JP2005183270A - Nonaqueous electrolytic solution and secondary battery using same - Google Patents

Nonaqueous electrolytic solution and secondary battery using same Download PDF

Info

Publication number
JP2005183270A
JP2005183270A JP2003424790A JP2003424790A JP2005183270A JP 2005183270 A JP2005183270 A JP 2005183270A JP 2003424790 A JP2003424790 A JP 2003424790A JP 2003424790 A JP2003424790 A JP 2003424790A JP 2005183270 A JP2005183270 A JP 2005183270A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
ionic liquid
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003424790A
Other languages
Japanese (ja)
Other versions
JP4903983B2 (en
Inventor
Kazuhiro Araki
一浩 荒木
Noboru Sato
登 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003424790A priority Critical patent/JP4903983B2/en
Publication of JP2005183270A publication Critical patent/JP2005183270A/en
Application granted granted Critical
Publication of JP4903983B2 publication Critical patent/JP4903983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution for a nonaqueous electrolyte secondary battery with enhanced safety and improved ion conductivity, and provide a nonaqueous electrolyte secondary battery using the same. <P>SOLUTION: The secondary battery uses a nonaqueous electrolytic solution composed of an alkali salt, a nonaqueous solvent and an ionic liquid represented by the following formula, of which, the content of the ionic liquid to the total weight of the solvent is more than 0 wt% and less than 80 wt%, wherein R<SB>1</SB>-R<SB>4</SB>are alkyl groups or alkoxyl groups, and X is tetrafluoroborate (BF<SB>4</SB><SP>-</SP>) or bistrifluoromethylsulfonylimido (TFSI<SP>-</SP>). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解液二次電池の電解液及びこれを用いた二次電池に係り、特に、リチウムイオン電池用電解液の導電率及び難燃性が向上したリチウムイオン電池用電解液及びこれを用いたリチウムイオン電池に関するものである。   The present invention relates to an electrolyte for a non-aqueous electrolyte secondary battery and a secondary battery using the same, and in particular, an electrolyte for a lithium ion battery with improved conductivity and flame retardancy of the electrolyte for a lithium ion battery, and The present invention relates to a lithium ion battery using this.

非水電解液二次電池は、一般的には、図1に示すような構成であり、この構成においては、リチウムを吸蔵又は放出可能な正極1が正極缶2の内側にアルミニウム箔3を介して収容されており、一方、リチウムを吸蔵又は放出可能な負極4が封口板5に収容されている。そして、これらの正極1及び負極4が、電解液を浸含させた微孔性フィルムからなるセパレータ6を狭持した状態で、正極缶2と封口板5がガスケット7を介してかしめ密封されている(例えば、特許文献1参照。)。   A non-aqueous electrolyte secondary battery is generally configured as shown in FIG. 1. In this configuration, a positive electrode 1 capable of inserting or extracting lithium is placed inside a positive electrode can 2 via an aluminum foil 3. On the other hand, a negative electrode 4 capable of inserting or extracting lithium is accommodated in a sealing plate 5. The positive electrode can 2 and the sealing plate 5 are caulked and sealed with a gasket 7 in a state in which the positive electrode 1 and the negative electrode 4 sandwich the separator 6 made of a microporous film in which an electrolytic solution is impregnated. (For example, refer to Patent Document 1).

非水電解液二次電池の一つであるリチウムイオン電池用の溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が用いられてきた。これらの中でも、プロピレンカーボネートは、誘電率が高く、リチウム塩等の溶解性に優れ、低温下における電気伝導率が高いため、電解液の主溶媒として優れた性能を有している。ところが、負極材料に黒鉛又は黒鉛化炭素を用いた場合には、プロピレンカーボネートが炭素材料表面で分解されてしまうという問題が生ずるため、高誘電率溶媒としては、エチレンカーボネートが用いられている。ただし、エチレンカーボネートは、プロピレンカーボネートに比べて凝固点が高く、低温環境下でリチウムイオン伝導度が著しく低下してしまうため、ジメチルカーボネート等の低粘度溶媒と混合して用いられている。   As a solvent for a lithium ion battery, which is one of non-aqueous electrolyte secondary batteries, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like have been used. Among these, propylene carbonate has a high dielectric constant, excellent solubility of lithium salts, etc., and high electrical conductivity at low temperatures, and therefore has excellent performance as a main solvent for an electrolytic solution. However, when graphite or graphitized carbon is used as the negative electrode material, there is a problem that propylene carbonate is decomposed on the surface of the carbon material, so that ethylene carbonate is used as the high dielectric constant solvent. However, ethylene carbonate has a higher freezing point than propylene carbonate and remarkably lowers lithium ion conductivity in a low-temperature environment. Therefore, ethylene carbonate is used by mixing with a low-viscosity solvent such as dimethyl carbonate.

しかしながら、このような従来の電解液では、イオン伝導度が数mS/cmのオーダーにまでしか向上させることができない。このイオン伝導度をさらに向上させるためには、エチレンカーボネートやプロピレンカーボネートなどの高誘電率溶媒の替わりに低粘度溶媒を増やして、電解液の粘度を下げることが効果的であるとの報告もある(例えば、非特許文献1参照。)。ところが、低粘度溶媒は、揮発性が高いことから、添加量の増加に伴ってその安全性を下げてしまうという問題を有している。   However, with such a conventional electrolyte, the ionic conductivity can only be improved to the order of several mS / cm. In order to further improve the ionic conductivity, it has been reported that it is effective to reduce the viscosity of the electrolyte by increasing the low-viscosity solvent instead of the high dielectric constant solvent such as ethylene carbonate and propylene carbonate. (For example, refer nonpatent literature 1.). However, since the low-viscosity solvent has high volatility, it has a problem that its safety is lowered as the amount added is increased.

このような状況を鑑みて、良好な常温溶融塩が開発されている(例えば、特許文献2参照。)。この常温溶融塩は、常温において液体として化学的に安定であり、しかも、水を容易に系外に除くことができるため、この溶融塩を含有する電解液を用いたリチウム二次電池においては、性能、耐久性及び安定性に優れるという効果を奏することが報告されている。   In view of such a situation, a good room temperature molten salt has been developed (see, for example, Patent Document 2). This room temperature molten salt is chemically stable as a liquid at room temperature, and since water can be easily removed from the system, in a lithium secondary battery using an electrolytic solution containing this molten salt, It has been reported that it has the effect of being excellent in performance, durability and stability.

特開平11−121032号公報Japanese Patent Laid-Open No. 11-121022 特開平11−297355号公報JP-A-11-297355 Boris Ravdelら、第204回“The Electrochemichal Society, Inc.”ミーティング要旨273、2003年Boris Ravdel et al., Abstract of the 204th “The Electrochemichal Society, Inc.” Meeting 273, 2003

しかしながら、非水電解液二次電池の電解液に、上記の常温溶融塩を単に含有させただけでは、良好なイオン伝導度の向上が得られるものではなく、非水電解液二次電池用の電解液として最適な含有量が求められている。なお、本発明においては、この常温で液体として安定に存在する常温溶融塩をイオン性液体と称している。   However, simply adding the above-mentioned room temperature molten salt to the electrolyte of the non-aqueous electrolyte secondary battery does not provide a good improvement in ionic conductivity, and is used for a non-aqueous electrolyte secondary battery. There is a demand for an optimum content as an electrolytic solution. In the present invention, the room temperature molten salt that stably exists as a liquid at room temperature is referred to as an ionic liquid.

したがって、本発明は、安全性を高め、かつイオン伝導度のさらなる向上を図った新規な非水電解液二次電池用非水電解液及びこれを用いた非水電解液二次電池を提供することを目的としている。   Accordingly, the present invention provides a novel non-aqueous electrolyte for a non-aqueous electrolyte secondary battery that has improved safety and further improved ionic conductivity, and a non-aqueous electrolyte secondary battery using the same. The purpose is that.

本発明の非水電解液二次電池用非水電解液は、アルカリ塩と、非水系溶媒と、下記化1で表されるイオン性液体とからなり、この非水系溶媒及びイオン性液体の総重量に対するイオン性液体の含有量が、0重量%超80重量%未満であることを特徴としている。

Figure 2005183270
はアルキル基又はアルコキシル基、Xはテトラフルオロボレート(BF )又はビストリフルオロメチルスルフォニルイミド(TFSI)である。 The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of the present invention comprises an alkali salt, a non-aqueous solvent, and an ionic liquid represented by the following chemical formula 1, and the total of the non-aqueous solvent and the ionic liquid. The content of the ionic liquid with respect to the weight is more than 0% by weight and less than 80% by weight.
Figure 2005183270
R 1 to 4 are an alkyl group or an alkoxyl group, and X is tetrafluoroborate (BF 4 ) or bistrifluoromethylsulfonylimide (TFSI ).

また、本発明の非水電解液二次電池は、アルカリイオンの吸蔵・放出可能な活物質を含む正極と、アルカリイオンの吸蔵・放出可能な活物質を含む負極と、本発明の非水電解液二次電池用非水電解液とからなることを特徴としている。   The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including an active material capable of occluding and releasing alkali ions, a negative electrode including an active material capable of occluding and releasing alkali ions, and the non-aqueous electrolysis of the present invention. It is characterized by comprising a non-aqueous electrolyte for a liquid secondary battery.

本発明によれば、非水電解液にイオン性液体を含有させることにより、アルカリイオンの拡散定数の向上及び輸率の向上を図り、イオン伝導度を向上させるという効果を奏するとともに、イオン性液体の含有量を非水系溶媒及びイオン性液体の総重量に対して80重量%未満とすることにより、粘度増加によるアルカリイオンの拡散定数の低下を回避している。   According to the present invention, by containing an ionic liquid in the nonaqueous electrolytic solution, the diffusion constant of alkali ions and the transport number are improved, and the ionic conductivity is improved. The content of is less than 80% by weight based on the total weight of the non-aqueous solvent and the ionic liquid, thereby avoiding a decrease in the diffusion constant of alkali ions due to an increase in viscosity.

このイオン伝導度の向上は、概ね以下の原理によるものと推測される。従来の非水系溶媒のみの電解液の場合には、アルカリイオンの周りに双極子をもった溶媒分子が、エネルギー的に安定な向きに配向し、このイオンと双極子をもった分子間に引力が働く。そして、アルカリイオンはイオン半径が小さいため、表面積が小さく、すなわち、単位面積当たりの電荷密度が大きく、双極子モーメントが大きい。そのため、アルカリイオンが他のサイトへ移動するのに必要なエネルギーが大きいことから、イオン伝導度が低い。これに対して、本発明の非水電解液においては、イオン性液体を含有させることにより、イオン性液体とアルカリ塩とが混ざり合い、解離していなかったアルカリ塩に作用し、イオン性液体と1価のイオンを形成する。そのため、イオン半径を大きく、すなわち、表面積を大きくすることができ、双極子モーメントを下げることができる。   This improvement in ionic conductivity is presumably due to the following principle. In the case of a conventional non-aqueous solvent-only electrolyte, solvent molecules with dipoles around alkali ions are oriented in an energetically stable direction, and attractive forces are generated between the ions and dipole molecules. Work. Since alkali ions have a small ion radius, the surface area is small, that is, the charge density per unit area is large and the dipole moment is large. Therefore, since the energy required for alkali ions to move to other sites is large, the ionic conductivity is low. On the other hand, in the nonaqueous electrolytic solution of the present invention, by containing the ionic liquid, the ionic liquid and the alkali salt are mixed and act on the alkali salt that has not been dissociated, and the ionic liquid and Monovalent ions are formed. Therefore, the ion radius can be increased, that is, the surface area can be increased, and the dipole moment can be reduced.

また、本発明におけるイオン性液体は、従来の低粘度溶媒のように、揮発によるガスの発生等が生じないため、非水電解液を難燃性に維持することができ、その結果、安全性にも優れるという効果も得られる。   In addition, the ionic liquid in the present invention does not generate gas due to volatilization, unlike conventional low-viscosity solvents, so that the non-aqueous electrolyte can be maintained in flame retardancy, resulting in safety. The effect that it is excellent also is acquired.

本発明の非水電解液二次電池用非水電解液は、アルカリ塩と、非水系溶媒と、特定のイオン性液体とから構成されている。また、本発明の非水電解液二次電池は、アルカリイオンの吸蔵・放出可能な活物質を含む正極と、アルカリイオンの吸蔵・放出可能な活物質を含む負極と、本発明の非水電解液二次電池用非水電解液とから構成されている。具体的には、乾燥雰囲気下において、上記正極及び負極を正極缶及び封口板にそれぞれ収容し、セパレータを狭持するようにこれらの正極と負極とを積層させ、この積層体を封入するように、ガスケットを介して正極缶と封口板とをかしめ密封して、本発明の非水電解液二次電池を作製することができる。以下、これらの構成要素について説明する。   The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of the present invention is composed of an alkali salt, a non-aqueous solvent, and a specific ionic liquid. The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode including an active material capable of occluding and releasing alkali ions, a negative electrode including an active material capable of occluding and releasing alkali ions, and the non-aqueous electrolysis of the present invention. It is comprised from the non-aqueous electrolyte for liquid secondary batteries. Specifically, in a dry atmosphere, the positive electrode and the negative electrode are accommodated in a positive electrode can and a sealing plate, the positive electrode and the negative electrode are laminated so as to sandwich the separator, and the laminate is sealed. The positive electrode can and the sealing plate can be caulked and sealed through a gasket to produce the nonaqueous electrolyte secondary battery of the present invention. Hereinafter, these components will be described.

1.非水電解液
(1)アルカリ塩
本発明の非水電解液におけるアルカリ塩は溶質であり、リチウム塩であることが好ましい形態である。具体的には、LiClO、LiPF、LiBF等の無機リチウム塩、又は、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiC(CFSO等の含フッ素有機リチウム塩が挙げられる。これらのアルカリ塩は二種類以上混合して用いても良いが、本発明においては、アルカリ塩がLiPF及びLiBFの少なくともいずれかであることがより好ましい態様である。
1. Nonaqueous Electrolytic Solution (1) Alkali Salt The alkaline salt in the nonaqueous electrolytic solution of the present invention is a solute and is preferably a lithium salt. Specifically, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , or LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 Fluorine-containing organic lithium salts such as SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 and the like can be mentioned. Two or more kinds of these alkali salts may be used as a mixture, but in the present invention, it is a more preferable embodiment that the alkali salt is at least one of LiPF 6 and LiBF 4 .

また、電解液中の溶質のアルカリ塩のモル濃度については、0M以上3M以下であることが好ましく、0.5Mであることがより望ましい。この範囲を逸脱すると、非水電解液の電気伝導率が低くなり、電池の性能が低下してしまう。   Further, the molar concentration of the solute alkali salt in the electrolytic solution is preferably 0 M or more and 3 M or less, and more preferably 0.5 M. When deviating from this range, the electrical conductivity of the non-aqueous electrolyte is lowered, and the battery performance is degraded.

(2)非水系溶媒
本発明における非水系溶媒としては、高誘電率溶媒であるエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン等の環状エステルや、低沸点溶媒であるジエチルカーボネート、エチルメチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等の鎖状エステル等が挙げられる。これらの非水系溶媒は二種類以上混合して用いても良く、本発明においては、非水系溶媒が環状エステルと鎖状エステルとの混合物であることがより好ましい態様である。
(2) Non-aqueous solvent Examples of the non-aqueous solvent in the present invention include cyclic esters such as ethylene carbonate, propylene carbonate, butylene carbonate, and γ-butyrolactone, which are high dielectric constant solvents, and diethyl carbonate and ethyl methyl carbonate, which are low-boiling solvents. And chain esters such as dimethyl carbonate and methyl ethyl carbonate. These non-aqueous solvents may be used as a mixture of two or more. In the present invention, it is a more preferable embodiment that the non-aqueous solvent is a mixture of a cyclic ester and a chain ester.

(3)イオン性液体
本発明の非水電解液二次電池用非水電解液においては、下記化2で表されるイオン性液体が特定の量で含有されていることが最大の特徴である。ここで、Rはアルキル基又はアルコキシル基を表しており、Xはテトラフルオロボレート(BF )又はビストリフルオロメチルスルフォニルイミド(TFSI)を表している。具体的には、下記化3及び化4が含まれる化合物が挙げられる。

Figure 2005183270
Figure 2005183270
Figure 2005183270
(3) Ionic liquid The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of the present invention is characterized in that the ionic liquid represented by the following chemical formula 2 is contained in a specific amount. . Here, R 1 to 4 represent an alkyl group or an alkoxyl group, and X represents tetrafluoroborate (BF 4 ) or bistrifluoromethylsulfonylimide (TFSI ). Specifically, compounds including the following chemical formulas 3 and 4 are included.
Figure 2005183270
Figure 2005183270
Figure 2005183270

また、本発明における非水系溶媒及びイオン性液体の総重量に対するイオン性液体の含有量については、0重量%超80重量%未満であることが必須であり、好ましくは5重量%超60重量%未満であり、より好ましくは10重量%超50重量%未満であり、さらに好ましくは35重量%超50重量%未満である。このイオン性液体が含有されていなければ、アルカリイオンの拡散定数や輸率が向上することがなく、イオン伝導度を向上させることができない。一方、このイオン性液体の含有量が80重量%以上となると、非水系溶媒の粘度が増加して、アルカリイオンの拡散定数が低下し、その結果、イオン伝導度も低下してしまう。   In addition, the content of the ionic liquid relative to the total weight of the non-aqueous solvent and the ionic liquid in the present invention is essential to be more than 0% by weight and less than 80% by weight, preferably more than 5% by weight and 60% by weight. More preferably, it is more than 10% by weight and less than 50% by weight, and more preferably more than 35% by weight and less than 50% by weight. If this ionic liquid is not contained, the diffusion constant and transport number of alkali ions are not improved, and the ionic conductivity cannot be improved. On the other hand, when the content of the ionic liquid is 80% by weight or more, the viscosity of the non-aqueous solvent increases, the diffusion constant of alkali ions decreases, and as a result, the ionic conductivity also decreases.

2.正極
本発明の非水電解液二次電池における正極は、正極活物質をアセチレンブラック等の電子導電体及びポリフッ化ビニリデン等の結着剤に混練し、これをスラリー状とした後、正極集電体上に塗布、乾燥させ、任意の形状に成形して作製することができる。正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属の複合酸化物、導電性高分子材料、炭素繊維材料又はこれらの混合物などのリチウムを吸蔵・放出可能な材料が挙げられ、正極集電体の材料としては、アルミニウム、チタン、タンタル、これらの合金等を用いることができる。
2. Positive electrode In the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material is kneaded with an electronic conductor such as acetylene black and a binder such as polyvinylidene fluoride, and the mixture is made into a slurry. It can be produced by applying it on the body, drying it and molding it into any shape. Examples of the positive electrode active material include materials capable of inserting and extracting lithium, such as transition metal oxides, transition metal sulfides, composite oxides of lithium and transition metals, conductive polymer materials, carbon fiber materials, or mixtures thereof. As a material for the positive electrode current collector, aluminum, titanium, tantalum, alloys thereof, or the like can be used.

3.負極
本発明の非水電解液二次電池における負極については、正極と同様、負極活物質をアセチレンブラック等の電子導電体及びポリフッ化ビニリデン等の結着剤に混練し、これをスラリー状とした後、正極集電体上に塗布、乾燥させ、任意の形状に成形して作製することができる。負極活物質としては、金属リチウム、リチウム含有合金又はリチウムイオンのドープ、脱ドープが可能な炭素材料、リチウムイオンのドープ、脱ドープが可能な金属酸化物などのリチウムを吸蔵・放出可能な材料が挙げられ、負極集電体の材料としては、銅、ニッケル、ステンレス等の金属が使用され、これらの中でも薄膜に加工しやすいという点とコストの点から銅箔が好ましい。
3. Negative electrode As for the negative electrode in the non-aqueous electrolyte secondary battery of the present invention, the negative electrode active material was kneaded with an electronic conductor such as acetylene black and a binder such as polyvinylidene fluoride in the same manner as the positive electrode, and this was made into a slurry. Then, it can apply | coat and dry on a positive electrode electrical power collector, and can shape | mold and shape in arbitrary shapes. Examples of the negative electrode active material include metallic lithium, lithium-containing alloy, or lithium ion doped, undopeable carbon material, lithium ion doped, dedendable metal oxide, and other materials capable of occluding and releasing lithium. As the material of the negative electrode current collector, metals such as copper, nickel, and stainless steel are used, and among these, a copper foil is preferable from the viewpoint of easy processing into a thin film and cost.

4.その他の構成部材
本発明における正極缶及び封口板の材料は、正極及び負極等を収容するための外缶であり、材質としては、してステンレスやアルミニウムが好適に用いられる。また、セパレータは、本発明の非水電解液を浸含させ、正極と負極とに狭持された部材であり、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートまたは不織布が使用可能である。
4). Other constituent members The material of the positive electrode can and the sealing plate in the present invention is an outer can for accommodating the positive electrode, the negative electrode, and the like, and stainless steel or aluminum is preferably used as the material. The separator is a member impregnated with the non-aqueous electrolyte of the present invention and sandwiched between the positive electrode and the negative electrode, and a porous sheet or nonwoven fabric made of a polyolefin such as polyethylene or polypropylene can be used. .

また、本発明の他の態様としては、上記非水電解液二次電池用を用いた電気機器又は輸送用機器が含まれる。   Moreover, as another aspect of the present invention, an electric device or a transport device using the non-aqueous electrolyte secondary battery is included.

以下、具体的な実施例により本発明の効果を詳細に説明する。
1.非水電解液二次電池用非水電解液の調製
<実施例1>
表1に示すように、イオン性液体であるトリメチルヘキシルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で35:65とした混合溶媒に、LiBFを0.5Mに溶解して、本発明の実施例1の非水電解液二次電池用非水電解液を調製した。
Hereinafter, the effects of the present invention will be described in detail by way of specific examples.
1. Preparation of Nonaqueous Electrolyte for Nonaqueous Electrolyte Secondary Battery <Example 1>
As shown in Table 1, an ionic liquid, trimethylhexylammonium bistrifluoromethylsulfonylimide, and a 1: 3 mixture of ethylene carbonate and ethyl methyl carbonate were mixed into a mixed solvent at a weight ratio of 35:65. LiBF 4 was dissolved in 0.5 M to prepare a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of Example 1 of the present invention.

Figure 2005183270
Figure 2005183270

<実施例2>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で35:65とした混合溶媒に、LiPFを0.5Mに溶解して、本発明の実施例2の非水電解液二次電池用非水電解液を調製した。
<Example 2>
As shown in Table 1, a mixed solvent in which dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and a 1: 3 mixed solution of ethylene carbonate and ethyl methyl carbonate was 35:65 by weight ratio. In addition, LiPF 6 was dissolved in 0.5 M to prepare a nonaqueous electrolyte solution for a nonaqueous electrolyte secondary battery of Example 2 of the present invention.

<実施例3>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で10:90とした混合溶媒に、LiBFを0.5Mに溶解して、本発明の実施例3の非水電解液二次電池用非水電解液を調製した。
<Example 3>
As shown in Table 1, a mixed solvent in which a 1: 3 mixed solution of dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and ethylene carbonate and ethylmethyl carbonate, is 10:90 by weight ratio. In addition, LiBF 4 was dissolved in 0.5M to prepare a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of Example 3 of the present invention.

<実施例4>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で35:65とした混合溶媒に、LiBFを0.5Mに溶解して、本発明の実施例4の非水電解液二次電池用非水電解液を調製した。
<Example 4>
As shown in Table 1, a mixed solvent in which dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and a 1: 3 mixed solution of ethylene carbonate and ethyl methyl carbonate was 35:65 by weight ratio. In addition, LiBF 4 was dissolved in 0.5 M to prepare a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of Example 4 of the present invention.

<実施例5>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で50:50とした混合溶媒に、LiBFを0.5Mに溶解して、本発明の実施例5の非水電解液二次電池用非水電解液を調製した。
<Example 5>
As shown in Table 1, a mixed solvent in which a 1: 3 mixture of dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and ethylene carbonate and ethylmethyl carbonate, was 50:50 by weight. In addition, LiBF 4 was dissolved in 0.5 M to prepare a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of Example 5 of the present invention.

<実施例6>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドと、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液とを、重量比で75:25とした混合溶媒に、LiBFを0.5Mに溶解して、本発明の実施例6の非水電解液二次電池用非水電解液を調製した。
<Example 6>
As shown in Table 1, a mixed solvent in which a dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and a 1: 3 mixed solution of ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 75:25. In addition, LiBF 4 was dissolved in 0.5M to prepare a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery of Example 6 of the present invention.

<比較例1>
表1に示すように、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液に、LiBFを1Mに溶解して、本発明に対する比較例1の非水電解液二次電池用非水電解液を調製した。
<Comparative Example 1>
As shown in Table 1, LiBF 4 was dissolved in 1M in a 1: 3 mixture of ethylene carbonate and ethyl methyl carbonate, and non-aqueous electrolysis for a non-aqueous electrolyte secondary battery of Comparative Example 1 for the present invention. A liquid was prepared.

<比較例2>
表1に示すように、エチレンカーボネートとエチルメチルカーボネートとの1:3の混合液に、LiPFを1.25Mに溶解して、本発明に対する比較例2の非水電解液二次電池用非水電解液を調製した。
<Comparative example 2>
As shown in Table 1, LiPF 6 was dissolved in 1.25 M in a 1: 3 mixture of ethylene carbonate and ethyl methyl carbonate, and the nonaqueous electrolyte secondary battery for Comparative Example 2 of the present invention was used. A water electrolyte was prepared.

<比較例3>
表1に示すように、イオン性液体であるジメチルエチルブチルアンモニウムビストリフルオロメチルスルフォニルイミドに、LiBFを1Mに溶解して、本発明に対する比較例3の非水電解液二次電池用非水電解液を調製した。
<Comparative Example 3>
As shown in Table 1, LiBF 4 was dissolved in 1M in dimethylethylbutylammonium bistrifluoromethylsulfonylimide, which is an ionic liquid, and nonaqueous electrolysis for a nonaqueous electrolyte secondary battery of Comparative Example 3 for the present invention. A liquid was prepared.

2.イオン伝導度評価
上記のようにして作製された実施例1〜2及び比較例1〜3の非水電解液二次電池用非水電解液について、導電率計測器(商品名:CM−60、TOA社製)を用いて、−30℃〜25℃におけるイオン伝導度を測定し、温度特性を調べた。その結果を図2に示した。また、上記のようにして作製された実施例3〜6及び比較例1及び3の非水電解液二次電池用非水電解液について、導電率計測器(商品名:CM−60、TOA社製)を用いて、25℃におけるイオン伝導度を測定し、イオン性液体濃度依存性を調べた。その結果を図3に示した。
2. Ion conductivity evaluation About the nonaqueous electrolyte for nonaqueous electrolyte secondary batteries of Examples 1-2 and Comparative Examples 1-3 produced as described above, a conductivity meter (trade name: CM-60, Using TOA), ion conductivity at −30 ° C. to 25 ° C. was measured, and temperature characteristics were examined. The results are shown in FIG. Moreover, about the nonaqueous electrolyte for nonaqueous electrolyte secondary batteries of Examples 3-6 and Comparative Examples 1 and 3 produced as described above, a conductivity meter (trade name: CM-60, TOA Company). Was used to measure the ionic conductivity at 25 ° C., and the ionic liquid concentration dependency was examined. The results are shown in FIG.

温度特性については、図2から明らかなように、イオン性液体を含有していない従来の非水電解液である比較例1及び2、並びに、非水溶媒がイオン性液体のみである比較例3に比べ、本発明である実施例1及び2は、常温でのイオン伝導度が向上していることが示された。また、イオン性液体濃度依存性については、図3から明らかなように、イオン性液体を含有していない比較例1及びイオン性液体濃度が100重量%である比較例3に比べ、イオン性液体濃度が10重量%である実施例3、40重量%である実施例4、50重量%である実施例5、及び、70重量%である実施例6は、イオン伝導度が優れていることが示された。   As is apparent from FIG. 2, the temperature characteristics of Comparative Examples 1 and 2, which are conventional non-aqueous electrolytes not containing an ionic liquid, and Comparative Example 3 in which the non-aqueous solvent is only an ionic liquid. Compared to, Examples 1 and 2 according to the present invention showed improved ion conductivity at room temperature. Further, as is clear from FIG. 3, the ionic liquid concentration dependence is more ionic liquid than Comparative Example 1 containing no ionic liquid and Comparative Example 3 having an ionic liquid concentration of 100% by weight. Example 3 in which the concentration is 10% by weight, Example 4 in which the concentration is 40% by weight, Example 5 in which the concentration is 50% by weight, and Example 6 in which the concentration is 70% by weight are excellent in ionic conductivity. Indicated.

3.非水電解液二次電池への適用
正極については、正極活物質であるLiCoOと、アセチレンブラックと、ポリフッ化ビニリデンとを重量比で89:5:6とした混合物を、N−メチル−2−ピロリドンで分散してスラリー状にしたものを、正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、所定の形状に打ち抜いて作製した。一方、負極については、負極活物質であるメソカーボンマイクロビーズと、アセチレンブラックと、ポリフッ化ビニリデンを重量比で89:5:6とした混合物を、N−メチル−2−ピロリドンで分散してスラリー状にしたものを、負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、所定の形状に打ち抜いて作製した。
3. Application to Nonaqueous Electrolyte Secondary Battery For the positive electrode, a mixture of LiCoO 2 that is a positive electrode active material, acetylene black, and polyvinylidene fluoride in a weight ratio of 89: 5: 6 was used as N-methyl-2. -Dispersed with pyrrolidone into a slurry form was uniformly applied onto a positive electrode current collector aluminum foil having a thickness of 20 μm, dried, and then punched into a predetermined shape. On the other hand, for the negative electrode, a mixture of mesocarbon microbeads, which are negative electrode active materials, acetylene black, and polyvinylidene fluoride in a weight ratio of 89: 5: 6 is dispersed in N-methyl-2-pyrrolidone and slurried. The obtained product was uniformly applied onto a negative electrode current collector 18 μm thick copper foil, dried, and then punched into a predetermined shape.

次に、乾燥アルゴン雰囲気下において、ステンレス製の正極缶の内側にアルミニウム箔を介して上記正極を収容し、一方、ステンレス製の封口板に銅箔を介して上記負極を収容した。次いで、これらの正極と負極とを、上記各実施例の非水電解液二次電池用非水電解液を浸含させたポリプロピレン製の微孔性フィルムからなるセパレータを狭持するように積層させ、この積層体を封入するように、ガスケットを介して正極缶と封口板とをかしめ密封し、図1に示すようなコイン型の非水電解液二次電池を作製した。   Next, in a dry argon atmosphere, the positive electrode was accommodated inside a stainless steel positive electrode can via an aluminum foil, while the negative electrode was accommodated via a copper foil in a stainless steel sealing plate. Next, these positive electrode and negative electrode are laminated so as to sandwich a separator made of a polypropylene microporous film impregnated with the nonaqueous electrolyte solution for a nonaqueous electrolyte secondary battery of each of the above examples. The positive electrode can and the sealing plate were caulked and sealed through a gasket so as to enclose the laminate, and a coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced.

上記のようにして作製された非水電解液二次電池は、上述したように電解液のイオン伝導度が向上されて高くなっているため、従来の非水電解液二次電池に比べて優れた電池特性が得られることが示された。   The non-aqueous electrolyte secondary battery produced as described above is superior to the conventional non-aqueous electrolyte secondary battery because the ionic conductivity of the electrolyte is improved and increased as described above. It was shown that the battery characteristics were obtained.

ボタン型の非水電解液二次電池の断面を示した模式図である。It is the schematic diagram which showed the cross section of the button type non-aqueous electrolyte secondary battery. 実施例及び比較例の温度に対するイオン伝導度を示した線図である。It is the diagram which showed the ionic conductivity with respect to the temperature of an Example and a comparative example. 実施例及び比較例のイオン性液体の濃度に対するイオン伝導度を示した線図である。It is the diagram which showed the ionic conductivity with respect to the density | concentration of the ionic liquid of an Example and a comparative example.

符号の説明Explanation of symbols

1…正極、2…正極缶、3…アルミニウム箔、4…負極、5…封口板、6…セパレータ、
7…ガスケット。
DESCRIPTION OF SYMBOLS 1 ... Positive electrode, 2 ... Positive electrode can, 3 ... Aluminum foil, 4 ... Negative electrode, 5 ... Sealing plate, 6 ... Separator,
7 ... gasket.

Claims (9)

アルカリ塩と、非水系溶媒と、下記化1で表されるイオン性液体とからなり、
前記非水系溶媒及び前記イオン性液体の総重量に対する前記イオン性液体の含有量が、0重量%超80重量%未満であることを特徴とする非水電解液二次電池用非水電解液。
Figure 2005183270
はアルキル基又はアルコキシル基、Xはテトラフルオロボレート(BF )又はビストリフルオロメチルスルフォニルイミド(TFSI)である。
An alkali salt, a non-aqueous solvent, and an ionic liquid represented by the following chemical formula 1,
A non-aqueous electrolyte for a non-aqueous electrolyte secondary battery, wherein the content of the ionic liquid with respect to the total weight of the non-aqueous solvent and the ionic liquid is more than 0% and less than 80% by weight.
Figure 2005183270
R 1 to 4 are an alkyl group or an alkoxyl group, and X is tetrafluoroborate (BF 4 ) or bistrifluoromethylsulfonylimide (TFSI ).
前記イオン性液体の含有量が5重量%超60重量%未満であることを特徴とする請求項1に記載の非水電解液二次電池用非水電解液。 2. The nonaqueous electrolyte for a nonaqueous electrolyte secondary battery according to claim 1, wherein the content of the ionic liquid is more than 5 wt% and less than 60 wt%. 前記イオン性液体の含有量が10重量%超50重量%未満であることを特徴とする請求項1に記載の非水電解液二次電池用非水電解液。 2. The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to claim 1, wherein the content of the ionic liquid is more than 10 wt% and less than 50 wt%. 前記アルカリ塩が、リチウム塩であることを特徴とする請求項1〜3のいずれかに記載の非水電解液二次電池用非水電解液。 The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to claim 1, wherein the alkali salt is a lithium salt. 前記非水系溶媒は、環状エステルと鎖状エステルとの混合物であることを特徴とする請求項1〜4のいずれかに記載の非水電解液二次電池用非水電解液。 The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous solvent is a mixture of a cyclic ester and a chain ester. 前記リチウム塩は、LiPF及びLiBFの少なくともいずれかであることを特徴とする請求項1〜5のいずれかに記載の非水電解液二次電池用非水電解液。 The non-aqueous electrolyte for a non-aqueous electrolyte secondary battery according to claim 1, wherein the lithium salt is at least one of LiPF 6 and LiBF 4 . アルカリイオンの吸蔵・放出可能な活物質を含む正極と、
アルカリイオンの吸蔵・放出可能な活物質を含む負極と、
請求項1〜6のいずれかに記載の非水電解液とからなることを特徴とする非水電解液二次電池。
A positive electrode containing an active material capable of occluding and releasing alkali ions;
A negative electrode containing an active material capable of occluding and releasing alkali ions;
A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte according to claim 1.
請求項7に記載の非水電解液二次電池を用いた電気機器。 An electric device using the nonaqueous electrolyte secondary battery according to claim 7. 請求項7に記載の非水電解液二次電池を用いた輸送用機器。
Transportation equipment using the nonaqueous electrolyte secondary battery according to claim 7.
JP2003424790A 2003-12-22 2003-12-22 Non-aqueous electrolyte and secondary battery using the same Expired - Fee Related JP4903983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424790A JP4903983B2 (en) 2003-12-22 2003-12-22 Non-aqueous electrolyte and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424790A JP4903983B2 (en) 2003-12-22 2003-12-22 Non-aqueous electrolyte and secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2005183270A true JP2005183270A (en) 2005-07-07
JP4903983B2 JP4903983B2 (en) 2012-03-28

Family

ID=34784882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424790A Expired - Fee Related JP4903983B2 (en) 2003-12-22 2003-12-22 Non-aqueous electrolyte and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP4903983B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
WO2007088677A1 (en) 2006-02-03 2007-08-09 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium rechargeable battery using ionic liquid
JP2007323827A (en) * 2006-05-30 2007-12-13 Honda Motor Co Ltd Secondary battery, electronic equipment and transport equipment using secondary battery
JP2008243736A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Lithium ion secondary battery and its manufacturing method
US20140099529A1 (en) * 2012-10-05 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260400A (en) * 1998-03-12 1999-09-24 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2002367675A (en) * 2001-06-12 2002-12-20 Yuasa Corp Non-aqueous electrolyte battery
JP2003288939A (en) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
WO2003091198A1 (en) * 2002-04-24 2003-11-06 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electric double layer capacitor, and secondary battery
JP2004006215A (en) * 2002-04-11 2004-01-08 Sanyo Electric Co Ltd Secondary battery
JP2005142047A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005166290A (en) * 2003-11-28 2005-06-23 Sony Corp Electrolyte and battery using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260400A (en) * 1998-03-12 1999-09-24 Toshiba Corp Nonaqueous electrolyte secondary battery
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2002367675A (en) * 2001-06-12 2002-12-20 Yuasa Corp Non-aqueous electrolyte battery
JP2003288939A (en) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2004006215A (en) * 2002-04-11 2004-01-08 Sanyo Electric Co Ltd Secondary battery
WO2003091198A1 (en) * 2002-04-24 2003-11-06 Nisshinbo Industries, Inc. Ionic liquid, method of dehydration, electric double layer capacitor, and secondary battery
JP2005142047A (en) * 2003-11-07 2005-06-02 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2005166290A (en) * 2003-11-28 2005-06-23 Sony Corp Electrolyte and battery using it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147268A (en) * 2004-11-18 2006-06-08 Sii Micro Parts Ltd Nonaqueous electrolyte secondary battery
WO2007088677A1 (en) 2006-02-03 2007-08-09 Dai-Ichi Kogyo Seiyaku Co., Ltd. Lithium rechargeable battery using ionic liquid
JP2007207675A (en) * 2006-02-03 2007-08-16 Dai Ichi Kogyo Seiyaku Co Ltd Lithium secondary cell using ionic liquid
JP2007323827A (en) * 2006-05-30 2007-12-13 Honda Motor Co Ltd Secondary battery, electronic equipment and transport equipment using secondary battery
JP2008243736A (en) * 2007-03-28 2008-10-09 Arisawa Mfg Co Ltd Lithium ion secondary battery and its manufacturing method
US20140099529A1 (en) * 2012-10-05 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
WO2014054664A1 (en) * 2012-10-05 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Power storage device
JP2014089948A (en) * 2012-10-05 2014-05-15 Semiconductor Energy Lab Co Ltd Power storage device
CN104904057A (en) * 2012-10-05 2015-09-09 株式会社半导体能源研究所 Power storage device
TWI627780B (en) * 2012-10-05 2018-06-21 半導體能源研究所股份有限公司 Power storage device

Also Published As

Publication number Publication date
JP4903983B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
KR101488542B1 (en) Plastic crystal electrolyte with a broad potential window
US20020039677A1 (en) Non-aqueous electrochemical apparatus
Matsui et al. Design of an electrolyte composition for stable and rapid charging–discharging of a graphite negative electrode in a bis (fluorosulfonyl) imide-based ionic liquid
KR20070085575A (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
JP6476611B2 (en) Non-aqueous electrolyte battery electrolyte and non-aqueous electrolyte battery using the same
JP2003203674A (en) Nonaqueous electrolyte secondary cell
JP4868350B2 (en) Non-aqueous electrolyte battery
US20210119253A1 (en) Polymer electrolyte composition, and polymer secondary battery
JP2008047479A (en) Nonaqueous electrolyte, and electrochemical energy storage device equipped with it
JP5062459B2 (en) Nonaqueous electrolyte secondary battery
US11296356B2 (en) Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same
JP2006339010A (en) Electrolytic solution for electrochemical device
US20110151340A1 (en) Non-aqueous electrolyte containing as a solvent a borate ester and/or an aluminate ester
JP4811070B2 (en) Non-aqueous electrolyte battery electrolyte, electrolyte and non-aqueous electrolyte battery
JP5062505B2 (en) Non-aqueous electrolyte battery
Tsunashima et al. Effect of quaternary phosphonium salts in organic electrolyte for lithium secondary batteries
JP4903983B2 (en) Non-aqueous electrolyte and secondary battery using the same
JPH10334730A (en) Organic electrolyte and its use
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP5259996B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery
JP2004134165A (en) Nonaqueous electrolyte, and electrochemical device
Swiderska-Mocek Properties of LiMn 2 O 4 cathode in electrolyte based on ionic liquid with and without gamma-butyrolactone
JP2002367675A (en) Non-aqueous electrolyte battery
JP4076738B2 (en) Lithium battery and electrolyte for lithium ion battery, electrolyte solution or solid electrolyte thereof, and lithium battery or lithium ion battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees