JPH02177263A - Thermal cell - Google Patents

Thermal cell

Info

Publication number
JPH02177263A
JPH02177263A JP33445388A JP33445388A JPH02177263A JP H02177263 A JPH02177263 A JP H02177263A JP 33445388 A JP33445388 A JP 33445388A JP 33445388 A JP33445388 A JP 33445388A JP H02177263 A JPH02177263 A JP H02177263A
Authority
JP
Japan
Prior art keywords
heat storage
agent
regenerative
regenerative agent
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33445388A
Other languages
Japanese (ja)
Other versions
JP2808627B2 (en
Inventor
Masanori Fujimoto
冨士本 真紀
Kazunori Haraguchi
和典 原口
Akinori Awano
粟野 彰規
Hirosuke Yamazaki
博資 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33445388A priority Critical patent/JP2808627B2/en
Publication of JPH02177263A publication Critical patent/JPH02177263A/en
Application granted granted Critical
Publication of JP2808627B2 publication Critical patent/JP2808627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve warming technique of a thermal cell for long-time use by using a regenerative layer for a thermal cell that is obtained by putting a regenerative agent for which Li2SO4-NaCl fused salt regenerative agent and powder whose matrix is a homogenous mixture of an inorganic adsorbent are heat-treated and stabilized, into a metal cup, and by applying a lid of metallic plate. CONSTITUTION:For a stabilized regenerative layer 3, after a fused salt regenerative agent Li2SO4-NaCl and an inorganic adsorbent SiO2 are mixed together homogeneously by a ball mill, it is heat-treated at the temperature greater than a melting point of the regenerative agent for Li2SO4-NaCl to be stabilized with SiO2. After ground and granulated to make a stabilized regenerative agent, a regenerative layer 3 for a thermal cell is made by putting a metal cup 1, a solid regenerative agent, and a metal lid 2 in a metallic frame, by caulking process. When the regenerative layer is used, since the stabilized regenerative agent is trapped in the metal cup 1, mechanical force is increased, and the regenerative agent can be increased by means of reducing the inorganic adsorbent. A simple process of only press working after putting the powder into the metal cup and applying a lid allows for easy manufacturing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱電池の素電池と加熱剤からなる積層体の上
・下部に設置された蓄熱層の改良を図った保温効果に優
れ長時間作動用の熱電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention aims to improve heat storage layers installed at the top and bottom of a laminate consisting of a unit cell and a heating agent for a thermal battery. This relates to thermal batteries for use in other applications.

従来の技術 熱電池は常温で不活性であるが、高温に加熱すると活性
となり、外部へ電力を供給し得るようになる電池で貯蔵
型電池の一種である。従って、きわめて良好な貯蔵性を
有し6〜10年間の貯蔵後も製造直後となんら電池特性
上質わることなく使用できる。また高温で作動させるた
めに電極反応が進み易く分極も少ないので大出力放電に
よく耐えること、使用時には起動信号を入れると瞬時に
電圧発生するなどの特徴を有するが、数分間以内の短時
間しか使用できないという短所を有している。
BACKGROUND TECHNOLOGY A thermal battery is inactive at room temperature, but becomes active when heated to a high temperature and can supply power to the outside, and is a type of storage battery. Therefore, it has an extremely good storage property and can be used even after storage for 6 to 10 years without any deterioration in battery properties compared to immediately after production. In addition, since it is operated at high temperatures, electrode reactions progress easily and polarization is small, so it can withstand high-output discharge well, and when in use, when a start signal is input, voltage is generated instantaneously. It has the disadvantage that it cannot be used.

しかし、近年では16分作動の電池などが発表されてお
シ、今後は数十分から1時間ぐらいの比較的長時間にわ
たり、大電流、高出力、大容量での用途が増える傾向に
ある。そのためには、電池作動中の電解質を長時間溶融
状態に保つことが必要となり、結果として放電寿命を延
ばすことが出来る。従って、熱電池の保温技術について
は今後ますます重要な課題となる。
However, in recent years, batteries that can operate for 16 minutes have been announced, and in the future there will be an increasing trend for applications that require relatively long periods of time, from several tens of minutes to an hour, with large currents, high outputs, and large capacities. For this purpose, it is necessary to keep the electrolyte in a molten state for a long time during battery operation, and as a result, the discharge life can be extended. Therefore, heat retention technology for thermal batteries will become an increasingly important issue in the future.

