JP2922346B2 - Heat-resistant Ti-based alloy - Google Patents

Heat-resistant Ti-based alloy

Info

Publication number
JP2922346B2
JP2922346B2 JP27016591A JP27016591A JP2922346B2 JP 2922346 B2 JP2922346 B2 JP 2922346B2 JP 27016591 A JP27016591 A JP 27016591A JP 27016591 A JP27016591 A JP 27016591A JP 2922346 B2 JP2922346 B2 JP 2922346B2
Authority
JP
Japan
Prior art keywords
alloy
coating layer
layer
heat
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27016591A
Other languages
Japanese (ja)
Other versions
JPH0693412A (en
Inventor
裕幸 社本
隆 森川
利平 吉川
正信 末安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Karoraizu Kogyo KK
Toyota Motor Corp
Original Assignee
Nihon Karoraizu Kogyo KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Karoraizu Kogyo KK, Toyota Motor Corp filed Critical Nihon Karoraizu Kogyo KK
Priority to JP27016591A priority Critical patent/JP2922346B2/en
Publication of JPH0693412A publication Critical patent/JPH0693412A/en
Application granted granted Critical
Publication of JP2922346B2 publication Critical patent/JP2922346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、表面にAl−Cr複合
拡散被覆層を有する耐熱性・耐酸化性に優れたTi系合
金の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a Ti-based alloy having an Al--Cr composite diffusion coating layer on its surface and having excellent heat resistance and oxidation resistance.

【0002】[0002]

【従来の技術】チタン材料は、軽量で、機械的性質及び
耐食性にすぐれているので、特に工業用チタン及びTi
−Al系合金、例えば5Al−3Sn系や6Al−4V
系合金が多用されているが、一般に耐熱的に使用する場
合には、使用温度は約500℃が上限となる。Ti合金
を高温に加熱すると、合金は、空気及び水分と反応して
合金内に水素化合物・窒化物を形成して脆化し、また表
面に酸化物層を形成し、保持時間の経過に伴って酸化物
層は成長を続けるので、耐酸化性材料としては使用でき
ない。
2. Description of the Related Art Titanium materials are lightweight and have excellent mechanical properties and corrosion resistance.
-Al alloys, for example, 5Al-3Sn or 6Al-4V
Although system alloys are frequently used, the upper limit of the operating temperature is generally about 500 ° C. when the alloy is generally used with heat resistance. When a Ti alloy is heated to a high temperature, the alloy reacts with air and moisture to form hydrides / nitrides in the alloy and become brittle, and also forms an oxide layer on the surface, and as the retention time elapses, The oxide layer continues to grow and cannot be used as an oxidation resistant material.

【0003】このようなTi−Al系合金の耐酸化性の
改善には、合金表面のAl被覆処理が有効であることが
知られており、この処理によって、合金表面のAl被覆
層はTiAl3 相を形成して、その表面が酸化された場
合でも、酸化層は成長せず、耐酸化性を示す。また、T
iAl3 は水素透過率が低いので、Al被覆層を有する
Ti系合金は水素脆化に対して抵抗を示す。Al被覆処
理を行ったこれらTi−Al系合金は、500℃以上の
高温では、軟化して機械的強度は低下するけれども、耐
熱材料として利用することができる。
[0003] It is known that an Al coating treatment on the alloy surface is effective in improving the oxidation resistance of such a Ti-Al-based alloy, and by this treatment, the Al coating layer on the alloy surface becomes TiAl 3. Even when a phase is formed and its surface is oxidized, the oxide layer does not grow and exhibits oxidation resistance. Also, T
Since iAl 3 has a low hydrogen permeability, a Ti-based alloy having an Al coating layer exhibits resistance to hydrogen embrittlement. At high temperatures of 500 ° C. or higher, these Ti—Al-based alloys that have been subjected to Al coating treatment can be used as heat-resistant materials, although they soften and have reduced mechanical strength.

