JPH02172934A - Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane - Google Patents

Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane

Info

Publication number
JPH02172934A
JPH02172934A JP63324998A JP32499888A JPH02172934A JP H02172934 A JPH02172934 A JP H02172934A JP 63324998 A JP63324998 A JP 63324998A JP 32499888 A JP32499888 A JP 32499888A JP H02172934 A JPH02172934 A JP H02172934A
Authority
JP
Japan
Prior art keywords
hydrogen fluoride
alumina
catalyst
gamma
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63324998A
Other languages
Japanese (ja)
Other versions
JPH0692326B2 (en
Inventor
Kiyoshi Yanagii
楊井 清志
Satoru Yoshikawa
悟 吉川
Katsuyoshi Murata
村田 勝義
Sadaji Misumi
三隅 定治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP63324998A priority Critical patent/JPH0692326B2/en
Priority to US07/357,291 priority patent/US4996379A/en
Priority to FR8907005A priority patent/FR2631959A1/en
Priority to GB8912325A priority patent/GB2219796B/en
Priority to IT8920692A priority patent/IT1230795B/en
Priority to DE3917573A priority patent/DE3917573A1/en
Publication of JPH02172934A publication Critical patent/JPH02172934A/en
Publication of JPH0692326B2 publication Critical patent/JPH0692326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the subject substance useful as a raw material for 1,1,1,2- tetrafluoroethane which is a refrigerant having moderate stability with a high efficiency by reacting 1,1,1-trichloro-2,2,2-trifluoroethane with hydrogen fluoride using a specific readily preparable catalyst excellent in durability. CONSTITUTION:1,1,1-Trichloro-2,2,2-trifluoroethane as a raw material is reacted with hydrogen fluoride in the vapor phase at normally 0.8-1.8 molar ratio of the hydrogen fluoride to the above-mentioned raw material in the presence of a catalyst prepared by treating gamma-alumina with hydrogen fluoride at 300-380 deg.C temperature under ordinary pressure to 10kg/cm<2> pressure for 2-100sec contact time to afford the objective compound. Furthermore, the aforementioned catalyst is prepared by a method for drying spherical gamma-alumina having about 5mm diameter initially at >=250 deg. if moisture, etc., are contained, then subjecting the dried gamma-alumina to treatment with hydrogen fluoride using a mixed gas of hydrogen fluoride.nitrogen at 250 deg.C, further increasing the temperature to 400 deg.C and fluorinating 60-80% gamma-alumina.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は、適度な安定性を有する冷媒である14.1.
2−テトラフルオロエタンの原料として有用な2.2−
ジクロロ−1,1,1,2−テトラフルオロエタン(以
後、R−114aと略す、)の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a refrigerant with moderate stability, 14.1.
2.2- useful as a raw material for 2-tetrafluoroethane
The present invention relates to a method for producing dichloro-1,1,1,2-tetrafluoroethane (hereinafter abbreviated as R-114a).

[従来技術とその解決しようとする1lfll従来、R
−114aを製造するには1,1.1−トリクロ0−2
.2.2− )リフルオロエタン(以後、R−113a
と略す、)を触媒の存在下、フッ化水素でフッ素化する
方法が知られている。
[Prior art and its solution 1lfll Conventional technology, R
-1,1.1-Trichlor0-2 to produce 114a
.. 2.2-) Rifluoroethane (hereinafter referred to as R-113a
A method of fluorinating (abbreviated as ) with hydrogen fluoride in the presence of a catalyst is known.

この反応に使われる触媒としては、■五塩化アンチモン
[Henne、Ruh、J、Am、Chem、Soc、
、To、1025(1948)] 、■塩化アルミニウ
ムをフッ素化したフッ化アルミニウム(米国特許筒2,
748.177号)■工業的製造法による市販のフッ化
アルミニウム粉末[MJecchio、G、Gropp
el目、J、C,τatjow、J。
Catalysts used in this reaction include: ■ Antimony pentachloride [Henne, Ruh, J, Am, Chem, Soc,
, To, 1025 (1948)], ■ Aluminum fluoride obtained by fluorinating aluminum chloride (U.S. Patent No. 2,
No. 748.177) ■ Commercially available aluminum fluoride powder by industrial production method [MJecchio, G., Gropp
el order, J., C., τatjow, J.;

Fluorine Chem、4.117(1974)
]■酸化クロム[L。
Fluorine Chem, 4.117 (1974)
]■Chromium oxide [L.

Marangoni  et  al、、Chim、I
nd、(Milan)、、64,135(1982)]
等が提案されている。しかしながら、■の方法は腐食性
の五塩化アンチモンを使用するため製造装置の材料等の
選定が難しく、実験室での製造に限られているため実用
的でない。
Marangoni et al., Chim, I.
(Milan), 64, 135 (1982)]
etc. have been proposed. However, method (2) uses corrosive antimony pentachloride, making it difficult to select materials for the manufacturing equipment, and is not practical because it is limited to manufacturing in a laboratory.

■〜■の反応は気相反応であるので製造装置としては比
較的簡単な構造となり基本的には工業化に適した方法で
あるといえるが、■の原料である塩化アルミニウムは吸
湿性が大きいため触媒調整が難しく、■は触媒自体は容
易に入手でき好ましいが、十分な活性を示さないという
問題点がある。さらに■は触媒活性には優れるが毒性等
の問題から使用済み触媒の廃棄や生産現場での環境に問
題がある。
Since the reactions of ■ to ■ are gas phase reactions, the manufacturing equipment has a relatively simple structure and is basically a method suitable for industrialization.However, aluminum chloride, the raw material for (■), is highly hygroscopic. Catalyst preparation is difficult, and although the catalyst itself is easily available and is preferred, it does not exhibit sufficient activity. Furthermore, although ① has excellent catalytic activity, there are problems with the disposal of used catalysts and the environment at production sites due to issues such as toxicity.

[課題を解決するための手段] 本発明者らはこのような現状に鑑み、経済的かつ工業的
に有利なR−114aの製造方法につき種々の検討を行
った。普通、ハロゲン化炭化水素とフッ化水素との反応
による気相フッ素化の触媒には、多くの金属酸化物、金
属ハロゲン化物がそれ自身単独の成型体、またはそれを
活性炭、アルミナ等の担体に担持させた系が知られてい
るが、その中で量も一般的なものはクロムを活性金属と
するものである。
[Means for Solving the Problems] In view of the current situation, the present inventors conducted various studies on an economically and industrially advantageous method for producing R-114a. Usually, catalysts for gas-phase fluorination through the reaction of halogenated hydrocarbons and hydrogen fluoride contain many metal oxides and metal halides either in the form of individual molds or in a carrier such as activated carbon or alumina. Supported systems are known, among which the most common one is one in which chromium is the active metal.

しかし、ハロゲン化炭化水素をフッ化水素でフッ素化す
る場合、クロムやニッケル等をアルミナ等に担持させた
触媒を用いると塩素原子のフッ素原子による置換反応活
性は著しく高く、R−113aの場合R−114aが生
成するだけでなく、さらにフン素化の進んだクロロベン
クンフルオロエタンの副生を伴いR114aの選択率を
低下させる。フッ化アルミ自体がフッ素化活性をもっこ
と自体は公知であるが、通常同時に異性化、不均化が起
こり所望のtIIFI質のみ得る目的には適さない、し
かしながら、本発明者らは上記問題点を解決すべく鋭意
検討を行った結果、R−113aを原料とし、フッ化水
素で適度にフッ素化したγ−アルミナを触媒としてフッ
素水素と反応を行うことにより極めて選択率よく目的物
のR−114aが得られることを見出し、本発明に到達
したものである。
However, when fluorinating halogenated hydrocarbons with hydrogen fluoride, if a catalyst in which chromium, nickel, etc. are supported on alumina or the like is used, the substitution reaction activity of chlorine atoms with fluorine atoms is extremely high, and in the case of R-113a, R -114a is not only produced, but also chlorobencune fluoroethane, which is highly fluorinated, is produced as a by-product, thereby reducing the selectivity of R114a. Although it is known that aluminum fluoride itself has fluorination activity, it usually undergoes isomerization and disproportionation at the same time, making it unsuitable for obtaining only the desired tIIFI quality.However, the present inventors have solved the above problems. As a result of intensive studies to solve the problem, we found that the target R- The present invention was achieved based on the discovery that 114a can be obtained.

すなわち本発明は、R−113aとフン化水素の気相反
応を行う際、γ−アルミナをフッ化水素で処理した触媒
を使用することを特徴とするR11−1aの製造法であ
る。
That is, the present invention is a method for producing R11-1a characterized by using a catalyst obtained by treating γ-alumina with hydrogen fluoride when performing a gas phase reaction between R-113a and hydrogen fluoride.

触媒の調整法としては、直径的5■の球状γ−アルミナ
を、水分等がふくまれている場合最初250”C以上で
乾燥し、その後フッ化水素・窒素混合ガスにより250
℃でフッ素水素処理し、さらに400℃に昇温してフッ
素処理を続行する。
To prepare the catalyst, spherical γ-alumina with a diameter of 5 cm is first dried at 250"C or higher if it contains moisture, and then heated to 250"C with a hydrogen fluoride/nitrogen mixed gas.
The fluorine and hydrogen treatment is carried out at 400°C, and the temperature is further raised to 400°C to continue the fluorine treatment.

このような処理により、T−アルミナの60〜80%が
フッ素化され、且つこのフッ化アルミニウムがγ−アル
ミナ中にうまく分散しているため、本発明のフッ素化反
応に適応した触媒活性を示すと考えられる。
Through such treatment, 60 to 80% of T-alumina is fluorinated, and this aluminum fluoride is well dispersed in γ-alumina, so it exhibits catalytic activity suitable for the fluorination reaction of the present invention. it is conceivable that.

上述のようにして調整された触媒を用い、通常ニッケル
あるいはステンレス製の反応管に上記触媒を充填した後
、原料とフッ化水素の混合物を原料の沸点以上に予熱し
、反応管に導入する。
After filling a reaction tube, usually made of nickel or stainless steel, with the catalyst prepared as described above, a mixture of raw materials and hydrogen fluoride is preheated to a temperature higher than the boiling point of the raw materials and introduced into the reaction tube.

反応の際の反応器の温度は、300〜380°Cが好ま
しい1反応器の温度が300″Cより低い場合は、反応
率が低下し、一方380℃より高い場合は、副生物であ
るクロロペンタフルオロエタン(以後、R−115と略
す、)の生成率が増加して、目的物であるR114aの
選択率が低下するため、好ましくない、接触時間は、反
応が十分に進行しかつ経済的な反応時間を考えると、2
〜100秒が好ましい0次に、フッ化水素とR−113
aのモル比(フッ化水素/R−113a)は0.8〜1
.8が好ましい、前記モル比が0.8より小さい場合、
反応率が低下し、一方モル比が1.8より大きい場合、
副生物のR−115の生成率が増加するためR114a
の選択率が低下し、好ましくない。 反応の際の圧力は
、特に限定する必要はないが、普通常圧から10kg/
−の範囲で行う。
The temperature of the reactor during the reaction is preferably 300-380°C.If the temperature of the reactor is lower than 300"C, the reaction rate will decrease, while if it is higher than 380"C, the by-product chloro The contact time is unfavorable because the production rate of pentafluoroethane (hereinafter abbreviated as R-115) increases and the selectivity of the target product R114a decreases. Considering the reaction time, 2
~100 seconds is preferable 0th order, hydrogen fluoride and R-113
The molar ratio of a (hydrogen fluoride/R-113a) is 0.8 to 1
.. 8 is preferred, when the molar ratio is less than 0.8,
If the reaction rate decreases while the molar ratio is greater than 1.8,
R114a increases the production rate of by-product R-115.
selectivity decreases, which is not preferable. The pressure during the reaction does not need to be particularly limited, but it is usually between normal pressure and 10 kg/
Perform within the range of –.

上述のような条件で反応を行うことにより、十分に高い
収率で目的のR−1!4aを得ることができ、また反応
器より取り出される組成物を蒸留により分離して原料を
再使用できるため、その収率を上げることができる。ま
た、使用する触媒は工業的な“条件での使用において十
分耐久性のあるものであるが、ある程度の時間使用した
後、加熱等の処理により付着した有機物を取り除き、さ
らにフッ化水素処理することにより再使用できる。この
際、触媒は一旦フン化水素処理されているため、より簡
単にその処理を行うことができる。
By carrying out the reaction under the conditions described above, the target R-1!4a can be obtained with a sufficiently high yield, and the raw material can be reused by separating the composition taken out from the reactor by distillation. Therefore, the yield can be increased. In addition, the catalyst used is sufficiently durable for use under industrial conditions, but after being used for a certain period of time, it is necessary to remove the attached organic matter by treatment such as heating, and then to treat it with hydrogen fluoride. In this case, since the catalyst has already been treated with hydrogen fluoride, the treatment can be carried out more easily.

本発明によって得られるR−114aは公知の反応すな
わちR−114aと水素との反応により、適当な安定性
を有し、冷媒として有用な1.1.1.2−テトラフル
オロエタン(以後、R−134aと略す、)に変換する
ことができる。上記方法で使用される触媒としては、種
々の担体にパラジウムを担持させた触媒等があり、本出
願人のさきの提案にかかる特願昭63−132395の
方法、すなわちR−114a等を活性アルミナ担持パラ
ジウム触媒の存在下、120〜200°C未満の温度範
囲で水素と反応させることにより、目的のR−134a
を有利に製造することができる。
The R-114a obtained by the present invention has appropriate stability through a known reaction, that is, the reaction between R-114a and hydrogen, and 1.1.1.2-tetrafluoroethane (hereinafter referred to as R -134a). Catalysts used in the above method include catalysts in which palladium is supported on various carriers. The desired R-134a can be obtained by reacting with hydrogen in the presence of a supported palladium catalyst in the temperature range from 120 to less than 200 °C.
can be advantageously manufactured.

[実施例] 以下、実施例により本発明を具体的に説明するが、本発
明は係る実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1 直径51のT−アルミナ200c cを直径5 cm。Example 1 T-alumina 200c with a diameter of 51 cm.

長さ50cmの円筒形SUS反応管に充填した。A cylindrical SUS reaction tube with a length of 50 cm was filled.

窒素ガスを流しながら300℃まで昇温し、1時間保っ
た後、その温度で窒素ガスに同伴したフッ化水素ガスを
供給した。充填された触媒のフッ素化によるホットスポ
ットが出口側に達したところで、反応器を400℃に上
げ、その状態を1時間保ち、触媒副整を行った。
The temperature was raised to 300° C. while flowing nitrogen gas, and after keeping it for 1 hour, hydrogen fluoride gas entrained in the nitrogen gas was supplied at that temperature. When the hot spot due to fluorination of the packed catalyst reached the outlet side, the temperature of the reactor was raised to 400°C, and this state was maintained for 1 hour to perform catalyst sub-conditioning.

上記方法で調整した触媒および反応管を用い、反応管内
の温度を300°Cに保ち、原料のR−113aとフン
化水素をそれぞれ0.5 sol/hr、 0.5mu
l/hrで導入した0反応品出ロガスをガスクロマトグ
ラフで分析してその組成を調べた。原料の導入条件、反
応温度、生成物組成、反応率、選択率を第1表に示す。
Using the catalyst and reaction tube prepared by the above method, the temperature inside the reaction tube was maintained at 300°C, and the raw materials R-113a and hydrogen fluoride were added at 0.5 sol/hr and 0.5 mu, respectively.
The zero reaction product log gas introduced at a rate of 1/hr was analyzed by gas chromatography to determine its composition. Table 1 shows the raw material introduction conditions, reaction temperature, product composition, reaction rate, and selectivity.

この触媒は、100時間を経過後も活性の低下はなかっ
た。
This catalyst showed no decrease in activity even after 100 hours had passed.

実施例2〜7 実施例1の触媒を用い、フッ化水素とR−113aの流
量すなわちフン化水素/R−113a(モル比)を変え
て、実施例1と同様の操作で反応を行った。実施条件お
よびその結果を実施例1と同様に第1表に表わす。
Examples 2 to 7 Using the catalyst of Example 1, a reaction was carried out in the same manner as in Example 1 by changing the flow rate of hydrogen fluoride and R-113a, that is, the hydrogen fluoride/R-113a (molar ratio). . The implementation conditions and results are shown in Table 1 as in Example 1.

[発明の効果] 本発明の方法によれば、原料のR−113aをr −ア
ルミナをフン化水素により処理するという比較的容易な
方法により調整された耐久性の優れた触媒を用い、高い
反応率および選択率で目的とするR−114aを製造す
ることができるという工業的に極めて優れたR−114
aの製造法である。
[Effects of the Invention] According to the method of the present invention, a highly durable catalyst prepared by treating R-113a as a raw material with a relatively easy method of treating r-alumina with hydrogen fluoride is used to achieve a high reaction rate. R-114 is industrially excellent and can produce the target R-114a with high efficiency and selectivity.
This is the manufacturing method of a.

特許出願人  セントラル硝子株式会社代理人   弁
理士  坂 本 栄
Patent applicant Central Glass Co., Ltd. Agent Patent attorney Sakae Sakamoto

Claims (1)

【特許請求の範囲】[Claims] (1)1,1,1−トリクロロ−2,2,2−トリフル
オロエタンとフッ化水素の気相反応を行う際、γ−アル
ミナをフッ化水素で処理した触媒を使用することを特徴
とする2,2−ジクロロ−1,1,1,2−テトラフル
オロエタンの製造法
(1) When performing a gas phase reaction between 1,1,1-trichloro-2,2,2-trifluoroethane and hydrogen fluoride, a catalyst in which γ-alumina is treated with hydrogen fluoride is used. Method for producing 2,2-dichloro-1,1,1,2-tetrafluoroethane
JP63324998A 1988-05-30 1988-12-23 Method for producing 2,2-dichloro-1,1,1,2-tetrafluoroethane Expired - Lifetime JPH0692326B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63324998A JPH0692326B2 (en) 1988-12-23 1988-12-23 Method for producing 2,2-dichloro-1,1,1,2-tetrafluoroethane
US07/357,291 US4996379A (en) 1988-05-30 1989-05-26 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
FR8907005A FR2631959A1 (en) 1988-05-30 1989-05-29 PROCESS FOR THE PREPARATION OF 1,1,1,2-TETRAFLUOROETHANE FROM 1,1-DICHLORO-1,2,2,2-TETRAFLUOROETHANE
GB8912325A GB2219796B (en) 1988-05-30 1989-05-30 Method of preparing 1,1,1,2-tetrafluoroethane from 1,1-dichloro-1,2,2,2-tetrafluoroethane
IT8920692A IT1230795B (en) 1988-05-30 1989-05-30 PROCEDURE FOR PREPARING 1,1,1,2 TETRAFLUOROETHANE FROM 1,1 DICHLOR 1,2,2,2 TETRAFLUOROETHANE.
DE3917573A DE3917573A1 (en) 1988-05-30 1989-05-30 METHOD FOR PRODUCING 1,1,1,2-TETRAFLUORETHANE FROM 1,1-DICHLOR-1,2,2,2-TETRAFLUORETHANE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63324998A JPH0692326B2 (en) 1988-12-23 1988-12-23 Method for producing 2,2-dichloro-1,1,1,2-tetrafluoroethane

Publications (2)

Publication Number Publication Date
JPH02172934A true JPH02172934A (en) 1990-07-04
JPH0692326B2 JPH0692326B2 (en) 1994-11-16

Family

ID=18171993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63324998A Expired - Lifetime JPH0692326B2 (en) 1988-05-30 1988-12-23 Method for producing 2,2-dichloro-1,1,1,2-tetrafluoroethane

Country Status (1)

Country Link
JP (1) JPH0692326B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007822A5 (en) * 1993-12-10 1995-10-31 Solvay SUPPORT FOR CATALYST hydrogenate ION SYSTEM INCLUDING THE CATALYST SUPPORT AND METHOD OF hydrodechlorination chlorofluorocarbons.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139541A (en) * 1987-11-26 1989-06-01 Asahi Glass Co Ltd Production of 1,1-dichloro-1,2,2,2-tetrafluoroethane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139541A (en) * 1987-11-26 1989-06-01 Asahi Glass Co Ltd Production of 1,1-dichloro-1,2,2,2-tetrafluoroethane

Also Published As

Publication number Publication date
JPH0692326B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
AU621439B2 (en) Isomerization of saturated fluorohydrocarbons
RU1838288C (en) Method of 1,1,2,2-tetrafluoroethane synthesis
US6706935B2 (en) Catalytic equilibration to increase the relative mole fraction of CF3CHCI, CF3CHCI2 or CF3CF2H in a composition
NO174096B (en) PROCEDURE FOR THE PREPARATION OF 1,1,1,2-TETRAFLUORETHANE
US5334787A (en) Process for the manufacture of pentafluoroethane
JPH0267235A (en) Production of 1, 1, 1, 2-tetrafluoroethane
AU630807B2 (en) Process for the manufacture of 1,1,1,2-tetra-fluorochloroethane and/or pentafluoroethane
KR20090031918A (en) High pressure catalyst activation method and catalyst produced thereby
JPH11152237A (en) Production of perhalogenated cyclopentene
US5545774A (en) Process for the manufacture of 1,1,1,3,3,3-hexafluoropropane
JP3342916B2 (en) Method for producing pentafluoroethane by disproportionation of tetrafluorochloroethane
EP0576600B1 (en) Process for the manufacture of 2-chloro-1,1,1,2-tetrafluoroethane and pentafluoroethane
US5399549A (en) Process for the manufacture of pentafluoroethane
US6291729B1 (en) Halofluorocarbon hydrogenolysis
CA2167698A1 (en) Process for combining chlorine-containing molecules to synthesize fluorine-containing products
JPH09169672A (en) Production of pentafluoroethane
US5030372A (en) Catalytic equilibration to improve the relative yield of selected halocarbons
JPH04321632A (en) Purification of 1,1,1,2-tetrafluoroethane
JP4785532B2 (en) Production method of hydrofluorocarbon, its product and its use
JPH0368526A (en) Preparation of mixture containing 1-chloro-1- fluoroethylene and vinylidene fluoride by gas-phase contacting disproportionate reaction of 1-chloro-1, 1-difluoroethane
JPH02172934A (en) Production of 2,2-dichloro-1,1,1,2-tetrafluoroethane
US5831136A (en) Process for manufacture of high purity 1,1-dichlorotetrafluoroethane
JPH04346947A (en) Production of chlorotrifluoroethylene
JP3582798B2 (en) Fluorination catalyst and fluorination method
JP2000319210A (en) Vapor phase production of pentafluoroethane by disproportionation of chlorotetrafluoroethane