JPH02177270A - Accumulator - Google Patents

Accumulator

Info

Publication number
JPH02177270A
JPH02177270A JP63329249A JP32924988A JPH02177270A JP H02177270 A JPH02177270 A JP H02177270A JP 63329249 A JP63329249 A JP 63329249A JP 32924988 A JP32924988 A JP 32924988A JP H02177270 A JPH02177270 A JP H02177270A
Authority
JP
Japan
Prior art keywords
carbonate
electrolyte
anion
methyl
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63329249A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osawa
利幸 大澤
Okitoshi Kimura
興利 木村
Toshiyuki Kahata
利幸 加幡
Sachiko Yoneyama
米山 祥子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP63329249A priority Critical patent/JPH02177270A/en
Publication of JPH02177270A publication Critical patent/JPH02177270A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To maintain high energy capacity and long lifetime by using antimony hexafluoride as electrolytic anion and a mixed solution of carbonate and lactone and/or ether as an electrolytic solution. CONSTITUTION:A salt using antimony hexafluoride as anion is applied as an electrolyte. An electrolytic solvent may be carbonate such as propylene carbonate, ethylene carbonate and butylene carbonate, ether such as tetrahydrofuran, 2-methyl tetrahydrofuran. 1,2-dimethoxyethane, ethdoxy methoxyethane, methyl digrime and methyl trigrime, and 1,3-dioxiolane, 4-methyldioxiolane, gamma butyl lactone, sulforane, 3-methyl sulforane and the like, all independently or in the form of a mixture. The main component of the solvent is carbonate mixed with ether and lactone.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、高分子材料を電極材料とする2次電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a secondary battery using a polymer material as an electrode material.

[従来の技術] ポリピロール、ポリアニリン等の高分子材料は電気化学
的に可逆なRedox反応により電解質イオンを内部に
取り込んだり放出したりするために、この原理を用いた
二次電池用電極材料として注目されている(英国特許1
.216549号、米国444218号、同47178
34号)。この高分子材料は電解質カチオン又はアニオ
ンを内部に取り込むことにより特殊な錯体を形成し特に
アニオンとの錯体は安定である。この可逆な電解質イオ
ンとの錯形成、すなわち、所M電気化学ドーピングは特
定の非水電解液中で安定に行われるため非水二次電池用
正極として特に期待できる。
[Prior art] Polymer materials such as polypyrrole and polyaniline take in and release electrolyte ions through an electrochemically reversible Redox reaction, and are attracting attention as electrode materials for secondary batteries using this principle. (British patent 1
.. No. 216549, US No. 444218, US No. 47178
No. 34). This polymeric material forms a special complex by incorporating an electrolyte cation or anion, and the complex with anion is particularly stable. This reversible complex formation with electrolyte ions, ie, electrochemical doping, is stably performed in a specific non-aqueous electrolyte, so it is particularly promising as a positive electrode for non-aqueous secondary batteries.

そしてLi5Naなどのアルカリ金属を負極活物質とし
て用いることにより高い電圧を取り出すことができるた
めポリマーの軽量性と併せて高エネルギー密度化を図る
ことができる。
By using an alkali metal such as Li5Na as a negative electrode active material, a high voltage can be extracted, and thus a high energy density can be achieved in conjunction with the light weight of the polymer.

[発明が解決しようとする課題] しかし一方においては、これらの高分子材料から高エネ
ルギー容量を取り出すためには電解液、負極が大きな影
響を与える。特にポリマーのドーピング量は電解質アニ
オンの種類及び負極活物質の種類に大きく依存する。
[Problems to be Solved by the Invention] However, on the other hand, the electrolytic solution and the negative electrode have a large influence on extracting high energy capacity from these polymer materials. In particular, the amount of polymer doping greatly depends on the type of electrolyte anion and the type of negative electrode active material.

そこで、本発明は高エネルギー容量を持ち、長寿命の2
次電池を提供すること、とくにそれを口■能とする電解
質アニオンと7ヒ解液溶媒との自゛効な組合せを備沌だ
2次電池を提供することをl」的とするものである。
Therefore, the present invention has a high energy capacity and a long life.
The object of the present invention is to provide a secondary battery, and in particular to provide a secondary battery in which an effective combination of an electrolyte anion and a hemolyte solvent is used. .