【0004】また、耐熱性を改善したTi系合金には、
合金中Al含有量を増加した15〜36%Al−Ti系
合金がある。この合金は、Al含有量の増加に伴って、
高温強度と耐酸化性が向上し、特に金属間化合物TiA
lの組成を有する34〜36%Al−Ti合金は少量の
他成分を添加して、加工性・延性を付与し、インコネル
718相当の耐熱性がある。このTiAl合金は、ジエ
ットエンジン圧縮機のステータベーン、ガスタービンの
ブレード、或いは自動車用エンジンバルブやターボチャ
ージャーのタービンロータ等の軽量耐熱部材としての用
途が注目されているが、これら合金の使用実用温度は耐
酸化性の点から約700℃であって、700℃以上の高
温では、表面酸化が顕著となって、寿命が低下する。
[0004] In addition, Ti-based alloys having improved heat resistance include:
There is a 15-36% Al-Ti alloy in which the Al content in the alloy is increased. This alloy, with increasing Al content,
High temperature strength and oxidation resistance are improved.
The 34-36% Al-Ti alloy having a composition of l provides a small amount of other components to impart workability and ductility, and has heat resistance equivalent to Inconel 718. The use of this TiAl alloy as a lightweight heat-resistant member such as a stator vane of a jet engine compressor, a blade of a gas turbine, or an engine valve for an automobile or a turbine rotor of a turbocharger has attracted attention. Is about 700 ° C. from the viewpoint of oxidation resistance. At a high temperature of 700 ° C. or more, surface oxidation becomes remarkable, and the life is shortened.

【0005】このような高Al−Ti合金にアルミニウ
ム浸透被覆処理をして、その表面に60〜70%Alの
Ti−Al金属間化合物層を形成せしめて、高温大気中
での表面酸化を抑制する技術が知られている(特開平1
−111858号)。この場合、表面のAl被覆層はT
iAl3 相となり、700℃以上の高温中であってもA
l被覆層の酸化量を低下させて、耐酸化性を改善したも
のである。
[0005] Such a high Al-Ti alloy is subjected to aluminum infiltration coating to form a 60-70% Al Ti-Al intermetallic compound layer on its surface, thereby suppressing surface oxidation in a high-temperature atmosphere. Is known (Japanese Unexamined Patent Publication No.
-111858). In this case, the Al coating layer on the surface is T
iAl 3 phase, A even at high temperature of 700 ° C or higher
(1) The oxidation resistance of the coating layer is reduced to reduce the oxidation amount.

【0006】[0006]

【発明が解決しようとする課題】上記のAl被覆層を表
面に成形した高Al−Ti合金においても、900℃以
上の高温で使用される場合には、表面でのAl被覆層中
のTiの酸化はなお無視し得ないほど進行し、Al被覆
層の層厚が減少して、その結果、表面肌荒れやスケール
を生じて寸法減少を生じるので、精密な耐熱部品におい
ては十分な耐酸化性を有するとは言えない。本発明は、
上記問題に鑑み、表面に有するAl被覆層の耐酸化性特
性を改善した高Al−Ti合金その他の耐熱性Ti系合
金を提供せんとするものである。
In the case of a high Al-Ti alloy having the above-mentioned Al coating layer formed on the surface, even when the alloy is used at a high temperature of 900 ° C. or higher, the Ti in the Al coating layer on the surface is not removed. Oxidation still proceeds to a negligible extent, and the thickness of the Al coating layer decreases, resulting in surface roughness and scale, resulting in a reduction in dimensions. I can't say it has. The present invention
In view of the above problems, an object of the present invention is to provide a high Al—Ti alloy and other heat-resistant Ti-based alloys in which the oxidation resistance of the Al coating layer on the surface is improved.

【0007】[0007]

【課題を解決するための手段】本発明の耐熱性Ti系合
金は、Ti系合金母材の表面にAl−Cr拡散被覆層を
有する耐熱性Ti系合金であって、該Al−Cr拡散被
覆層は、母材のTi系合金中にAlが50〜65wt%
とCrが0.5〜7wt%含まれていることを特徴とす
るものである。また、本発明は、Ti系合金母材の表面
にAlが90〜99.5wt%とCrが0.5〜10w
t%とから成るAl−Cr合金層が形成された耐熱性T
i系合金であって、高温下の使用過程で当該Al−Cr
合金層がTi系合金母材へ拡散してAl−Cr拡散被覆
層を形成し、該Al−Cr拡散被覆層にAlが50〜6
5wt%とCrが0.5〜7wt%含まれるようにした
ことを特徴とする耐熱性Ti系合金が含まれる。
The heat-resistant Ti-based alloy according to the present invention is a heat-resistant Ti-based alloy having an Al-Cr diffusion coating layer on the surface of a Ti-based alloy base material, wherein the Al-Cr diffusion coating is provided. The layer is composed of 50 to 65 wt% Al in the Ti-based alloy of the base material.
And 0.5 to 7 wt% of Cr. In addition, the present invention provides a method in which Al is 90 to 99.5 wt% and Cr is 0.5 to 10 w
heat resistance T on which an Al-Cr alloy layer consisting of
i-type alloy, which is used in the process of using the Al-Cr
The alloy layer diffuses into the Ti-based alloy base material to form an Al—Cr diffusion coating layer, and the Al—Cr diffusion coating layer contains 50 to 6 Al.
A heat-resistant Ti-based alloy characterized by containing 5 wt% and 0.5 to 7 wt% of Cr is included.

