JPH02173256A - Production of titanium material having excellent corrosion resistance - Google Patents

Production of titanium material having excellent corrosion resistance

Info

Publication number
JPH02173256A
JPH02173256A JP32480988A JP32480988A JPH02173256A JP H02173256 A JPH02173256 A JP H02173256A JP 32480988 A JP32480988 A JP 32480988A JP 32480988 A JP32480988 A JP 32480988A JP H02173256 A JPH02173256 A JP H02173256A
Authority
JP
Japan
Prior art keywords
titanium
corrosion resistance
oil
titanium material
excellent corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32480988A
Other languages
Japanese (ja)
Inventor
Chihiro Taki
千博 滝
Yasuhiro Mitsuyoshi
裕広 光吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP32480988A priority Critical patent/JPH02173256A/en
Publication of JPH02173256A publication Critical patent/JPH02173256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce the titanium material having excellent corrosion resistance by holding oil on the surface of the titanium material at the time of cold working of the titanium material, then working the material at a specific reduction ratio and heat treating the material at a specific temp. to form a coating layer of a titanium carbide, etc., on the surface. CONSTITUTION:The oil is held on the surface of the titanium material at the time of cold working of the titanium material and the material is worked at >=10% reduction ratio to cause the sufficient reaction of the active titanium surface and the oil and the seizure of the oil. This titanium material is then heat treated in a 500 to 700 deg.C temp. region in a vacuum or inert gaseous atmosphere to decompose the seized oil on the surface of the titanium material and to form the coating layer contg. the titanium carbide and/or nitride [Ti2N, TiC, Ti(CN), etc.] on the material surface. The titanium material formed with the layer having the excellent corrosion resistance on the surface is easily and inexpensively obtd. in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面に耐食性に優れた層を形成せしめたチタ
ン材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a titanium material having a layer with excellent corrosion resistance formed on its surface.

(従来の技術) チタンは、それ自体価れた耐食性を有しており、現在種
々の分野に使用されているが、近年益々きびしい腐食環
境下で使われるようになってきたため、より強い腐食環
境下での全面腐食や隙間腐食の問題が生じるようになっ
た。
(Prior art) Titanium itself has excellent corrosion resistance and is currently used in various fields, but in recent years it has been used in increasingly severe corrosive environments. Problems with general corrosion and crevice corrosion began to occur underneath.

このような点を改善するにあたり、Ti−Pdのような
耐食性改良チタン合金を使用する方法もあるが、一方で
はチタンの表面処理により耐食性を高める方法も検討さ
れている。
In order to improve these points, there is a method of using a titanium alloy with improved corrosion resistance such as Ti-Pd, but on the other hand, a method of increasing the corrosion resistance by surface treatment of titanium is also being considered.

(発明が解決しようとする問題点) 上記の改良チタン合金であるTi−Pd合金等の耐食性
チタン合金は、高価な貴金属を添加するため価格が非常
に高くなる欠点がある。他方それにかわる上記の表面処
理方法では、例えばパラジウム、ルテニウム又はその酸
化物を表面に塗4」する方法や、窒化チタン、炭窒化チ
タンを表面にイオンブレーティングやガス処理により付
着させる方法が開発されているが、前者の方法では、高
価な金属を使用するため費用が高くなり、後者の方法は
雰囲気処理であるために煩雑な工程となることや、熱処
理温度が変態点を越えるのでチタン材料の劣化をまねく
欠点があった。
(Problems to be Solved by the Invention) Corrosion-resistant titanium alloys such as Ti-Pd alloys, which are the improved titanium alloys mentioned above, have the drawback of being extremely expensive due to the addition of expensive noble metals. On the other hand, as alternative surface treatment methods described above, methods have been developed, such as coating the surface with palladium, ruthenium or their oxides, and attaching titanium nitride or titanium carbonitride to the surface by ion blasting or gas treatment. However, the former method is expensive because it uses expensive metals, and the latter method is a complicated process because it requires atmospheric treatment, and the heat treatment temperature exceeds the transformation point, making it difficult to use titanium materials. There were drawbacks that led to deterioration.

本発明者らは前記の事情に鑑み、チタンの耐食性を向上
させる表面処理方法を種々検討した結果、従来にない全
く新しい方法として、チタン表面に油を保有させて冷間
加工を行い、しかる後熱処理を加えることによってチタ
ンの耐食性を著しく向上させる方法を提案した(特11
62−226867) 。
In view of the above circumstances, the present inventors investigated various surface treatment methods to improve the corrosion resistance of titanium, and as a result, as a completely new method that had not existed before, the titanium surface was subjected to cold working by retaining oil, and then We proposed a method to significantly improve the corrosion resistance of titanium by adding heat treatment (Special Feature 11).
62-226867).

本発明者らは、さらに上記の方法において、油の付着状
態、冷間加工の条件、冷間加工後の熱処理条件等につい
て詳細な研究をつみ重ねた結果、熱処理を特定の温度範
囲で行うことにより、チタンの耐食性がより一層向上す
ることを見出した。
The present inventors further conducted detailed research on the oil adhesion state, cold working conditions, heat treatment conditions after cold working, etc. in the above method, and as a result, the present inventors found that the heat treatment is performed within a specific temperature range. It has been found that the corrosion resistance of titanium is further improved.

この知見に基づき、本発明は、非常に簡単にかつ安価に
して著しく耐食性の優れたチタン材の製造方法を提供す
ることを目的としている。
Based on this knowledge, an object of the present invention is to provide a method for manufacturing a titanium material that is extremely simple and inexpensive, and has excellent corrosion resistance.

(問題点を解決するための手段) すなわち本発明は、チタン材の冷間加工の際に該チタン
材表面に油を保有させて全加工度10%以上の加工を加
え、その後500〜700℃の温度で熱処理することに
よりチタン材表面にチタン炭化物及び又は窒化物(Ti
、N、 TiC,Ti(CN)等)を含有する被覆層を
形成させることを特徴とする耐食性に優れたチタン材の
製造方法に関するにこで、冷間加工時にチタン材表面に
浦を保有させるのは加工時に発生する活性なチタン表面
と油を接触させ、その時に発生する加工熱で浦を焼きつ
かせるためである。この場合、油の種類は圧延油または
これに類似したものであれば何らさしつかえない。さら
に加工後、熱処理を加えることにより、表面に強固に焼
きついた油を分解させ、チタンと反応して生成されるT
1□N、TiC。
(Means for Solving the Problems) That is, the present invention involves cold working a titanium material by retaining oil on the surface of the titanium material, applying processing to a total working degree of 10% or more, and then processing the titanium material at a temperature of 500 to 700°C. Titanium carbide and/or nitride (Ti
, N, TiC, Ti(CN), etc.) This article relates to a method for producing a titanium material with excellent corrosion resistance, which is characterized by forming a coating layer containing N, TiC, Ti (CN), etc.), and the method of producing a titanium material has ura on its surface during cold working. This is because the oil comes into contact with the active titanium surface generated during processing, and the processing heat generated at that time burns the ura. In this case, the type of oil may be any rolling oil or similar oil. Furthermore, by adding heat treatment after processing, the oil that is strongly baked on the surface is decomposed and T produced by reacting with titanium.
1□N, TiC.

Ti(CN)等のチタン炭化物及び又は窒化物の表面層
が耐食性を著しく向上させることになる(特[62−2
26867)。
A surface layer of titanium carbide and/or nitride such as Ti(CN) significantly improves corrosion resistance (Special [62-2
26867).

この場合、この表面層は300℃以上の熱処理温度から
形成され始め、そして、熱処理後の耐食性は通常のチタ
ン材のそれよりも向上する。特に、500〜700 ’
Cの温度範囲で熱処理したものについては、それ以外の
温度範囲で熱処理したときよりも著しく耐食性が向上す
ることを本発明者らは見出した。
In this case, this surface layer begins to be formed at a heat treatment temperature of 300° C. or higher, and the corrosion resistance after heat treatment is improved compared to that of ordinary titanium materials. In particular, 500-700'
The inventors of the present invention have found that the corrosion resistance of a material heat-treated in a temperature range of C is significantly improved compared to a material heat-treated in a temperature range other than that.

温度条件を設定するに際し、下記の試験を行つた。When setting the temperature conditions, the following tests were conducted.

酸洗上りの純チタン(Grade 2 )を圧延油を用
いて1.0(s+)から0.3(mm)まで冷間圧延し
、このサンプルを熱処理時間、3時間としているいろな
温度で真空焼鈍を行った。−例としてT i (CN)
の回折強度及び耐食性評価試験を行った。その結果を第
1図に示す。
Pickled pure titanium (Grade 2) was cold-rolled from 1.0 (s+) to 0.3 (mm) using rolling oil, and the samples were heat-treated in vacuum at various temperatures for 3 hours. Annealing was performed. - As an example T i (CN)
Diffraction intensity and corrosion resistance evaluation tests were conducted. The results are shown in FIG.

X線回折は、Cu管球を用い、管電流16mA、管電圧
30KVの条件で行い1回折角度(2θ)が36.1度
のピークをTi(CN)の回折強度とした。
X-ray diffraction was performed using a Cu tube under conditions of a tube current of 16 mA and a tube voltage of 30 KV, and the peak at a single diffraction angle (2θ) of 36.1 degrees was taken as the diffraction intensity of Ti(CN).

一方、耐食性評価は沸とう5%MCI水溶液に供試材を
浸漬させ、何時間後に腐食が始まるかで評価した。腐食
開始は、水素ガス発生と試料の重量減により確認した。
On the other hand, the corrosion resistance was evaluated by immersing the test material in a boiling 5% MCI aqueous solution and determining the number of hours after which corrosion started. The start of corrosion was confirmed by hydrogen gas generation and weight loss of the sample.

この条件では、耐食性皮膜がない通常のチタンは、浸漬
したと同時に腐食しはじめ、水素ガスの発生及び重量減
が観察できる。
Under these conditions, ordinary titanium without a corrosion-resistant coating begins to corrode as soon as it is immersed, and hydrogen gas generation and weight loss can be observed.

第1図かられかるように、500℃より低い温度ではT
i(CN)のピークは全く観察されないか。
As can be seen from Figure 1, at temperatures lower than 500°C, T
Is no i(CN) peak observed?

a祭されてもごく微少であり、腐食試験でも比較的短時
間で腐食する。この傾向は700℃より高い温度でも同
様である。一方、500〜700℃の温度範囲では、6
00℃をピークにTi(CN)の強度は高い値を示し、
著しい耐食性の向上がみられる。
Even if it is exposed, the amount is very small, and it corrodes in a relatively short period of time even in a corrosion test. This tendency is the same even at temperatures higher than 700°C. On the other hand, in the temperature range of 500-700℃, 6
The strength of Ti(CN) shows a high value with a peak of 00℃,
Significant improvement in corrosion resistance can be seen.

500℃より低い温度で耐食性の向上が望めないのは熱
処理温度が低いために、油とチタンとの反応が十分でな
く、T 全2N、 T i C,T i (CN)等の
チタンの炭化物及び又は窒化物の皮膜層が十分に得られ
ないためと考えられる。他方、700℃より高い温度で
は油中のC,Nがチタン内部に拡散してゆき1表面にT
 i2 N等の被覆層を形成しないためと考えられる。
The reason why corrosion resistance cannot be improved at temperatures lower than 500°C is because the heat treatment temperature is low, and the reaction between oil and titanium is not sufficient, resulting in titanium carbides such as T2N, TiC, and Ti(CN). This is considered to be because a sufficient nitride film layer cannot be obtained. On the other hand, at temperatures higher than 700°C, C and N in the oil diffuse into the titanium, resulting in T on the surface.
This is thought to be because a coating layer such as i2N is not formed.

以上より熱処理温度を500〜700℃とした。Based on the above, the heat treatment temperature was set at 500 to 700°C.

また、加工時の全加工度を10%以上としたのは、これ
より小さい加工度では活性なチタン表面と油との反応が
不十分で、熱処理後の耐食性の向上が望めないからであ
る。
Further, the reason why the total working degree during processing was set to 10% or more is that if the working degree is smaller than this, the reaction between the active titanium surface and the oil will be insufficient, and no improvement in corrosion resistance after heat treatment can be expected.

上記発明を実施する方法としては、例えば圧延油の存在
下において冷間圧延を行い、10%以上の加工度を加え
た後、真空中もしくは不活性カス中において(ある程度
表面酸化が許容される場合には大気中でもよい。)50
0〜700℃で熱処理する。これにより著しく耐食性に
優れたチタン材が容易に得られる。
As a method for carrying out the above invention, for example, cold rolling is carried out in the presence of rolling oil to apply a working degree of 10% or more, and then in a vacuum or in an inert scum (if surface oxidation is allowed to some extent). (Can be used in the atmosphere.) 50
Heat treatment at 0-700°C. As a result, a titanium material with extremely excellent corrosion resistance can be easily obtained.

チタン材は純チタン及びチタン合金いずれも適用でき5
本願発明はこれらを包含するものである。
Both pure titanium and titanium alloys can be applied to the titanium material5.
The present invention includes these.

(実施例) 次に本発明を具体的な実施例に基づいて説明する。(Example) Next, the present invention will be explained based on specific examples.

酸洗により表面の汚れ等を除去した板厚2叫の純チタン
(Grade 2 )板を供試材とし、圧延油を使用し
た場合としない場合で、加工度5%、10%、40%、
70%の冷間圧延を行った材料及びまったく圧延しない
(加工度0%)材料について、真空中でそれぞれ400
〜s o o ’cにて熱処理したものと熱処理しない
ものの耐食性を調べた。その結果を第1表に示す。圧延
しない材料は、油を塗布し熱処理した供試材も調査した
The test material was a pure titanium (Grade 2) plate with a thickness of 2, which had surface dirt etc. removed by pickling, and the processing degree was 5%, 10%, 40%, with and without using rolling oil.
400°C in vacuum for 70% cold-rolled material and no rolling material (0% working degree).
The corrosion resistance of those heat-treated at ~so'c and those that were not heat-treated were investigated. The results are shown in Table 1. For materials that were not rolled, we also investigated sample materials that were coated with oil and heat treated.

第1表において耐食性の評価は、全面腐食試験及びすき
ま腐食試験により行った。全面腐食の耐食性は5%)I
C−1の沸とう水溶液に供試材を浸漬させ、5時間後、
20時間後に試験片に重肚減のあったものは全面腐食が
起ったと判断した。すきま腐食の耐食性は、10%Na
C1の沸とう水溶液にすきま腐食試験片(チタン表面に
すきまを作ったもの)を浸漬させ、10日後に取り出し
すきま腐食発生の有無を調べすきま腐食発生率を計算し
た。
In Table 1, the corrosion resistance was evaluated by a general corrosion test and a crevice corrosion test. General corrosion resistance is 5%) I
The test material was immersed in a boiling aqueous solution of C-1, and after 5 hours,
After 20 hours, if the test piece showed severe loss, it was judged that corrosion had occurred on the entire surface. The crevice corrosion resistance is 10% Na.
A crevice corrosion test piece (with a crevice made on the titanium surface) was immersed in a boiling aqueous solution of C1, and after 10 days, it was taken out and examined for the occurrence of crevice corrosion, and the crevice corrosion occurrence rate was calculated.

第1表かられかるように、まず圧延しない材料について
は、圧延油を塗布後熱処理しても全く耐食性は良くなら
ないことがわかる。
As can be seen from Table 1, it can be seen that for materials that are not rolled first, the corrosion resistance does not improve at all even if heat treatment is performed after applying rolling oil.

また、たとえ10%以上の冷間圧延(300’C以下で
の圧延)を行っても、圧延油を使用しない場合もしくは
400℃以下、800°C以上の熱処理では耐食性の向
上がみられていない。
In addition, even if cold rolling (rolling at 300°C or lower) is performed by 10% or more, no improvement in corrosion resistance is observed when no rolling oil is used or when heat treatment is performed at 400°C or lower or 800°C or higher. .

一方、10%以上の加工度を加え冷間圧延した供試材に
おいて、圧延油を使用し、がっ熱処理温度が500〜7
00℃の供試材では、全面腐食の試験において20#間
後もまったく腐食を起さず完全耐食となっている。さら
に、すきま腐食においても10日後も全くすきま腐食が
発生しない供試材がほとんどであり、本発明方法により
製造した材料がいかに耐食性に優れているかが理解でき
る。
On the other hand, in a test material that was cold-rolled with a working degree of 10% or more, rolling oil was used and the heat treatment temperature was 500 to 7.
In the test material at 00°C, no corrosion occurred at all even after 20 days in the general corrosion test, and it was completely corrosion resistant. Furthermore, most of the test materials showed no crevice corrosion at all even after 10 days, which shows how excellent the corrosion resistance of the materials produced by the method of the present invention is.

(発明の効果) 上記の本発明の方法によればチタン材の表面にTi2N
、TiC,Ti(CN)等のチタン炭化物及び又は窒化
物を含有する層が形成されるため耐食性に優れたチタン
材を提供することができる。
(Effect of the invention) According to the method of the invention described above, Ti2N is formed on the surface of the titanium material.
Since a layer containing titanium carbide and/or nitride such as TiC, Ti(CN), etc. is formed, a titanium material with excellent corrosion resistance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼鈍温度を変えた時のT i (CN)形成
変化を示すグラフである。 襲r千−余−旺 第1図 焼鈍温度(’C) 全文訂正明細書 平成1年 3月 3日
FIG. 1 is a graph showing the change in T i (CN) formation when the annealing temperature is changed. Figure 1 Annealing temperature ('C) Full text revised specification March 3, 1999

Claims (1)

【特許請求の範囲】[Claims] チタン材の冷間加工の際に、該チタン材表面に油を保有
させて全加工度10%以上の加工を加え、その後500
〜700℃の温度で熱処理することによりチタン材の表
面にチタン炭化物及び又は窒化物(Ti_2N、TiC
、Ti(CN)等)を含有する被覆層を形成させること
を特徴とする耐食性に優れたチタン材の製造方法。
During cold working of titanium material, oil is retained on the surface of the titanium material and the total working degree is 10% or more, and then 500%
Titanium carbide and/or nitride (Ti_2N, TiC
, Ti(CN), etc.) A method for producing a titanium material having excellent corrosion resistance.
JP32480988A 1988-12-24 1988-12-24 Production of titanium material having excellent corrosion resistance Pending JPH02173256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32480988A JPH02173256A (en) 1988-12-24 1988-12-24 Production of titanium material having excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32480988A JPH02173256A (en) 1988-12-24 1988-12-24 Production of titanium material having excellent corrosion resistance

Publications (1)

Publication Number Publication Date
JPH02173256A true JPH02173256A (en) 1990-07-04

Family

ID=18169918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32480988A Pending JPH02173256A (en) 1988-12-24 1988-12-24 Production of titanium material having excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JPH02173256A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010001642B4 (en) 2009-04-15 2019-05-02 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A MATERIAL ON TITANIUM BASE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159364A (en) * 1987-09-10 1989-06-22 Nippon Steel Metal Prod Co Ltd Production of titanium material having excellent corrosion resistance
JPH0243354A (en) * 1988-07-30 1990-02-13 Kobe Steel Ltd Ti plate and production thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159364A (en) * 1987-09-10 1989-06-22 Nippon Steel Metal Prod Co Ltd Production of titanium material having excellent corrosion resistance
JPH0243354A (en) * 1988-07-30 1990-02-13 Kobe Steel Ltd Ti plate and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112010001642B4 (en) 2009-04-15 2019-05-02 Toyota Jidosha Kabushiki Kaisha METHOD FOR PRODUCING A MATERIAL ON TITANIUM BASE

Similar Documents

Publication Publication Date Title
US3343930A (en) Ferrous metal article coated with an aluminum zinc alloy
US4339282A (en) Method and composition for removing aluminide coatings from nickel superalloys
US2698781A (en) Accelerating action of acids on metals
EP0510950A1 (en) Treatment of sintered alloys
US3393089A (en) Method of forming improved zinc-aluminum coating on ferrous surfaces
US4908072A (en) In-process formation of hard surface layer on Ti/Ti alloy having high resistance
JPH0138873B2 (en)
US3802939A (en) Surface-hardened titanium or zirconium and their alloys and method of processing same
US3029158A (en) Processes of chemical nickel plating of amphoteric and like materials
EP0201910B1 (en) Diffusion alloy steel foil
JPH02173256A (en) Production of titanium material having excellent corrosion resistance
JP2922346B2 (en) Heat-resistant Ti-based alloy
US3184330A (en) Diffusion process
US3342628A (en) Alloy diffusion process
Sequeira et al. Formation of diffusion coatings on iron and steel: 3 aluminium, chromium, and zinc coatings
JP2632569B2 (en) Method for producing titanium material with excellent corrosion resistance
US3481769A (en) Alloy diffusion coating process
Drewett Diffusion coatings for the protection of iron and steel: Part 1: Aluminium coatings
Goodrich et al. The Dissolution of Steel in the System NH 4 NO 3‐NH 3‐H 2 O
JPS6035992B2 (en) Al coating method for Ni alloy
US3378411A (en) Stress corrosion crack inhibitors
JP3116664B2 (en) Electrode material made of Ti or Ti-based alloy with excellent corrosion resistance and current efficiency
JP3064562B2 (en) Crevice corrosion resistant surface-modified Ti or Ti-based alloy member
JPS6274063A (en) Surface treatment of steel
JP2943021B2 (en) Method for producing austenitic steel sheet strip having NiAl intermetallic compound in surface layer