Ca
   Cu  O;n2     2      n−
1n    4+2n−1,2または3)などを製造す
ることができる。
Note that the superconductor 4 thin film to be manufactured in this invention may be of an oxide ceramic type, for example, Y-Ba-Cu-0 type oxide (specifically, YBa2C
u307 etc.), Al-Iha8i-8r-Ca-Cu
-0 series oxide (specifically B z Sr+ Cat C
Cl20X, certain IhaB i4 (Sr+-xCax
)s Cu40y, etc.), and even Tf-Ba-Ca
-Cu-0 based oxide (specifically T & Ba Ca
CuO; n2 2 n-
1n 4+2n-1, 2 or 3), etc. can be produced.

また基板の材料は特に限定されないが、例えば石英板、
サファイヤ、シリコン、酸化マグネシウム、チタン酸ス
トロンチウムなどを用いることができる。
Further, the material of the substrate is not particularly limited, but for example, quartz plate,
Sapphire, silicon, magnesium oxide, strontium titanate, etc. can be used.

以下にこの発明の製造方法の具体的な実施例を記す。Specific examples of the manufacturing method of the present invention will be described below.

[実施例11 第1図に示すような装置を用いて、Y−Ba−Cu−0
系酸化物からなる超電導′a膜を次のように形成した。
[Example 11 Using the apparatus shown in FIG. 1, Y-Ba-Cu-0
A superconducting 'a' film made of a series oxide was formed as follows.

原料金属の塩の水溶液としては、硝酸イツトリウム0.
1nol/1、硝酸バリウム0.211101/J、硝
酸銅0.3n+ol/fの混合塩水溶液を用い、また第
1キヤリヤガスとしては酸素ガス300成/市、第2キ
ヤリヤガスとしては酸素ガス200厩/ manを用い
た。噴霧器としては超音波噴霧器を用い、その超音波出
力は25wとした。また酸素プラズマ光土用のマイクロ
波出力は400Wとし、系内圧力は45Torrとした
。基板としては酸化マグネシウムを用いて、その基板を
酸素プラズマ中に配置して、プラズマのみにより基板を
加熱するようにした。
As the aqueous solution of the raw metal salt, yttrium nitrate 0.
A mixed salt aqueous solution of 1nol/1, barium nitrate 0.211101/J, and copper nitrate 0.3n+ol/f was used, and the first carrier gas was oxygen gas 300ml/man, and the second carrier gas was oxygen gas 200ml/man. was used. An ultrasonic atomizer was used as the atomizer, and its ultrasonic output was 25W. Further, the microwave output for the oxygen plasma light soil was set to 400 W, and the system internal pressure was set to 45 Torr. Magnesium oxide was used as the substrate, and the substrate was placed in oxygen plasma so that the substrate was heated only by the plasma.

なお基板温度は約880 ”Cであった。Note that the substrate temperature was approximately 880''C.

上記の条件により3時間の処理を行なったところ、基板
上に厚さ1.2伽のYBa2Cu2O7薄膜が生成され
た。そのvJ膜の超電導臨界温度を調べたところ、Tc
(On)は79.0に、 Tc (End)は74.5
にであった。
When the treatment was carried out for 3 hours under the above conditions, a YBa2Cu2O7 thin film with a thickness of 1.2 cm was formed on the substrate. When we investigated the superconducting critical temperature of the vJ film, we found that Tc
(On) is 79.0, Tc (End) is 74.5
It was.

[実施例21 第1図に示すような装置を用いて、Y−Ba−Cu−0
系酸化物からなる超電導薄膜を次のように形成した。
[Example 21 Using the apparatus shown in FIG. 1, Y-Ba-Cu-0
A superconducting thin film made of a system oxide was formed as follows.

原料金属の塩の水溶液としては、硝酸イツトリウム0.
3 nol/17、硝酸バリウム0.6nol/6、硝
酸銅0.911101/i’の混合塩水溶液を用い、ま
た第1キPリヤガスとしてはアルゴンガス100m /
1ih、第2キヤリヤガスとしては酸素ガス450ae
 /市を用いた。噴霧器としては超音波噴霧器を用い、
その超音波出力は25wとした。また酸素プラズマ発生
用のマイクロ波出力は400Wとし、系内圧力は75T
orrとした。基板としては酸化マグネシウムを用い、
その基板をプラズマ直下に配置して、抵抗加熱するよう
にした。なお基板温度は約875°Cである。
As the aqueous solution of the raw metal salt, yttrium nitrate 0.
A mixed salt aqueous solution of 3 nol/17, barium nitrate 0.6 nol/6, and copper nitrate 0.911101/i' was used, and argon gas 100 m/i' was used as the first primary gas.
1ih, oxygen gas 450ae as the second carrier gas
/ City was used. An ultrasonic atomizer is used as the atomizer,
The ultrasonic output was 25W. In addition, the microwave output for oxygen plasma generation was 400W, and the system pressure was 75T.
It was set as orr. Magnesium oxide is used as the substrate,
The substrate was placed directly under the plasma and resistively heated. Note that the substrate temperature was approximately 875°C.

上記の条件により5時間の処理を行なったところ、基板
上に厚さ3.2伽のYBa2CIJ307 薄膜が生成
された。その薄膜の超電導臨界温度を調べたところ、T
c(On)は79.0に、 Tc (End)は74.
5にであった。
When the treatment was carried out for 5 hours under the above conditions, a YBa2CIJ307 thin film with a thickness of 3.2 cm was formed on the substrate. When we investigated the superconducting critical temperature of the thin film, we found that T
c (On) is 79.0, Tc (End) is 74.
It was on 5th.

し実施例3] 第1図に示すような装置を用いて、B1−8r−Ca−
Qu−Q系酸化物からなる超電導薄膜を次のように形成
した。
Example 3] B1-8r-Ca-
A superconducting thin film made of Qu-Q based oxide was formed as follows.

原料金属の塩の水溶液としては硝酸ビスマス0.11o
l/l、酢酸ストロンチウム0.11ol/i)、硝酸
カルシウム0. I n+ol/ l 、酢酸銅1.8
 mol/βの混合塩水溶液を用い、また第1キヤリA
7ガスとしては酸素ガス300d/mi、第2キヤリヤ
ガスとしては酸素ガス200威/ minを用いた。噴
霧器としては超音波噴霧器を用い、その超音波出力は2
5Wとした。また酸素プラズマ発生用のマイクロ波出力
は400wとした。基板としては酸化マグネシウムを用
い、その基板をプラズマ直下に配置して、高周波加熱す
るようにした。なお基板温度は約925℃である。
Bismuth nitrate 0.11o as an aqueous solution of raw metal salt
l/l, strontium acetate 0.11 ol/i), calcium nitrate 0. I n+ol/l, copper acetate 1.8
Using a mixed salt aqueous solution of mol/β, and using the first carrier A
As the 7 gas, oxygen gas was used at 300 d/min, and as the second carrier gas, oxygen gas was used at 200 d/min. An ultrasonic atomizer is used as the atomizer, and its ultrasonic output is 2
It was set to 5W. Further, the microwave output for generating oxygen plasma was set to 400W. Magnesium oxide was used as the substrate, and the substrate was placed directly under the plasma and heated with high frequency. Note that the substrate temperature was approximately 925°C.

上記の条件によって6時間処理を行な・ったところ、基
板上に厚さ5.8踊の 8 i4 (Sr+−xCax )13 Cu40y 
 (2<y<3)の薄膜が生成された。その薄膜の超電
導臨界温度を調べたところTc(On)は80.5k、
TC(End)は76.3にであった。
After processing for 6 hours under the above conditions, 8 i4 (Sr+-xCax)13 Cu40y with a thickness of 5.8 mm was deposited on the substrate.
A thin film of (2<y<3) was produced. When we investigated the superconducting critical temperature of the thin film, Tc (On) was 80.5k.
TC (End) was 76.3.

発明の効果 この発明の超電導薄膜の製造方法によれば、酸化物セラ
ミック系の超電導薄膜を基板上に形成するにあたり、原
料金属を含む塩の水溶液を噴霧し、その霧状の液滴を酸
素プラズマ中に供給して基板上に堆積させることにより
、原料金属を含む塩の酸化による超電導酸化物の生成と
基板上への″all!生成とが一工程で同時的もしくは
連続的になされるため、超電導7a膜生成のための処理
工程を従来よりも格段に少なくして、その製造コストを
従来よりも格段に低くすることができ、また全処理が気
相でおこなわれるため量産化も容易に行なうことができ
る。さらにこの発明の製造方法においては、原料金属を
含む塩の水溶液の霧状の液滴が、極めて酸化性の張り酸
素プラズマによって酸化されて超電導酸化物が生成され
るため、未酸化の金属が薄膜中に含まれるおそれが少な
く、そのため′EA電導特性の優れた薄膜を得ることが
できる。
Effects of the Invention According to the method for producing a superconducting thin film of the present invention, when forming an oxide ceramic superconducting thin film on a substrate, an aqueous solution of a salt containing a raw material metal is sprayed, and the atomized droplets are exposed to oxygen plasma. By supplying the superconducting oxide to the substrate and depositing it on the substrate, the generation of superconducting oxide by oxidation of the salt containing the raw material metal and the generation of "all!" on the substrate are performed simultaneously or continuously in one step. The number of processing steps required to generate the superconducting 7a film can be significantly reduced compared to conventional methods, making the manufacturing cost much lower than conventional methods, and mass production is also easy because all processing is performed in the gas phase. Furthermore, in the manufacturing method of the present invention, the atomized droplets of the aqueous salt solution containing the raw material metal are oxidized by highly oxidizing oxygen plasma to produce superconducting oxide. There is little risk of metals being included in the thin film, and therefore a thin film with excellent EA conductivity properties can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を実施する装置の一例を概
略的に示す略解図である。 1・・・原料金属を含む塩の水溶液、 2・・・噴霧器
、3・・・第1キヤリヤガス、 4・・・反応管、 5
・・・第2キヤリヤガス、 9・・・MI素プラズマ、
 1o・・・基板。
FIG. 1 is a schematic diagram schematically showing an example of an apparatus for carrying out the manufacturing method of the present invention. DESCRIPTION OF SYMBOLS 1... Aqueous salt solution containing raw material metal, 2... Sprayer, 3... First carrier gas, 4... Reaction tube, 5
...Second carrier gas, 9...MI elementary plasma,
1o...Substrate.

Claims (1)

【特許請求の範囲】[Claims] 酸化物セラミック系超電導材料を構成する金属を含む塩
の水溶液を噴霧化し、得られた霧状の液滴を酸素プラズ
マ中に供給して、その酸素プラズマ中もしくは酸素プラ
ズマ近傍に配置された基板上に酸化物セラミック系超電
導薄膜を生成させることを特徴とする酸化物セラミック
系超電導薄膜の製造方法。
Aqueous solutions of salts containing metals constituting oxide ceramic superconducting materials are atomized, and the resulting atomized droplets are supplied into oxygen plasma, and onto a substrate placed in or near the oxygen plasma. 1. A method for producing an oxide ceramic superconducting thin film, the method comprising: producing an oxide ceramic superconducting thin film.
JP33505788A 1988-12-29 1988-12-29 Production of thin oxide ceramic superconducting film Granted JPH02179880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33505788A JPH02179880A (en) 1988-12-29 1988-12-29 Production of thin oxide ceramic superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33505788A JPH02179880A (en) 1988-12-29 1988-12-29 Production of thin oxide ceramic superconducting film

Publications (2)

Publication Number Publication Date
JPH02179880A true JPH02179880A (en) 1990-07-12
JPH0349985B2 JPH0349985B2 (en) 1991-07-31

Family

ID=18284269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33505788A Granted JPH02179880A (en) 1988-12-29 1988-12-29 Production of thin oxide ceramic superconducting film

Country Status (1)

Country Link
JP (1) JPH02179880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018676B2 (en) * 2000-03-29 2006-03-28 Seiko Epson Corporation Method and device for manufacturing ceramics, semiconductor device and piezoelectric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018676B2 (en) * 2000-03-29 2006-03-28 Seiko Epson Corporation Method and device for manufacturing ceramics, semiconductor device and piezoelectric device

Also Published As

Publication number Publication date
JPH0349985B2 (en) 1991-07-31

Similar Documents

Publication Publication Date Title
EP0453107B1 (en) Chemical deposition methods using supercritical fluid solutions
JP2016508943A (en) Rapid solid-state reaction of oxides by ultraviolet radiation.
EP0492880A2 (en) Method of preparing metal oxide films
JPH02179880A (en) Production of thin oxide ceramic superconducting film
JPH01305813A (en) Production of oxide-based superconductor
Wang et al. rf plasma aerosol deposition of superconductive Y1Ba2Cu3O7− δ films at atmospheric pressure
JP2856859B2 (en) Method for producing oxide superconductor by metal organic chemical vapor deposition
JP5378631B2 (en) Vapor growth crystal thin film manufacturing method
JPH0832547B2 (en) Manufacturing method of oxide superconductor
JPH01320223A (en) Synthesizing method for oxide superconductor
JPH0259405A (en) Spray roaster
JPH0331482A (en) Manufacture of material contain- ing either one or both of alkali earth metal and alkali earth metal oxide
JPS63277770A (en) Composition for forming superconductive thin ceramic film and production of superconductive thin ceramic film
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH0597409A (en) Production of oxide super conductor by cvd method
JPH02208209A (en) Production of oxide superconductor precursor
JPH01224208A (en) Method for synthesizing oxide superconductor precursor
JPH01308826A (en) Formation of superconducting ceramic thin film
JPS63314719A (en) Manufacture of ceramic superconductive formed body
JPH01278416A (en) Production of precursor substance for oxide superconductor
JPS63319209A (en) Production of superconductor
JPH01294525A (en) Formation of thin film of oxide superconductor
Suzuki et al. Superconducting thin films of Bi-Pb-Sr-Ca-Cu-O synthesized by the spray-inductively coupled plasma technique
JPH012220A (en) Manufacturing method of ceramic superconducting wire
JPH01200518A (en) Manufacture of oxide superconducting wire material