【0008】本発明のTi系合金には、工業用純チタ
ン、Ti−6Al−4V系合金やTi−8Al−Sn系
合金などのTi系合金や耐熱性のTi−14〜36Al
系合金などが対象になる。
[0008] The Ti-based alloy of the present invention includes industrial pure titanium, Ti-based alloys such as Ti-6Al-4V-based alloys and Ti-8Al-Sn-based alloys, and heat-resistant Ti-14-36Al.
For example, system alloys.

【0009】Al−Cr拡散被覆層の形成には、Al粉
の粉末法による拡散被覆法、溶射法、肉盛法、PVD
(物理的気相成長)法又はCVD(化学的気相成長)法
が適用できる。粉末法では、Al粉、Cr粉及びAl2
3 粉に少量の塩化アンモニウムを配合して加熱したポ
ット中に、Ti合金材料を埋設して保持する方法であ
り、保持過程で、表面に析出したAl及びCrは内部に
浸透してAl−Cr拡散被覆層を形成する。
The Al-Cr diffusion coating layer is formed by a diffusion coating method using a powder method of Al powder, a thermal spraying method, a cladding method, a PVD method.
A (physical vapor deposition) method or a CVD (chemical vapor deposition) method can be applied. In the powder method, Al powder, Cr powder and Al 2
This is a method in which a Ti alloy material is buried and held in a pot heated by mixing a small amount of ammonium chloride with O 3 powder. During the holding process, Al and Cr deposited on the surface penetrate into the inside and Al- A Cr diffusion coating layer is formed.

【0010】溶射法では、Al粉とCr粉との混合粉
を、例えば、Arガスによるプラズマ溶射法により、合
金材料表面に溶射してAl−Cr合金層を形成する。次
いで使用前に非酸化性の高温雰囲気中で加熱してTi合
金の材料母材と拡散合金化して、Al−Cr拡散被覆層
を形成せしめる。
In the thermal spraying method, an Al-Cr alloy layer is formed by spraying a mixed powder of Al powder and Cr powder on the surface of an alloy material by, for example, a plasma spraying method using Ar gas. Next, before use, it is heated in a non-oxidizing high-temperature atmosphere to form a diffusion alloy with the Ti alloy material base material to form an Al—Cr diffusion coating layer.

【0011】また、本発明におけるAl−Cr合金層
は、上記の溶射法により形成され、Ti系合金の表面
に、Al90〜99.5wt%、Cr0.5〜10wt
%から成る合金層に調製するものである。そして、上記
の拡散合金化の処理を省略して、そのまま使用に供され
るので、当該Al−Cr合金層は高温下の使用過程で上
記組成範囲のAl−Cr拡散被覆層に形成されるのであ
る。
Further, the Al—Cr alloy layer in the present invention is formed by the above-mentioned thermal spraying method, and the surface of the Ti-based alloy has 90 to 99.5 wt% of Al and 0.5 to 10 wt% of Cr.
% Of the alloy layer. Then, since the above-mentioned diffusion alloying treatment is omitted and the Al-Cr alloy layer is used as it is, the Al-Cr alloy layer is formed on the Al-Cr diffusion coating layer having the above composition range in a use process at a high temperature. is there.

【0012】Al−Cr拡散被覆層の厚みは15μm以
上であって、実用的には300μm以下とするが、好ま
しくは150μm程度とするのが適当である。また、予
めAl−Cr合金層を形成する場合もその厚みは、同様
に15〜300μmとする。
The thickness of the Al—Cr diffusion coating layer is 15 μm or more, and practically 300 μm or less, preferably about 150 μm. Also, in the case where an Al-Cr alloy layer is formed in advance, the thickness is similarly set to 15 to 300 m.

【0013】[0013]

【実施例】本発明の耐熱性Ti系合金の実施例を以下に
示す。 (実施例1)供試材としては、Ti−34%Al合金
で、直径8mm、長さ10mmの形状の試片を用いた。
EXAMPLES Examples of the heat-resistant Ti-based alloy of the present invention will be described below. (Example 1) As a test material, a specimen of Ti-34% Al alloy having a diameter of 8 mm and a length of 10 mm was used.

【0014】Al−Cr拡散被覆層の成形には、以下に
示す粉末法に依った。Al粉10〜30wt%、Cr粉
0〜60wt%、塩化アンモニウム0.5wt%及び残
部アルミナ粉から成る種々の組成の拡散浸透処理剤を調
整した。この処理剤を耐熱性ポットに入れ、上記試片を
埋設して、700℃〜1300℃の温度で10〜20時
間加熱保持して、Al拡散浸透処理とAl−Cr複合拡
散浸透処理を行った。
The Al-Cr diffusion coating layer was formed by the following powder method. Diffusion infiltration treatment agents of various compositions consisting of 10 to 30 wt% of Al powder, 0 to 60 wt% of Cr powder, 0.5 wt% of ammonium chloride and the balance of alumina powder were prepared. This treating agent was put into a heat-resistant pot, the specimen was buried, and heated and held at a temperature of 700 ° C. to 1300 ° C. for 10 to 20 hours to perform Al diffusion and penetration treatment and Al—Cr composite diffusion and penetration treatment. .

【0015】この拡散浸透処理においては、Al−Cr
拡散被覆層中のAl濃度が50〜65%になるように、
またAl−Cr拡散被覆層の厚みを50μmの薄膜と1
50μm厚膜の二水準に層別するように狙い、各水準に
おいて、Al−Cr拡散被覆層中のCr濃度が0〜10
wt%の範囲に変化するように処理剤中のAl粉とCr
粉の配合量を調整した。この処理後、各試験片を切断研
磨して、顕微鏡観察を行いAl−Cr拡散被覆層の厚み
を測定し、EPMA分析によるAl−Cr拡散被覆層の
Al及びACrの濃度測定を行った。
In this diffusion infiltration treatment, Al-Cr
So that the Al concentration in the diffusion coating layer is 50 to 65%.
The thickness of the Al—Cr diffusion coating layer is set to 50 μm and 1 μm.
Aiming at stratification into two levels of a 50 μm thick film, in each level, the Cr concentration in the Al—Cr diffusion coating layer is 0 to 10
Al powder and Cr in the treating agent to change to the range of wt%.
The blending amount of the powder was adjusted. After this treatment, each test piece was cut and polished, observed under a microscope, the thickness of the Al-Cr diffusion coating layer was measured, and the concentrations of Al and ACr in the Al-Cr diffusion coating layer were measured by EPMA analysis.

【0016】図1は、Al−Cr拡散被覆層厚さ150
μm、表面Cr濃度0.5wt%の試片について、高温
酸化試験前の表層部断面の顕微鏡写真を示すが、表層部
には明瞭なAl−Cr拡散被覆層が認められる。
FIG. 1 shows an Al-Cr diffusion coating layer thickness of 150.
A micrograph of a cross section of the surface layer before the high-temperature oxidation test is shown for a test piece having a thickness of 0.5 μm and a surface Cr concentration of 0.5 wt%, and a clear Al—Cr diffusion coating layer is observed in the surface layer.

【0017】図2は、同一試片の表層部のAl濃度及び
Cr濃度のEPMAによる分析結果であって、表面近傍
内側に約63%Alの第一層と、その内部に53%Al
の第二層とが認められ、さらに内側に母材中のAl濃度
まで漸減する拡散層がある。第一層についてはTiAl
3 相と、第二層はTiAl2 相と同定した。Cr濃度に
ついては、表面から母材界面に向けてほぼ一様に漸減し
ている。
FIG. 2 shows the results of EPMA analysis of the Al concentration and the Cr concentration of the surface layer of the same specimen. The first layer is about 63% Al inside the vicinity of the surface, and the 53% Al
And a diffusion layer which gradually decreases to the Al concentration in the base material. TiAl for the first layer
The three phases and the second layer were identified as a TiAl 2 phase. The Cr concentration gradually decreased almost uniformly from the surface toward the base material interface.

【0018】次に、上記各試片を大気中で1000℃の
温度で100時間加熱保持して、高温酸化試験を行い、
試片の重量変化から酸化増量を算出し、耐酸化性の評価
を行った。以上の結果をまとめて表1に示した。
Next, each of the above test pieces was heated and held in the atmosphere at a temperature of 1000 ° C. for 100 hours to perform a high-temperature oxidation test.
The oxidation increase was calculated from the weight change of the test piece, and the oxidation resistance was evaluated. Table 1 summarizes the above results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から、処理材中のAl粉配合量が10
%の場合では、Al−Cr拡散被覆層の厚みは、40〜
90μmと薄く、Al濃度は60%以下でTiAl2
である(表中試料番号3〜9)が、Al粉配合量20〜
30%の場合では、Al濃度は約63%に増加し、Ti
Al3 相が現れることがわかる(表中試料番号10〜1
4)。
From Table 1, it can be seen that the content of Al powder in the treated material is 10%.
%, The thickness of the Al—Cr diffusion coating layer is 40 to
It is as thin as 90 μm, the Al concentration is 60% or less and it is a TiAl 2 phase (sample numbers 3 to 9 in the table), but the Al powder blending amount is 20 to
In the case of 30%, the Al concentration increases to about 63% and Ti
It can be seen that an Al 3 phase appears (sample numbers 10 to 1 in the table).
4).

【0021】図3には、1000℃の温度で100時間
加熱保持後の試片につき、表層部断面の顕微鏡写真を示
すが、図3(A)は、表1中の試料番号9の試片であっ
て、Al−Cr拡散被覆層の表面に酸化スケールが生成
していることが判る。これに対して、同図(B)は、試
料番号7の試片であるが、酸化層は殆ど生じていない。
FIG. 3 shows a micrograph of the cross section of the surface layer of the test piece after heating and holding at a temperature of 1000 ° C. for 100 hours. FIG. 3 (A) shows the test piece of sample No. 9 in Table 1. It can be seen that oxide scale is generated on the surface of the Al—Cr diffusion coating layer. On the other hand, FIG. 3B shows the sample of sample No. 7, but almost no oxide layer is formed.

【0022】図4は、Al−Cr拡散被覆層の厚みを4
0〜90μmの薄膜と140〜150μmの厚膜に層別
して、Al−Cr拡散被覆層のCr濃度と1000℃×
100時間加熱後の酸化増量との関係を示したものであ
る。この図から、Al−Cr拡散被覆層が厚膜である方
が薄膜に比して酸化増量が少ないが、ともに表面のCr
濃度が0.5%以上となると酸化増量は低下し、耐酸化
性付与に有効であり、約8%以上に増加すれば返って酸
化増量は増加する。表面のCr濃度が0.5〜7.0%
の範囲が耐酸化性にとってよいことが判る。特に3〜5
%Crの濃度において、上記範囲の層厚に影響されず
に、耐酸化性はもっとも優れている。
FIG. 4 shows that the thickness of the Al—Cr diffusion coating layer is 4
It is divided into a thin film having a thickness of 0 to 90 μm and a thick film having a thickness of 140 to 150 μm.
It shows the relationship with the increase in oxidation after heating for 100 hours. From this figure, it can be seen that the thicker the Al—Cr diffusion coating layer is, the smaller the oxidation increase is compared to the thin film,
When the concentration is 0.5% or more, the increase in oxidation decreases, which is effective for imparting oxidation resistance. When the concentration increases to about 8% or more, the increase in oxidation returns. The Cr concentration on the surface is 0.5 to 7.0%
It can be seen that the range of is good for oxidation resistance. Especially 3-5
At the concentration of% Cr, the oxidation resistance is the best, without being affected by the layer thickness in the above range.

【0023】(実施例2)次にTiAl3 合金粉末のプ
ラズマ溶射法による実施例を示す。純Tiの形状50×
100×5mmの基材の表面に、TiAl3 粉末97%
とCr粉末3%との混合微粉を、Ar−H2 混合ガスを
搬送ガスとしてプラズマ溶射を行った。溶射条件は、搬
送ガスAr6.3×10-4Nm3 /sec とH2 5.5×
10-5Nm3 /sec の供給速度で、粉末の供給量0.1
3g/sec で、雰囲気圧力20.0KP、基材の移動速
度5mm/sec であった。溶射後の被覆層の厚みは約1
50μmであった。
(Embodiment 2) Next, an embodiment of the plasma spraying method of TiAl 3 alloy powder will be described. Pure Ti shape 50x
97% TiAl 3 powder on the surface of a 100 × 5 mm substrate
The co-micronized with Cr powder 3% and were subjected to plasma spraying as the carrier gas Ar-H 2 mixed gas. The thermal spraying conditions were as follows: carrier gas Ar 6.3 × 10 −4 Nm 3 / sec and H 2 5.5 ×
At a feed rate of 10 −5 Nm 3 / sec, a powder feed rate of 0.1
At 3 g / sec, the atmospheric pressure was 20.0 KP, and the moving speed of the substrate was 5 mm / sec. The thickness of the coating layer after thermal spraying is about 1
It was 50 μm.