保温技術の中心は断熱技術と蓄熱技術である。The core of heat retention technology is insulation technology and heat storage technology.

前者については商品名MIN−K及びマイクロサームと
呼ばれる低熱伝導係数を有する特殊断熱材を用いたり、
後者については溶融塩の凝固潜熱を利用した蓄熱剤を用
いるという熱電池の研究がされている。この溶融塩蓄熱
剤はベレ、ト状に成形して加SI3溶融用の加熱剤とと
もに素電池と加熱剤の積層体の両端部に使用されている
For the former, special insulation materials with low thermal conductivity coefficients called MIN-K and Microtherm are used,
Regarding the latter, research is being carried out on thermal batteries that use a heat storage agent that utilizes the latent heat of solidification of molten salt. This molten salt heat storage agent is molded into a round shape and is used together with a heating agent for melting SI3 at both ends of a laminate of a unit cell and a heating agent.

以下に従来の熱電池用蓄熱層について説明する。A conventional heat storage layer for a thermal battery will be explained below.

第2図は従来の溶融塩蓄熱層の断面図である。FIG. 2 is a cross-sectional view of a conventional molten salt heat storage layer.

氏において、3は硫酸リチウムと塩化ナトリウム(Li
25O4Hz(J )の溶融塩蓄熱剤に二酸化珪素(5
in2)のバインダーを10〜16重量%加え、熱処理
により均質に含浸保持した固定化蓄熱層で。
In Mr. 3, lithium sulfate and sodium chloride (Li
Silicon dioxide (5
10 to 16% by weight of binder in2) is added to the fixed heat storage layer, which is homogeneously impregnated and maintained by heat treatment.

これを鉄粉と過塩素酸カリウムからなる加熱剤6を補強
体としてその上から一体成形に構成したものである。b
において、13は封口された金属容2Rでこの中に硫酸
リチウムと塩化ナトリウムからなる溶融塩蓄熱剤14を
溶融状態で注入したのち、封口したものである。
This is integrally molded over a heating agent 6 made of iron powder and potassium perchlorate as a reinforcing body. b
13 is a sealed metal container 2R into which a molten salt heat storage agent 14 made of lithium sulfate and sodium chloride is injected in a molten state and then sealed.

これらの蓄熱層の使用方法は電池に構成する場合には層
状に加工した蓄熱層を加熱剤と交互に積み重ねて使用す
る。また作用は、硫酸リチウムと塩化ナトリウムの蓄熱
剤は498℃でs o cal/gの凝固潜熱を発生し
、素電池−加熱剤のスタックに熱を供給してrs o 
o CPfI後で温度が一定となり、放熱の緩やかな状
態をつくって、素電池の電解質層の溶融状態を長時間保
つことが出来るのである。
When these heat storage layers are used in a battery, heat storage layers processed into layers are stacked alternately with a heating agent. In addition, the heat storage agent of lithium sulfate and sodium chloride generates latent heat of solidification of s o cal/g at 498°C, supplies heat to the unit cell-heating agent stack, and generates rs o cal/g.
o After CPfI, the temperature becomes constant, creating a state of gradual heat dissipation, making it possible to maintain the molten state of the electrolyte layer of the unit cell for a long time.

発明が解決しようとする課題 しかしながら、上記従来の蓄熱層にはそれぞれ問題点か
あ−7た。即ちaの構成において、固定化蓄熱層3は加
熱剤6上だ成形しているために機械的強度は十分に有す
るが蓄熱剤が加熱溶融したとき十分な無機バインダーを
含ませていないと、層の変形を生じ構成が安定しない。
Problems to be Solved by the Invention However, each of the above conventional heat storage layers has some problems. That is, in the configuration a, the fixed heat storage layer 3 has sufficient mechanical strength because it is molded on the heating agent 6, but when the heat storage agent is heated and melted, if it does not contain enough inorganic binder, the layer will be damaged. This causes deformation and the structure becomes unstable.

また、加熱剤と固定化蓄熱層が直接に接触する構成とな
っているので、鉄と過塩素酸カリウムからなる加熱剤が
発熱反応を起こした時に生成する塩化カリウム(KGl
)が固定化蓄熱層3に拡散していき、Li25O4−N
aCJ −KCIの3元溶融塩に変質するため、Li2
5Oa −NILCl  の共晶点498℃よりも低い
450℃付近で作用し、かつ低カロリーの潜熱を発生し
てしまう。このため、200!IIA/、4以上の高率
放電の場合や、2000mム/眉以上のパルス電流が印
加される場合などに必要とする作動温度4800以上を
長時間にわたって保持し得なくなる。
In addition, since the heating agent and the immobilized heat storage layer are in direct contact with each other, potassium chloride (KGl) is produced when the heating agent consisting of iron and potassium perchlorate undergoes an exothermic reaction.
) diffuses into the fixed heat storage layer 3, and Li25O4-N
Li2 transforms into a ternary molten salt of aCJ-KCI.
It acts at around 450°C, which is lower than the eutectic point of 5Oa-NILCl, 498°C, and generates low-calorie latent heat. For this reason, 200! In the case of high rate discharge of IIA/, 4 or more, or when a pulse current of 2000 mm/brow or more is applied, the required operating temperature of 4800 or more cannot be maintained for a long time.

またbの構成では無機吸着剤を用いないため、溶融塩蓄
熱剤が多量に用いられるので体積効率は良くなるが、注
入工程、封口工程、冷却固化工程の工稈数が増え、かつ
作業が煩雑になるのでコスト高となる。
In addition, in configuration b, since no inorganic adsorbent is used, a large amount of molten salt heat storage agent is used, which improves the volumetric efficiency, but the number of steps in the injection process, sealing process, and cooling solidification process increases, and the work is complicated. Therefore, the cost will be high.

本発明は、上記のような問題点を解消するなめ、使用前
後において蓄熱層の構成が安定し、!!!作が容易で、
加熱剤と蓄熱剤が混り合わないで、Lユ2SO。
The present invention solves the above-mentioned problems by stabilizing the structure of the heat storage layer before and after use. ! ! Easy to make;
Do not mix the heating agent and heat storage agent, Lyu2SO.

−NILClの本来物性をもつ長時間用熱電池の保温技
術の向上を図ることを目的とする。
- The purpose is to improve the heat retention technology for long-term thermal batteries that have the inherent physical properties of NILCl.

課題を解決するための手段 本発明は前記の課題を解決するためK、前記のLi25
O4−NaC1溶融塩蓄熱剤と、無機吸着剤の均一混合
物を主材とした粉末を蓄熱剤の融点以上で熱処理して固
定化した蓄熱剤を金属カップに入れ。
Means for Solving the Problems The present invention solves the above problems by using K, the above Li25
A heat storage agent obtained by heat-treating a powder mainly composed of a homogeneous mixture of an O4-NaCl molten salt heat storage agent and an inorganic adsorbent at a temperature higher than the melting point of the heat storage agent to fix it is placed in a metal cup.

上部を円盤状の金、@板で蓋をして得た熱電池用蓄熱層
を素電池と加熱剤を交互に積み重ねてなる積層体の上・
下部に設置した構成とする。
A heat storage layer for a thermal battery obtained by covering the upper part with a disc-shaped gold plate and a plate is placed on top of a laminate consisting of alternating stacks of unit cells and heating agent.
The configuration is installed at the bottom.

作用 この蓄熱層を用いれば、固定化蓄熱剤は金属カップ中に
とじこめられているため、機械的強度が大きくなるので
無機吸着材を減らし、蓄熱剤を増やすことが可能となる
と共に、粉末を金属カップに入れて蓋をしたのちプレス
加工するだけの単純な工程なので容易に製造することが
出来る。また加熱剤と直接接触しないので鉄と過塩素酸
カリウムが発熱反応を起こした時生成する塩化カリウム
(にCl)によって、低融点化や低カロリー化する恐れ
もなくなる。これらの結果熱電池に最適の蓄熱層が得ら
れる。
Function: By using this heat storage layer, the fixed heat storage agent is confined in the metal cup, which increases the mechanical strength, making it possible to reduce the amount of inorganic adsorbent and increase the amount of heat storage agent. It is a simple process of putting it in a cup, putting a lid on it, and then pressing it, so it can be manufactured easily. Furthermore, since there is no direct contact with the heating agent, there is no fear that the melting point or calories will be lowered by potassium chloride (Cl) produced when iron and potassium perchlorate undergo an exothermic reaction. As a result, a heat storage layer optimal for thermal batteries can be obtained.

実施例 本発明の代表的な実施例について以下に示す。Example Representative examples of the present invention are shown below.

第1図は金属カップ1と金属蓋2により固定化蓄熱層3
を包囲したものである。固定化蓄熱層は溶融塩蓄熱剤L
i2SO4NaG1188重量%と無機吸着材5iO2
ff2重量%をボールミルで均一混合後。
Figure 1 shows a heat storage layer 3 fixed by a metal cup 1 and a metal lid 2.
It is surrounded by. The fixed heat storage layer is molten salt heat storage agent L
i2SO4NaG1188% by weight and inorganic adsorbent 5iO2
After uniformly mixing 2% by weight of ff with a ball mill.

800Cで16時間熱処理して5i02にLi2SO4
−NaGI!を固定化させる。その後粉砕、造粒して固
定化蓄熱剤とし、金型内に金属カップ、固定化蓄熱剤、
金属蓋を入れ成型しながらカシメ加工して図示するよう
な熱電池用蓄熱層とする。更に詳細を述べると、金属カ
ップは素電池の負FMKも使用しているもので、厚さ0
.1nunの鉄をプレス加工し高さ1.sffImのカ
ップ状にしたものである。この金゛萬カップの中に固定
化蓄熱剤の粉本を入れ、均一に分散した後、全体を単位
面積当り0.1〜0.2ton/−、iで予備加圧成型
し、その上にカップと同様の厚さ0.1市の円盤状金属
蓋を入れ、成形面を覆う。カップの周囲をシーマした後
単位面積当り2.6ton/−で本加圧成形して得られ
る。このようにして得られた熱電池用蓄熱層は、厚みが
1 ml11程度の平板状であり、固定化蓄熱層の粉末
成形体は従来の5iQ215重量%に比べて強度が若干
低下するが、金層カップの中に封じ込められているので
、電池の組み立て時に誤って床に落としたり、ぶつけた
りしても容易に崩れる事はなく、非常に取り扱い易く改
良された。また固定化蓄熱層が金属カップと蓋により発
熱剤とは分離されて直接接触しないので、発熱剤の発熱
反応により生成物として生じるK(Jの影響を受けない
ので、蓄熱層からの凝固潜熱は常に500C付近で発揮
される。
Heat treated at 800C for 16 hours to form 5i02 into Li2SO4
-NaGI! to be fixed. After that, it is crushed and granulated to form a fixed heat storage agent, and then placed in a metal cup, fixed heat storage agent,
A metal lid is inserted and caulked while molding to form a heat storage layer for a thermal battery as shown in the figure. To give more details, the metal cup also uses negative FMK of unit cells, and has a thickness of 0.
.. Pressing 1nun of iron to a height of 1. It is made into a cup shape of sffIm. After putting the fixed heat storage agent powder into this gold cup and dispersing it uniformly, the whole is pre-pressurized at 0.1 to 0.2 ton/- per unit area, i, and then A disk-shaped metal lid with a thickness of 0.1 mm, similar to the cup, is inserted to cover the molding surface. After seaming the periphery of the cup, it is obtained by main pressure molding at 2.6 tons/- per unit area. The heat storage layer for a thermal battery obtained in this way has a flat plate shape with a thickness of about 1 ml11, and the powder compact of the fixed heat storage layer has a slightly lower strength compared to the conventional 5iQ215% by weight, but it is made of gold. Since it is sealed in a layered cup, it will not collapse easily even if you accidentally drop it on the floor or bump it when assembling the battery, making it much easier to handle. In addition, since the immobilized heat storage layer is separated from the exothermic agent by the metal cup and lid and does not come into direct contact with it, it is not affected by K (J) produced as a product by the exothermic reaction of the exothermic agent, so the latent heat of solidification from the heat storage layer is It is always exhibited around 500C.

第3図は本発明を用いfc熱電池を示す断面図である。FIG. 3 is a cross-sectional view showing an FC thermal battery using the present invention.

4は素電池で本発明の場合10七ルを直列に積層した場
合で、素電池4間には加熱剤6が交互に挿入されている
。6及び6′は上部及び下部に設けられた本発明の熱電
池用蓄熱層で、これに熱を与えるための素電池間に挿入
したものと同様の加熱剤と共に上・下部に2セツトづつ
配置した。
Reference numeral 4 denotes unit cells, and in the case of the present invention, 107 cells are stacked in series, and heating agents 6 are alternately inserted between the unit cells 4. 6 and 6' are heat storage layers for thermal batteries of the present invention provided in the upper and lower parts, and two sets each are arranged in the upper and lower parts along with a heating agent similar to that inserted between the unit cells to give heat to the layers. did.

7は電気式の点火器、8は導火帯で燃焼すると各層の加
熱剤6に着火させる。9は点火器の外部端子で、微小電
流を通電するトリガー人力に用いる。
Reference numeral 7 denotes an electric igniter, and 8 a fuse cord, which ignites the heating agent 6 in each layer when burned. 9 is an external terminal of the igniter, which is used for manual triggering to supply a minute current.

10および10′は熱電池の正極端子と負極端子であり
、電池外装蓋11にハーメチックシールを取付けて用い
る。12は外装ケース、13は外装ケースと内部積層体
との間に設けた断熱材である。
Reference numerals 10 and 10' denote a positive terminal and a negative terminal of the thermal battery, which are used by attaching a hermetic seal to the battery exterior cover 11. 12 is an outer case, and 13 is a heat insulating material provided between the outer case and the internal laminate.

この本発明の電池は、点火器外部端子9に微小を火トリ
ガーを入れると5点火器7が火炎を発して上部・下部の
熱電池用蓄熱層6.6′の発熱層と導火帯8が燃焼し、
各層のセル加熱剤6が燃焼してその熱で素電池3の溶融
塩電解質を溶して、電池は活性化する。このとき熱電池
用蓄熱層の蓄熱剤も約600℃まで加熱溶融され、その
後の放熱により500℃付近まで冷却してくると、潜、
勢を発生し、一定時間この温度を保つ。
In the battery of the present invention, when a small flame trigger is inserted into the igniter external terminal 9, the igniter 7 emits a flame, and the upper and lower heat storage layers 6 and 6' for the heat generating layer and the fuse band 8 burns,
The cell heating agent 6 of each layer burns, and the heat melts the molten salt electrolyte of the unit cell 3, thereby activating the battery. At this time, the heat storage agent in the heat storage layer for the thermal battery is also heated and melted to about 600°C, and when it is cooled down to around 500°C by subsequent heat radiation, the latent,
It generates a force and maintains this temperature for a certain period of time.

第4図は第3図の熱電池の内部温度測定カーフである。FIG. 4 is an internal temperature measurement curve of the thermal battery of FIG. 3.

縦軸は素電池の内部温度、横軸は放電時間である。内部
温度は積層体の最下部に位置する素電池に熱電対を入れ
測定したものである。1は本発明の実施例の熱電池用蓄
熱層を用いた場合、2はM2図aの従来型の加熱剤の上
に形成した固定化蓄熱層を用いた場合、3は第2図すの
従来型の溶融塩蓄熱剤のみを封入した蓄熱層を用いた場
合の内部温度である。
The vertical axis is the internal temperature of the unit cell, and the horizontal axis is the discharge time. The internal temperature was measured by inserting a thermocouple into the unit cell located at the bottom of the stack. 1 is the case when the heat storage layer for a thermal battery according to the embodiment of the present invention is used, 2 is the case when the immobilized heat storage layer formed on the conventional heating agent shown in Fig. M2 a is used, and 3 is the case shown in Fig. 2. This is the internal temperature when using a heat storage layer containing only a conventional molten salt heat storage agent.

この図から蓄熱剤を金属ケースの中に封入する等加熱剤
と分離した状態の実施例1.3は保温効果が優れ、凝固
潜熱を発生する約600C付近で一定温度を示す。電池
から大きな電流を似出せにくくなる400℃に到達する
までの時間は、実施例1では24分、実施例3では25
分持続し、バインダーを含む事による発熱効率の差はわ
ずか1分程度短かいものであったが、しかし、実施例2
のように蓄熱層と加熱剤が直接接触する場合は、加熱剤
の反応生成物KGI KよってLi、2SOa −NI
LC;1−KClの三成分組成となるため明らかな潜熱
発生による平坦部が見られず450℃付近で若干の平坦
部がみられる程度の蓄熱効果しか曳れないため、400
℃に到達する時間は21分と前述に比べ温度の維続時間
が短くなる結果であった。
As can be seen from this figure, Example 1.3 in which the heat storage agent is separated from the heating agent, such as by sealing it in a metal case, has an excellent heat retention effect and exhibits a constant temperature around 600 C, where latent heat of solidification is generated. The time it takes to reach 400°C, at which it becomes difficult to draw a large current from the battery, is 24 minutes in Example 1 and 25 minutes in Example 3.
The difference in heat generation efficiency due to the inclusion of the binder was only about 1 minute shorter, however, Example 2
When the heat storage layer and the heating agent are in direct contact as in
LC: Since it has a three-component composition of 1-KCl, there is no obvious flat area due to latent heat generation, and the heat storage effect is only visible at around 450°C, with a slight flat area.
The time it took to reach the temperature was 21 minutes, which resulted in a shorter temperature maintenance time compared to the above.

発明の効果 以上述べてきたように、本発明によれば、固定化蓄熱剤
を容易な工程で金属カップ中て封じ入れる事が出来るた
め、無機吸着剤を減らし溶融塩蓄熱剤を増やせること、
また加熱剤の影響を受けることなく6oo℃付近で大き
な凝固潜熱を発生させ得て一定温度を長く保持しえるの
で、実用的に極めて有用である。
Effects of the Invention As described above, according to the present invention, since the immobilized heat storage agent can be sealed in a metal cup in a simple process, the amount of inorganic adsorbent can be reduced and the amount of molten salt heat storage agent can be increased.
Moreover, it is extremely useful in practical terms because it can generate a large latent heat of solidification at around 60° C. without being affected by a heating agent and can maintain a constant temperature for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の熱電池用蓄熱層の断面図、第2
図a、bは従来例における蓄熱層の断面図、第3図は蓄
熱層を用いた積層形熱電池の断面図、第4図は内部温度
の測定カーブを示す図である。 1・・・・・・金属カップ、2・・・・・・金属蓋、3
・・・・・・固定化蓄熱層、4・・・・・・素電池、6
・・・・・・加熱剤、6・・・・・・上部熱電池用蓄熱
層、6′・・・・・・下部熱電池用蓄熱層。
FIG. 1 is a cross-sectional view of a heat storage layer for a thermal battery according to an embodiment of the present invention, and FIG.
Figures a and b are cross-sectional views of a heat storage layer in a conventional example, Figure 3 is a cross-sectional view of a laminated thermal battery using a heat storage layer, and Figure 4 is a diagram showing a measurement curve of internal temperature. 1...Metal cup, 2...Metal lid, 3
...Fixed heat storage layer, 4...Battery, 6
... Heating agent, 6 ... Heat storage layer for upper thermal battery, 6' ... Heat storage layer for lower thermal battery.

Claims (1)

【特許請求の範囲】[Claims] 硫酸リチウムと塩化ナトリウムの混合塩からなる溶融塩
蓄熱剤と、無機質吸着材の均一混合物を主材とした粉末
を、前記溶融塩蓄熱剤の融点以上で熱処理し粉体とした
固定化蓄熱剤を金属カップと金属蓋により包囲した熱電
池用蓄熱層を素電池と加熱剤を交互に積み重ねてなる積
層体の上・下部に設置したことを特徴とする熱電池。
A fixed heat storage agent made into a powder by heat-treating a powder mainly made of a homogeneous mixture of a molten salt heat storage agent consisting of a mixed salt of lithium sulfate and sodium chloride and an inorganic adsorbent at a temperature higher than the melting point of the molten salt heat storage agent. A thermal battery characterized in that a thermal battery heat storage layer surrounded by a metal cup and a metal lid is installed above and below a laminate formed by alternately stacking unit cells and a heating agent.
JP33445388A 1988-12-28 1988-12-28 Thermal battery Expired - Lifetime JP2808627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33445388A JP2808627B2 (en) 1988-12-28 1988-12-28 Thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33445388A JP2808627B2 (en) 1988-12-28 1988-12-28 Thermal battery

Publications (2)

Publication Number Publication Date
JPH02177263A true JPH02177263A (en) 1990-07-10
JP2808627B2 JP2808627B2 (en) 1998-10-08

Family

ID=18277558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33445388A Expired - Lifetime JP2808627B2 (en) 1988-12-28 1988-12-28 Thermal battery

Country Status (1)

Country Link
JP (1) JP2808627B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011696A (en) * 2018-07-25 2018-12-18 中国科学院上海应用物理研究所 The purification method of insoluble impurities in a kind of fused salt
CN111146464A (en) * 2019-12-10 2020-05-12 中国电子科技集团公司第十八研究所 Internal temperature measuring device of thermal battery
CN116705973A (en) * 2023-07-20 2023-09-05 天津大学 Sulfide positive electrode material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553897B1 (en) * 2014-02-03 2015-09-17 국방과학연구소 Thermal battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109011696A (en) * 2018-07-25 2018-12-18 中国科学院上海应用物理研究所 The purification method of insoluble impurities in a kind of fused salt
CN111146464A (en) * 2019-12-10 2020-05-12 中国电子科技集团公司第十八研究所 Internal temperature measuring device of thermal battery
CN116705973A (en) * 2023-07-20 2023-09-05 天津大学 Sulfide positive electrode material
CN116705973B (en) * 2023-07-20 2024-02-09 天津大学 Sulfide positive electrode material

Also Published As

Publication number Publication date
JP2808627B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
US4044192A (en) Thermal batteries
JPH02177263A (en) Thermal cell
RU2091918C1 (en) Electrochemical thermal battery
US3471330A (en) Battery with an electrolyte of solid alkali particles
JP2751389B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP3290604B2 (en) Thermal battery
JPH0326911B2 (en)
JPH0782855B2 (en) Thermal battery
JP2653065B2 (en) Stacked thermal battery
JPH05101831A (en) Thermal battery
JPH02299160A (en) Thermal battery
JPH04280071A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JPH02295066A (en) Manufacture of positive active material for thermal battery and thermal battery using this material
JP4028671B2 (en) Thermal battery
JPH05242896A (en) Positive electrode active material for thermal cell, manufacture thereof and thermal cell using it
JPH02281565A (en) Thermal cell
JPH0542781B2 (en)
JPH04280070A (en) Manufacture of positive electrode active material for thermal battery, and thermal battery using same
JP2003051314A (en) Thermal battery
JPH01115064A (en) Manufacture of heat storage layer for thermal battery
JPH02299163A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using it
JP3478307B2 (en) Thermal battery
JPH02144855A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using same
JPH097594A (en) Thermal battery
JPS5942422B2 (en) Thermal battery manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11