[課題を解決するための手段] 前記したように、正極高分子材料は電解質の種類、濃度
、負極材料によりドーピング性能は大きく変化する。特
に高エネルギー密度を示す系の充放電において負極表面
に生成する負極活物質は凸状塊状、デンドライトとして
生成するためそれを防止するための電池系の検討が重要
である。
[Means for Solving the Problems] As described above, the doping performance of the positive electrode polymer material varies greatly depending on the type and concentration of the electrolyte and the negative electrode material. In particular, during charging and discharging of systems exhibiting high energy density, the negative electrode active material that forms on the negative electrode surface forms convex lumps and dendrites, so it is important to study battery systems to prevent this.

本発明者らは、これらの事実に鑑み鋭意検討を行った結
果従来とは異なる全く新しい電解質システムを見出した
In view of these facts, the present inventors conducted intensive studies and discovered a completely new electrolyte system different from conventional ones.

すなわち、本発明者らは5bF6−″が基本的に高エネ
ルギー化のアニオンとして優れることを見出した。第2
に本アニオンはカーボネート類を主体とした電解液に5
0%以内の範囲でラクトン類及び/又はエーテル類を添
加した混合溶媒系において、より顕著な効果を示すこと
を見出した。
That is, the present inventors found that 5bF6-'' is basically excellent as an anion for increasing energy.Second
This anion is added to an electrolyte mainly composed of carbonates.
It has been found that a mixed solvent system in which lactones and/or ethers are added within a range of 0% exhibits a more significant effect.

第3に本電解液システムは負極活物質にリチウム合金を
用いることにより電池系の高性能化が実現できることを
見出した。
Thirdly, we have found that in this electrolyte system, the performance of the battery system can be improved by using a lithium alloy as the negative electrode active material.

従来より0104″’  BF4−アニオンにおいては
多くのシステムが検討されているが、本発明では5bF
6−アニオンを含む塩を電解質とした非水電解液を用い
て、プラスチック2次電池の優れた性能を引き出すとと
もに、さらに負極にリチウムと多価金属との合金を用い
ることにより、本システムの長寿命化を図ったものであ
る。
Many systems have been studied for the 0104''BF4 anion, but in the present invention, 5bF
By using a non-aqueous electrolyte with a salt containing 6-anions as an electrolyte to bring out the excellent performance of plastic secondary batteries, and by using an alloy of lithium and polyvalent metals for the negative electrode, the long life of this system is achieved. This is intended to extend the lifespan.

本発明は、正極に導電性乃至は半導性を佇する高分子材
料を用いた高エネルギー密度二次電池に関するものであ
る。本発明における高分子材f4としては、ポリアセチ
レン、ポリピロール、ポリチオフェン、ポリアニリンな
どの導電性高分子材料、ポリジフェニルベンジジン、ポ
リビニルカルバゾール、ポリトリフェニルアミンなどの
Rcdox活性高分子材で4を挙げることができるが、
特に含窒素化合物において顕著な効果が見られる。これ
らの高分子祠料はいずれも電気化学ドーピングにより高
い電気伝導度を示し、電極材料としては1O−3S/C
l11以上の電気伝導度を有することが要求される。ま
たイオンの拡散性においても高いイオン伝導性が要求さ
れる。
The present invention relates to a high energy density secondary battery using a conductive or semiconducting polymer material as a positive electrode. Examples of the polymer material f4 in the present invention include conductive polymer materials such as polyacetylene, polypyrrole, polythiophene, and polyaniline, and Rcdox active polymer materials such as polydiphenylbenzidine, polyvinylcarbazole, and polytriphenylamine. but,
Particularly remarkable effects are seen in nitrogen-containing compounds. All of these polymer abrasive materials exhibit high electrical conductivity through electrochemical doping, and 1O-3S/C is used as an electrode material.
It is required to have an electrical conductivity of 111 or higher. Also, high ionic conductivity is required in terms of ion diffusivity.

本発明における非水二次電池系は基本的にはこれらの導
電性乃至は半導性の正極活物質と非水電解液、負極より
構成される。
The nonaqueous secondary battery system according to the present invention basically comprises these conductive or semiconductive positive electrode active materials, a nonaqueous electrolyte, and a negative electrode.

本発明の構成についてさらに詳しく述べる。The configuration of the present invention will be described in more detail.

本発明の電解液溶媒はプロピレンカーボネート、エチレ
ンカーボネート、ブチレンカーボネートなどのカーボネ
ート類、テトラヒドロフラン、2−メチルテトラヒドロ
フラン、1.2−ジメトキシエタン、エトキシメトキシ
エタン、メチルジグライム、メチルトリグライムなどの
エーテル類、1,3−ジオキソラン、4−メチルジオキ
ソラン、ガンマブチルラクトン、スルホラン、3−メチ
ルスルホランなど!11独あるいは混合で用いることが
できカーボネート類を主体にエーテル類、ラクトンの混
合系において実現できる。
The electrolyte solvent of the present invention includes carbonates such as propylene carbonate, ethylene carbonate, and butylene carbonate, ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, ethoxymethoxyethane, methyldiglyme, and methyltriglyme, 1,3-dioxolane, 4-methyldioxolane, gamma butyrlactone, sulfolane, 3-methylsulfolane, etc! It can be used individually or as a mixture, and can be realized in a mixed system of carbonates as a main component, ethers, and lactones.

本発明の第一の要素はこれらの電解液溶媒に電解質とし
て六フッ化アンチモンをアニオンとする塩を含有せしめ
ることである。六フッ化アンチモンは大きなイオン半径
を有するにもかかわらず、高いドーピング率を示す。ア
ニオンとしてBF4−を用いる場合には高エネルギー容
量化のためにアニオン濃度を2.5M以上にする必要が
あったが、本アニオンの添加においては低濃度において
も高エネルギー容量化が実現できる。従って電池系全体
のff1ffiに対するエネルギー密度の高エネルギー
化が実現できる。電解質塩のカチオンとしてはナトリウ
ム、リチウムなどのアルカリ金属カチオン、マグネシウ
ム、カルシウム、アルミニウムなどの多価金属カチオン
が挙げられるが、リチウムカチオンとの塩は負極にリチ
ウム、又はリチウム合金を使用することができ、高い開
放電圧、高効率充放電の電池系を組むことができるので
、有利である。
The first element of the present invention is that these electrolytic solution solvents contain a salt having antimony hexafluoride as an anion as an electrolyte. Antimony hexafluoride exhibits a high doping rate despite having a large ionic radius. When BF4- is used as an anion, it is necessary to increase the anion concentration to 2.5 M or more in order to obtain a high energy capacity, but with the addition of this anion, a high energy capacity can be achieved even at a low concentration. Therefore, it is possible to realize a high energy density for ff1ffi of the entire battery system. Examples of cations in electrolyte salts include alkali metal cations such as sodium and lithium, and polyvalent metal cations such as magnesium, calcium, and aluminum; however, for salts with lithium cations, lithium or lithium alloy can be used for the negative electrode. This is advantageous because a battery system with high open-circuit voltage and high efficiency in charging and discharging can be constructed.

これらの電解質の濃度は、0,2M以上0.3M以下が
好ましい。
The concentration of these electrolytes is preferably 0.2M or more and 0.3M or less.

0 、2 M未満では高エネルギー密度化を図ることは
難しく、3.0Mを越えると電解液は不安定となる。特
に 1M以下の範囲で用いる場合には溶液導電率が不充
分となることがあり、このような場合には他の電解質塩
を添加すると良い。
If it is less than 0.2 M, it is difficult to achieve high energy density, and if it exceeds 3.0 M, the electrolyte becomes unstable. In particular, when using in a range of 1M or less, the solution conductivity may become insufficient, and in such a case, it is advisable to add another electrolyte salt.

本発明の負極材料としてはニッケル、アルミニウム、亜
鉛、スズなどの金属基板をそのまま用いることにより基
板表面に電解液を構成するカチオンの還元金属あるいは
その合金を析出せしめるかリチウム、ナトリウムあるい
はア°ルカリ金属の合金を活物質とする電極を用いるこ
とができる。この場合前者は電解質カチオンと合金を形
成する金属が好ましく、AI% Zn5Snの他Al−
8t、Al−Mg、AI −Mnなどが好ましい、後者
の合金の例としてLi−A I%L 1−Zn、 L 
1−3n、 L i −Pvlg。
As the negative electrode material of the present invention, a metal substrate such as nickel, aluminum, zinc, or tin may be used as it is, and a cationic reduced metal or an alloy thereof constituting the electrolyte may be deposited on the surface of the substrate, or lithium, sodium, or alkali metal may be used. It is possible to use an electrode using an alloy of as an active material. In this case, the former is preferably a metal that forms an alloy with the electrolyte cation, including Al% Zn5Sn and Al-
8t, Al-Mg, AI-Mn, etc. are preferred examples of the latter alloys include Li-A I%L 1-Zn, L
1-3n, Li-Pvlg.

Li−Al −Mgs Li−Al−Zn。Li-Al-Mgs Li-Al-Zn.

Li−Al−5nなどがあげられるる これらの負極材料を用いることにより電池系はさらに長
寿命となる。
By using these negative electrode materials, such as Li-Al-5n, the battery system will have a longer life.

[実施例] 以下に実施例を挙げ、本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

集電体の例 厚す20μmのシート状ステンレスに化学エツチング法
により直径100μmの円形の孔を1cd当り 100
個の割合で設けた後、ブラストによりシート表面を粗面
化した。
Example of a current collector: Circular holes with a diameter of 100 μm are formed in a stainless steel sheet with a thickness of 20 μm by chemical etching at a rate of 100 per cd.
After the sheet was provided at a ratio of 1 to 3, the surface of the sheet was roughened by blasting.

電極作製例(ポリアニリン) 重合液として0.5Mアニリン、 合法により集電体表面に厚さ20μmのポリアニリン膜
を析出させシート状正極とした。
Electrode Preparation Example (Polyaniline) 0.5M aniline was used as a polymerization solution. A polyaniline film with a thickness of 20 μm was deposited on the surface of a current collector by a method to obtain a sheet-like positive electrode.

電極作製例(ポリピロール) 口、IMビロール、 0.05Mパラトルエンスルホン
酸ナトリウムをアセトニトリルに溶解し、5Vの定電圧
電界を行って厚さ20μmのポリピロール膜を集電体両
面に成膜させた。
Electrode Preparation Example (Polypyrrole) IM Virol, 0.05 M sodium paratoluenesulfonate was dissolved in acetonitrile, and a constant voltage electric field of 5 V was applied to form a 20 μm thick polypyrrole film on both sides of the current collector.

電極作製例(ポリジフェニルベンジジン)4mMジフェ
ニルベンジジンと o、tM;A塩素酸テトラブチルア
ンモニウム、0.05Mルチジンをアセトニトリルに溶
かし 1.2V vs SCE定電位電界を行って両面
に20μmの重合体膜を成膜させた。
Electrode preparation example (polydiphenylbenzidine) 4mM diphenylbenzidine, o,tM; A film was formed.

実施例(電池の製造例) 電極の製造例で作成した電極を正極に用い第1.2図に
示すような電池を製造した。セパレータとしては、ポリ
プロピレンボアフィルター(最大孔径0.02X  O
,2μm)に保液性を高めるため、ガラスフィルターを
重ねて用いた。
Example (Battery Manufacturing Example) A battery as shown in FIG. 1.2 was manufactured using the electrode prepared in the electrode manufacturing example as a positive electrode. As a separator, use a polypropylene bore filter (maximum pore size 0.02X O
, 2 μm), glass filters were stacked on top of each other to increase liquid retention.

”  0.ImA/cm’ ノ定電流充放7i(北斗電
工JIJ−201) 1.m、J、る100サイクル目
の値 〔発明の効果] 以上説明したように、本発明の構成による2次電池は、
エネルギー容量が大きく、かつ繰返し使用しても性能が
劣化せず、長寿命を有する。
” 0.ImA/cm' constant current charge/discharge 7i (Hokuto Denko JIJ-201) 1.m, J, value at 100th cycle [Effects of the invention] As explained above, the secondary The battery is
It has a large energy capacity, does not deteriorate in performance even after repeated use, and has a long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の二次電池の一例を示す斜視図、第2
図は、その構成を模式的に示す図。
FIG. 1 is a perspective view showing an example of the secondary battery of the present invention, and FIG.
The figure is a diagram schematically showing its configuration.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性乃至半導性を有する高分子材料を正極活物
質に用いる非水2次電池において、当該2次電池の主た
る電解質アニオンが六フッ化アンチモンであり、電解液
溶媒がカーボネート類とラクトン類及び/又はエーテル
類との混合溶媒であることを特徴とする2次電池。
(1) In a nonaqueous secondary battery that uses a conductive or semiconductive polymer material as the positive electrode active material, the main electrolyte anion of the secondary battery is antimony hexafluoride, and the electrolyte solvent is carbonates. A secondary battery characterized by being a mixed solvent with lactones and/or ethers.
(2)負極がリチウムと多価金属との合金である請求項
(1)記載の2次電池。
(2) The secondary battery according to claim (1), wherein the negative electrode is an alloy of lithium and a polyvalent metal.
JP63329249A 1988-12-28 1988-12-28 Accumulator Pending JPH02177270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63329249A JPH02177270A (en) 1988-12-28 1988-12-28 Accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63329249A JPH02177270A (en) 1988-12-28 1988-12-28 Accumulator

Publications (1)

Publication Number Publication Date
JPH02177270A true JPH02177270A (en) 1990-07-10

Family

ID=18219327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63329249A Pending JPH02177270A (en) 1988-12-28 1988-12-28 Accumulator

Country Status (1)

Country Link
JP (1) JPH02177270A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (en) * 1986-06-24 1988-01-09 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPS6376274A (en) * 1986-09-18 1988-04-06 Showa Denko Kk Secondary battery
JPS63289766A (en) * 1987-05-21 1988-11-28 Bridgestone Corp Nonaqueous secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634569A (en) * 1986-06-24 1988-01-09 Bridgestone Corp Nonaqueous electrolyte secondary battery
JPS6376274A (en) * 1986-09-18 1988-04-06 Showa Denko Kk Secondary battery
JPS63289766A (en) * 1987-05-21 1988-11-28 Bridgestone Corp Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
Naegele et al. Electrically conductive polymers as rechargeable battery electrodes
SU489367A3 (en) Primary element
CN106207261B (en) Electrolyte and battery
WO2014168691A1 (en) Electrodes for magnesium energy storage devices
KR920009805B1 (en) Lithium secondary cell
JP4078542B2 (en) Power storage device
JPH02250273A (en) Secondary battery
US11393640B2 (en) Water based hybrid lithium ion capacitor battery having a water-in-salt electrolyte
CA1177114A (en) Electrolyte for secondary electrochemical cell
JPS61203565A (en) Secondary battery and its electrode
JPH02177270A (en) Accumulator
US10629910B2 (en) Flow battery that includes redox mediator
JPS58163188A (en) Organic electrolyte secondary cell
JP2703297B2 (en) Rechargeable battery
JP2527838Y2 (en) Cylindrical polymer battery
CA1139362A (en) Sulfur trioxide soluble cathode primary cell
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JP2005183270A (en) Nonaqueous electrolytic solution and secondary battery using same
JPS61206170A (en) Secondary battery and its electrode
JP2644765B2 (en) Positive electrode for storage battery
CA2060712C (en) High voltage lithium rechargeable electrochemical cell
KR100370289B1 (en) Lithium-Sulfur batteries
JPH02265171A (en) Electrolyte for lithium battery
JP3019362B2 (en) Rechargeable battery
KR100553774B1 (en) Organic electrolytic solutin and lithium sulfur battery comprising the same