【0024】次に、溶射材を真空中で1200℃に72
時間加熱焼鈍して被覆層の拡散均一化処理を行った。X
線回析により、被覆層の生成物を同定してほぼ均一なT
iAl3 相のAl−Cr拡散被覆層が形成されていた。
またEPMAによる分析によりCr濃度は表面層で2.
7%であった。
Next, the sprayed material is heated to 1200 ° C. in vacuum for 72 hours.
The coating was subjected to heat annealing for a uniform diffusion time. X
By the line diffraction, the product of the coating layer is identified and almost uniform T
An i-Al 3 phase Al—Cr diffusion coating layer was formed.
According to the analysis by EPMA, the Cr concentration in the surface layer was 2.C.
7%.

【0025】また、Cr粉末を配合しないで、TiAl
3 粉末のみを、上記実施例と同一条件でプラズマ溶射と
熱処理をした材料を比較材とした。拡散被覆層はTiA
3相から成り、Crは検出されなかった。
In addition, without blending Cr powder, TiAl
A material obtained by subjecting only three powders to plasma spraying and heat treatment under the same conditions as in the above example was used as a comparative material. The diffusion coating layer is TiA
consists of l 3-phase, Cr was not detected.

【0026】本試験材及び比較材を、大気中1000℃
で100時間加熱保持して、表面酸化の状態を観察し
た。本試験材は、表面が褐色に変色していたのに対し
て、比較材は厚さ約100μm程度のスケールが生成
し、スケールが剥離しているのが見られた。
The test material and the comparative material were heated at 1000 ° C. in the atmosphere.
For 100 hours, and the state of surface oxidation was observed. While the surface of the test material was discolored to brown, the comparative material formed a scale having a thickness of about 100 μm, and it was observed that the scale was peeled off.

【0027】[0027]

【作用及び効果】Ti系合金母材の表層のAl−Cr拡
散被覆層は、Al50〜65%含有するのでTiAl3
相又はTiAl2 相によって形成されているが、高温の
酸化性雰囲気中にあって、Alが酸化され、Ti酸化物
を含むアルミナ相の酸化物薄膜となる。Al−Cr拡散
被覆層にCrを少量含むと、1000℃の酸化性高温雰
囲気中にあっても、最表面のアルミナ相からTiAl3
相への酸素の拡散移動を阻止して、アルミナ相の酸化物
層は成長せず、かつ緻密安定であるから剥離しない。A
l−Cr拡散被覆層中のCr濃度が約8%以上に増加す
ると、アルミナ相の酸化層は成長して、耐酸化性を悪く
する。この原因は表面に肌荒れを生じ、表面近傍が多孔
性となるので、均一なアルミナ層が形成されないためと
考えられる。
[Operation and Effect] Since the Al—Cr diffusion coating layer on the surface of the Ti-based alloy base material contains 50 to 65% Al, TiAl 3
Although formed of a phase or a TiAl 2 phase, in a high-temperature oxidizing atmosphere, Al is oxidized to form an oxide thin film of an alumina phase containing Ti oxide. When a small amount of Cr is contained in the Al-Cr diffusion coating layer, even in an oxidizing high-temperature atmosphere at 1000 ° C, TiAl 3
The diffusion transfer of oxygen to the phase is prevented, and the oxide layer of the alumina phase does not grow, and does not peel because it is dense and stable. A
When the Cr concentration in the l-Cr diffusion coating layer is increased to about 8% or more, the oxide layer of the alumina phase grows and deteriorates the oxidation resistance. This is considered to be because the surface becomes rough and the vicinity of the surface becomes porous, so that a uniform alumina layer is not formed.

【0028】また、Ti系合金母材の表層にAl−Cr
合金層を形成しておけば、高温の酸化性雰囲気中での使
用過程で、当該Al−Cr合金層は合金母材と拡散反応
して、Al50〜65%含有するのでTiAl3 相又は
TiAl2 相から成るAl−Cr拡散被覆層を形成し
て、耐酸化性を発現する。
Further, the surface layer of the Ti-based alloy base material is made of Al-Cr.
If an alloy layer is formed, the Al-Cr alloy layer undergoes a diffusion reaction with the alloy base material during use in a high-temperature oxidizing atmosphere and contains 50 to 65% of Al, so that the TiAl 3 phase or TiAl 2 An Al—Cr diffusion coating layer composed of a phase is formed to exhibit oxidation resistance.

【0029】本発明の耐熱性Ti系合金を実施すれば、
耐酸化性にすぐれた耐熱合金が得られる。特にTi−1
4〜36%Al合金を母材にすれば、実用的な使用温度
1050℃程度の耐熱材料として利用することができ
る。
By implementing the heat-resistant Ti-based alloy of the present invention,
A heat-resistant alloy with excellent oxidation resistance can be obtained. Especially Ti-1
If a 4-36% Al alloy is used as a base material, it can be used as a practical heat-resistant material at a working temperature of about 1050 ° C.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al−Cr拡散被覆層が形成されたTi−Al
合金の高温酸化試験前における断面の金属組織を示す光
学顕微鏡写真(倍率;100、腐食液;塩酸1.5ml
+硝酸2.5ml+フッ酸1ml+水95mlの混合
液)。
FIG. 1 shows a Ti—Al having an Al—Cr diffusion coating layer formed thereon.
Optical micrograph showing the metallographic structure of the cross section before the high-temperature oxidation test of the alloy (magnification: 100, etching solution: hydrochloric acid 1.5 ml)
+2.5 ml of nitric acid + 1 ml of hydrofluoric acid + 95 ml of water).

【図2】Al−Cr拡散被覆層と近接する母材のEPM
A分析によるAlとCrの濃度曲線図。
FIG. 2 shows an EPM of a base material adjacent to an Al—Cr diffusion coating layer.
FIG. 4 is a concentration curve diagram of Al and Cr by A analysis.

【図3】Al−Cr拡散被覆層が形成されたTi−Al
合金の高温酸化試験をした後の断面金属組織を示す光学
顕微鏡写真(倍率;100、腐食液;図1同様混合
液)。
FIG. 3 shows a Ti—Al having an Al—Cr diffusion coating layer formed thereon.
1 is an optical microscope photograph (magnification: 100, corrosive liquid; mixed liquid similar to FIG. 1) showing a cross-sectional metal structure after a high-temperature oxidation test of the alloy.

【図4】加熱処理後の酸化増量とCr濃度との関係を示
す図。
FIG. 4 is a graph showing the relationship between the amount of increased oxidation after heat treatment and the Cr concentration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 利平 滋賀県甲賀郡甲西町大池町8番地 日本 カロライズ工業株式会社内 (72)発明者 末安 正信 滋賀県甲賀郡甲西町大池町8番地 日本 カロライズ工業株式会社内 (56)参考文献 特公 昭55−10662(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C23C 10/14 - 14/16 C23C 10/28 - 10/58 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Rihei Yoshikawa, 8th, Oikecho, Kosai-cho, Koga-gun, Shiga Japan Inside (72) Inventor Masanobu Suean 8th, Oike-cho, Kosai-cho, Koga-gun, Shiga Japan, Japan Incorporated (56) References JP-B-55-10662 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 10/14-14/16 C23C 10/28-10 / 58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Ti系合金母材の表面にAl−Cr拡散
被覆層を有する耐熱性Ti系合金であって、該Al−C
r拡散被覆層は、母材のTi系合金中にAlが50〜6
5wt%とCrが0.5〜7wt%含まれていることを
特徴とする耐熱性Ti系合金。
1. A heat-resistant Ti-based alloy having an Al-Cr diffusion coating layer on a surface of a Ti-based alloy base material, wherein the Al-C
The r-diffusion coating layer contains 50 to 6 Al in the base Ti alloy.
A heat-resistant Ti-based alloy comprising 5 wt% and 0.5 to 7 wt% Cr.
【請求項2】 Ti系合金母材の表面にAlが90〜9
9.5wt%とCrが0.5〜10wt%とから成るA
l−Cr合金層が形成された耐熱性Ti系合金であっ
て、高温下の使用過程で当該Al−Cr合金層がTi系
合金母材へ拡散してAl−Cr拡散被覆層を形成し、該
Al−Cr拡散被覆層にAlが50〜65wt%とCr
が0.5〜7wt%含まれるようにしたことを特徴とす
る耐熱性Ti系合金。
2. The method according to claim 1, wherein the surface of the Ti alloy base material contains 90 to 9 Al.
A consisting of 9.5 wt% and 0.5 to 10 wt% Cr
a heat-resistant Ti-based alloy having an l-Cr alloy layer formed thereon, wherein the Al-Cr alloy layer diffuses into the Ti-based alloy base material during use at a high temperature to form an Al-Cr diffusion coating layer, The Al-Cr diffusion coating layer contains 50 to 65 wt% of Al and Cr.
Is contained at 0.5 to 7 wt%.
【請求項3】 当該Ti系合金母材が、14〜36wt
%のAlを含有してなる請求項1又は2記載の耐熱性T
i系合金。
3. The Ti-based alloy base material is 14 to 36 wt.
3. The heat-resistant T according to claim 1, wherein the heat-resistant T contains at least one Al.
i-based alloy.
JP27016591A 1991-09-21 1991-09-21 Heat-resistant Ti-based alloy Expired - Fee Related JP2922346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27016591A JP2922346B2 (en) 1991-09-21 1991-09-21 Heat-resistant Ti-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27016591A JP2922346B2 (en) 1991-09-21 1991-09-21 Heat-resistant Ti-based alloy

Publications (2)

Publication Number Publication Date
JPH0693412A JPH0693412A (en) 1994-04-05
JP2922346B2 true JP2922346B2 (en) 1999-07-19

Family

ID=17482444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27016591A Expired - Fee Related JP2922346B2 (en) 1991-09-21 1991-09-21 Heat-resistant Ti-based alloy

Country Status (1)

Country Link
JP (1) JP2922346B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69614136T2 (en) * 1995-11-08 2002-03-21 Citizen Watch Co Ltd Surface hardened material based on titanium and method for surface hardening of titanium material
JP3361072B2 (en) 1998-02-20 2003-01-07 株式会社豊田中央研究所 Method for producing metal member having excellent oxidation resistance
KR100305728B1 (en) * 1999-08-30 2001-09-24 이종훈 Powder Composition for Simultaneous Coating of Chrome and Aluminium on Metal Surfaces and Coating Method Thereof
DE19949541C2 (en) * 1999-10-14 2002-02-28 Forschungszentrum Juelich Gmbh Metallic component with layer and manufacturing process for such a layer
JP3976599B2 (en) * 2002-03-27 2007-09-19 独立行政法人科学技術振興機構 Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
JP6340770B2 (en) * 2013-10-22 2018-06-13 新日鐵住金株式会社 Titanium alloy material excellent in hydrogen absorption resistance and method for producing the same
JP6499998B2 (en) * 2016-06-27 2019-04-10 株式会社増田酸素工業所 Method for forming surface layer of molten metal processing member

Also Published As

Publication number Publication date
JPH0693412A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
Tang et al. Effect of MCrAIY overlay coatings on oxidation resistance of TiAl intermetallics
Funkenbusch et al. Reactive element-sulfur interaction and oxide scale adherence
US4933239A (en) Aluminide coating for superalloys
CN100342059C (en) Heat-resistant Ni-alloy material excellent in resistance to oxidation at high temperature
US4326011A (en) Hot corrosion resistant coatings
FR2660938A1 (en) COATING SYSTEMS FOR TITANIUM PROTECTION AGAINST OXIDATION.
JP3865705B2 (en) Heat shielding coating material excellent in corrosion resistance and heat resistance, and method for producing the same
Kung High-temperature coating for titanium aluminides using the pack-cementation technique
US4371570A (en) Hot corrosion resistant coatings
WO1998042887A1 (en) High-temperature spray coated member and method of production thereof
Braun et al. Oxidation behaviour of TiAl-based intermetallic coatings on γ-TiAl alloys
JP3976599B2 (en) Heat resistant Ti alloy material excellent in high temperature corrosion resistance and oxidation resistance and method for producing the same
JP2922346B2 (en) Heat-resistant Ti-based alloy
FR2565256A1 (en) LOW-ALLOY STEEL SHEET, ALUMINUM-COATED, USEFUL AS A CATALYST SUPPORT AND TOOL ENVELOPE, AND PROCESS FOR PREPARING THE SAME
JPH09509221A (en) Oxidation resistant coating for titanium alloys
CN113981328B (en) Aluminum-containing austenitic stainless steel with surface spontaneously and continuously generating aluminum oxide film and preparation method thereof
Vojtěch et al. Intermetallic protective coatings on titanium
WO2009054536A1 (en) METHOD OF TREATING SURFACE OF Ti-Al ALLOY AND TI-AL ALLOY OBTAINED BY THE SAME
JP2004083988A (en) HEAT RESISTANT HOT DIP Al BASED PLATED STEEL SHEET WORKED MATERIAL EXCELLENT IN OXIDATION RESISTANCE OF WORKED PART AND HIGH TEMPERATURE OXIDATION RESISTANT COATING STRUCTURE
US5660886A (en) Method for forming in situ diffusion barrier while diffusing aluminum through nickel-boron
Chu et al. Oxidation Behavior of Ti--50Al Intermetallics with Thin TiAl 3 Film at 1000° C
US5049418A (en) Barrier coatings for oxidation protection incorporating compatibility layer
Cvijović et al. Cyclic oxidation behaviour of Ti3Al-based alloy with Ni–Cr protective layer
EP3730666B1 (en) TiAl ALLOY MEMBER, METHOD OF MANUFACTURING THE SAME, AND METHOD OF FORGING TiAl ALLOY MEMBER
Jha et al. Oxidation characteristics of Ti 3 Al-Nb alloys and improvement in the oxidation resistance by pack aluminizing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees