JPH02170486A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPH02170486A
JPH02170486A JP63323299A JP32329988A JPH02170486A JP H02170486 A JPH02170486 A JP H02170486A JP 63323299 A JP63323299 A JP 63323299A JP 32329988 A JP32329988 A JP 32329988A JP H02170486 A JPH02170486 A JP H02170486A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
multilayer film
thickness
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63323299A
Other languages
Japanese (ja)
Inventor
So Okura
大蔵 創
Kazuhisa Uomi
魚見 和久
Naoki Kayane
茅根 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63323299A priority Critical patent/JPH02170486A/en
Publication of JPH02170486A publication Critical patent/JPH02170486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • H01L33/105Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector with a resonant cavity structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a light-emitting element with a low threshold value or with a high efficiency by a method wherein a semiconductor layer whose refractive index is larger than that of two semiconductor multilayer films formed by cyclically laminating semiconductor layers of different refractive indexes is provided between the two semiconductor multilayer films so as to be faced and a distance between both faces is made larger than its film thickness. CONSTITUTION:n-Al0.2Ga0.8As and n-AlAs are laminated on an n-type GaAs substrate 1 alternately at 10 cycles with a thickness of lambda/4.r (where lambda represents an oscillation wavelength and r represents a refractive index of a medium); an n-multilayer-film reflector 2 is formed. Then, an n-Al0.3Ga0.7As light-guide layer 3, a GaAs active layer 4 and a p-Al0.3Ga0.7As light-guide layer 5 are formed. After that, p-Al0.2Ga0.8As and p-AlAs are laminated alternately at 10 cycles with the thickness of lambda/4.r; a p-multilayer reflector 6 is formed. Then, a cap layer 7, buried layers 8. 9, a Zn diffusion region 10, a p-electrode 11 and an n-electrode 12 are formed. Thereby, a semiconductor laser whose resonator length is 100mum and whose threshold current value is about 0.5mA is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低しきい値の半導体レーザや、高効率の発光
ダイオードとして用いて好適な半導体発光装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light emitting device suitable for use as a low threshold semiconductor laser or a high efficiency light emitting diode.

[従来の技術] 従来、活性層の上下に半導体多層膜を設ける構造が応用
物理、第56巻、第12号(1987)に示されている
。これは面発光型レーザであり、多層膜構造が主に誘導
放出光に対する共振器として用いられている。
[Prior Art] Conventionally, a structure in which semiconductor multilayer films are provided above and below an active layer is shown in Oyoi Jitsu, Vol. 56, No. 12 (1987). This is a surface-emitting laser, and a multilayer film structure is mainly used as a resonator for stimulated emission light.

[発明が解決しようとする課題] 上記従来技術は、半導体多層膜を誘導放出光に対する反
射鏡、すなわち共振器に利用するものであった。従って
出射方向と平行な多層膜が存在せず、自然放出光の利用
効率が低いという問題がある。本発明は、半導体多層膜
を自然放出光の活性層への帰還のために用い、端面出射
型半導体発光装置の低しきい値化、あるいは高効率化を
目的とするものである。
[Problems to be Solved by the Invention] The above-mentioned conventional technology utilizes a semiconductor multilayer film as a reflecting mirror for stimulated emission light, that is, as a resonator. Therefore, there is a problem that there is no multilayer film parallel to the emission direction, and the efficiency of utilizing spontaneously emitted light is low. The present invention uses a semiconductor multilayer film for returning spontaneously emitted light to an active layer, and aims at lowering the threshold voltage or increasing the efficiency of an edge-emitting type semiconductor light-emitting device.

[課題を解決するための手段] 上記目的は、活性層の上下若しくはさらに左右に光反射
を生せしめる半導体多層膜を形成することにより達成す
ることができ、自然放出光を有効活用し、発光素子の低
しきい値化あるいは高効率化が実現できる。
[Means for Solving the Problems] The above object can be achieved by forming a semiconductor multilayer film that causes light reflection above and below the active layer or even on the left and right sides, and by effectively utilizing spontaneously emitted light, A lower threshold value or higher efficiency can be realized.

即ち、半導体発光装置において、活性層に隣接して、活
性層からの自然放出光を活性層に帰還するための半導体
多層膜を設けることにより上記目的は達成される。
That is, in a semiconductor light emitting device, the above object is achieved by providing a semiconductor multilayer film adjacent to the active layer for returning spontaneously emitted light from the active layer to the active layer.

[作用] 活性層の上下に設けられた半導体多層膜は、自然放出光
を活性層に帰還させ、活性層のキャリアを励起させる(
フォトン・リサイクリング効果)ことができる。その結
果、低しきい値、あるいは高効率の発光素子が実現でき
る。また、膜厚方向し垂直をなす1方向の長さ、すなわ
ちストライプの長さを活性層の厚さよりも十分長くとれ
ば、ストライプ方向の誘導放出が強く生じ、端面から光
が出射されることになる。以上のように1本発明は多層
膜を誘導放出光に対する共振器として使う従来の面発光
レーザと原理・構造の点で大きく異るものである。
[Function] The semiconductor multilayer film provided above and below the active layer returns spontaneously emitted light to the active layer and excites carriers in the active layer (
photon recycling effect). As a result, a light emitting element with a low threshold value or high efficiency can be realized. In addition, if the length in one direction perpendicular to the film thickness direction, that is, the length of the stripe, is made sufficiently longer than the thickness of the active layer, stimulated emission in the stripe direction will occur strongly, and light will be emitted from the end face. Become. As described above, the present invention differs greatly in principle and structure from conventional surface emitting lasers that use a multilayer film as a resonator for stimulated emission light.

[実施例] 本発明の第1の実施例を第1図により説明する。[Example] A first embodiment of the present invention will be described with reference to FIG.

まず、本装置の作製方法について述べる。n型GaAs
基板1上に、MOCVD法によりn−A M、、、G 
a、、、A sとn−AQAsをそれぞれλ/(4n)
の厚さ(λは、発振波長、nは媒質の屈折率)で交互に
10周期(図では模式的に3周期で表わした)積層し、
n−多層膜反射鏡2を形成する。その後、 n−A n
o、、G a、、、A s光ガイド層3.GaAs活性
層4(厚さ0.05μm)、p−A Q、、30 a、
、、A S光ガイドN5を形成した後、p −A Q、
、、G a、、、A sとp−AQAsをそれぞれλ/
(4n)の厚さで交互に10周期積層しp−多層膜反射
!16を形成し、さらにp−GaAsキャップN7を設
ける。つぎに、エツチングによりメサストライプを形成
した後、LPE法を用いて、 p−A Q、、、G a
、1A s埋込みM8とn−Afl、、、Ga。、4A
s埋込み暦9を設ける。その後、選択拡散により、Zn
拡散領域10を形成し、最後に、Ti−Mo−Auを蒸
着してpfJ極11を、AnGeNi−Cr−Auを蒸
着してn電極12を設けへき開により100μmの共振
器長をもつ半導体レーザ装置とした。本実施例において
、室温連続動作において0.5mA程度のしきい電流を
もつ半導体レーザが得られる。
First, the method for manufacturing this device will be described. n-type GaAs
On the substrate 1, n-A M,...,G are formed by MOCVD method.
a, , A s and n-AQAs respectively as λ/(4n)
(where λ is the oscillation wavelength and n is the refractive index of the medium) and are alternately stacked in 10 periods (schematically represented as 3 periods in the figure).
An n-multilayer film reflecting mirror 2 is formed. After that, n-A n
o, ,G a, ,A s light guide layer 3. GaAs active layer 4 (thickness 0.05 μm), p-A Q, 30 a,
,, After forming the A S light guide N5, p −A Q,
, ,G a, ,A s and p-AQAs are respectively λ/
P-multilayer film reflective by laminating 10 cycles alternately with a thickness of (4n)! 16, and further a p-GaAs cap N7 is provided. Next, after forming a mesa stripe by etching, p-A Q, , Ga
, 1A s-embedded M8 and n-Afl,,,Ga. , 4A
s An embedded calendar 9 is provided. Then, by selective diffusion, Zn
A diffusion region 10 is formed, and finally, a pfJ pole 11 is formed by depositing Ti-Mo-Au, an n-electrode 12 is formed by depositing AnGeNi-Cr-Au, and the semiconductor laser device has a cavity length of 100 μm by cleavage. And so. In this example, a semiconductor laser having a threshold current of about 0.5 mA in continuous operation at room temperature can be obtained.

つぎに、本発明の第2の実施例について第2図により説
明する。n型GaAs基[21上に、MOCVD法によ
りn−A Qo、2G a、、、A sとn−AQAs
をそれぞれλ/(4n)の厚さで交互に10周期積層し
、n−多層膜反射鏡22を形成する。その後、GaAs
活性層23.そして、p−A Qo、、G aa、@A
 sとp−AQAsをそれぞれλ/(4n)の厚さで交
互に10周期積層し、p−多層膜反射鏡24を設け、p
 −G a A sキャップ層25を形成する。その後
、選択拡散により、Zn拡散領域26を形成した後、T
i−Mo−A r+を蒸着してp電極27を、AnGe
Ni−Cr−Anを蒸着してn電極28を設ける。最後
に。
Next, a second embodiment of the present invention will be described with reference to FIG. On the n-type GaAs group [21, n-A Qo, 2G a, , As and n-AQAs were formed by MOCVD.
are alternately laminated for 10 periods each with a thickness of λ/(4n) to form an n-multilayer film reflecting mirror 22. After that, GaAs
Active layer 23. And p-A Qo,,G aa,@A
s and p-AQAs are alternately laminated for 10 periods each with a thickness of λ/(4n), and a p-multilayer film reflecting mirror 24 is provided.
- Form a GaAs cap layer 25. Thereafter, after forming a Zn diffusion region 26 by selective diffusion, T
The p-electrode 27 is formed by evaporating i-Mo-A r+, and the AnGe
An n-electrode 28 is provided by vapor depositing Ni-Cr-An. lastly.

前端面にSin、膜をλ/(4n)の厚さは着させるこ
とにより無反射コート膜29を形成することで発光ダイ
オード装置とした0本実施例において高効率の発光ダイ
オードが得られる。
In this embodiment, a highly efficient light emitting diode can be obtained as a light emitting diode device by forming a non-reflection coating film 29 by depositing a Sin film on the front end face to a thickness of λ/(4n).

つぎに1本発明の第3の実施例について第3図により説
明する。n型GaAs基板31上に、MBE法によりn
−A Q、、、G a、1A sとn−AQAsをそれ
ぞれλ/(4n)の厚さで交互に10周期積1し、n−
多層膜反射!I32を形成する。
Next, a third embodiment of the present invention will be explained with reference to FIG. On the n-type GaAs substrate 31, n
-A Q, , Ga, 1A s and n-AQAs are each alternately multiplied 10 times with a thickness of λ/(4n), and n-
Multilayer reflection! Form I32.

次に、n−A Q、、、G a、9.A s光ガイド層
33、GaAs活性潜34(厚さ0.05μm)、p−
A Qo、、G aa、7A s光ガイド層35を形成
した後、p−A Q、、2G a、、、A sとp −
A Q A sをそれぞれλ/(4n)の厚さで交互に
lo周期積暦し、p−多層膜反射鏡36を形成し、さら
にp−GaAsキャップ層37を設ける。つぎに、エツ
チングによりメサストライプを形成した後、再びMBE
法を用いて、高抵抗(i−と略す)ARo、zGa、、
、Asと1−AQAsをそれぞれλ/(4n)の厚さで
交互に10周期積層し、i−多層膜反射鏡38を形成し
、さらにi  A Rg、sG aa。
Next, n-A Q, , Ga, 9. As optical guide layer 33, GaAs active layer 34 (thickness 0.05 μm), p-
After forming the light guide layer 35, p-A Q,,2G a,,,A s and p-
A Q A s is alternately repeated in lo cycles with a thickness of λ/(4n) to form a p-multilayer reflector 36, and further a p-GaAs cap layer 37 is provided. Next, after forming mesa stripes by etching, MBE is performed again.
Using the method, high resistance (abbreviated as i-) ARo, zGa, .
, As and 1-AQAs are alternately stacked in 10 periods with a thickness of λ/(4n) to form the i-multilayer reflector 38, and further i A Rg, sG aa.

As埋込み層39を設ける。その後1選択拡散により、
Zn拡散領域40を形成し、最後に、Ti−Mo−Au
を蒸着してpH極4極在1AuGeNi−Cr−Auを
蒸着してn電極42をそれぞれ設け、さらにへき開によ
り100μmの共振器長をもつ半導体レーザ装置とした
。本実施例において、室温連続動作において、0.2m
A程度のしきい電流をもっ半導1体レーザが得られる。
An As buried layer 39 is provided. After that, by one-choice diffusion,
A Zn diffusion region 40 is formed, and finally a Ti-Mo-Au
was vapor-deposited, and 4 pH poles and 1 AuGeNi-Cr-Au were vapor-deposited to provide n-electrodes 42, respectively, and further cleaved to form a semiconductor laser device having a resonator length of 100 μm. In this example, in continuous operation at room temperature, 0.2 m
A single-semiconductor laser having a threshold current of approximately A is obtained.

本発明はA Q G a A s / G a A s
に限らず、他のレーザ材料、例えば、InGaAsP/
InP系やInGaAQP/GaAs系に対しても同様
に適用できる。さらに活性層が量子井戸構造をしている
ものに対しても有効であり、また上記実施例において導
電型を全て反射にした構造においても同様の結果が得ら
れた。
The present invention is A Q Ga As / Ga As
However, other laser materials such as InGaAsP/
It can be similarly applied to InP and InGaAQP/GaAs systems. Furthermore, it is also effective for a structure in which the active layer has a quantum well structure, and similar results were obtained in the structure in which all conductivity types are reflective in the above embodiments.

最後に、本発明の第4の実施例について第4図により説
明する0通常のしきいIl[(10〜50mA)を有す
る半導体レーザ51を直接変調する場合、図のように、
バイアスするための定電流源54やバイアス53を必要
とする。本発明の半導体レーザは極めてしきい電流が低
いため、無バイアスで駆動することができ、定電流源5
4やバイアスTEEが不要である。さらに無バイアスで
あるため2発振遅れ時間が短い。本実施例の無バイアス
送信システムにより、2.40bit/sのNRz4=
号の駆動により、それに対応した変調信号が得られる。
Finally, the fourth embodiment of the present invention will be explained with reference to FIG.
A constant current source 54 and bias 53 are required for biasing. Since the semiconductor laser of the present invention has an extremely low threshold current, it can be driven without bias, and the constant current source 5
4 and bias TEE are not required. Furthermore, since there is no bias, the delay time between two oscillations is short. With the non-bias transmission system of this embodiment, NRz4=2.40bit/s
By driving the signal, a corresponding modulation signal is obtained.

[発明の効果] 本発明によれば、活性層の上下方向に出射される自然放
出光を有効利用できるので、端面発光型の半導体レーザ
の低しきい値化や発光ダイオードの高効率化に効果があ
る。
[Effects of the Invention] According to the present invention, spontaneous emission light emitted in the vertical direction of the active layer can be effectively used, which is effective in lowering the threshold value of edge-emitting semiconductor lasers and increasing the efficiency of light-emitting diodes. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体発光装置の第1の実施例を
示す模式図、第2図は本発明による半導体発光装置の第
2の実施例を示す模式図、第3図は本発明による半導体
発光装置の第3の実施例を示す断面図、第4図は本発明
のシステムの実施例に関する回路の説明図である。 符号の説明 1・・・n基板、2・・・n−多層膜反射鏡、3・・・
n−光ガイド層、4・・・活性層、5・・・p光ガイド
層、6・・・p−多層膜反射鏡、7・・・p−キャップ
層、8・・・p−理込み層、9・・・n−理込み層、1
o・・・拡散領域、11− p ’ili極、12− 
n電極、21−n−基板、22・・・n多層膜反射鏡、
23・・・活性層、24・・・p−多層膜反射鏡、25
・・・p−キャップ層、26・・・拡散領域、27・・
・p?l極、28・・・n電極、29・・・無反射コー
ト膜。31・・・n−基板、32・・・n−多層膜反射
鏡、33・・・n−光ガイド層、34・・・活性層、3
5・・・p−光ガイド層、36・・・P−多層膜反射鏡
、37・・・p−キャップ層、38・・・i−多層膜反
射鏡、39・・・i−理込み暦、40・・・拡散領域、
41・pfr1極、42・・・n電極。51半導体レー
ザ、52・・・マツチング抵抗、53・・・バイアスT
EE、54・定電流源、55−・・パルスパターン発生
器。 第3国
FIG. 1 is a schematic diagram showing a first embodiment of a semiconductor light emitting device according to the present invention, FIG. 2 is a schematic diagram showing a second embodiment of a semiconductor light emitting device according to the present invention, and FIG. 3 is a schematic diagram showing a semiconductor light emitting device according to the present invention. A sectional view showing a third embodiment of the light emitting device, and FIG. 4 is an explanatory diagram of a circuit related to an embodiment of the system of the present invention. Explanation of symbols 1...n substrate, 2...n-multilayer film reflecting mirror, 3...
n-light guide layer, 4... active layer, 5... p-light guide layer, 6... p-multilayer film reflector, 7... p-cap layer, 8... p-rikumo Layer, 9...n-rational layer, 1
o...diffusion region, 11-p'ili pole, 12-
n electrode, 21-n-substrate, 22...n multilayer film reflecting mirror,
23... Active layer, 24... P-multilayer film reflecting mirror, 25
...p-cap layer, 26...diffusion region, 27...
・p? L pole, 28...N electrode, 29...Non-reflective coating film. 31...n-substrate, 32...n-multilayer film reflecting mirror, 33...n-light guide layer, 34...active layer, 3
5...p-light guide layer, 36...P-multilayer film reflector, 37...p-cap layer, 38...i-multilayer film reflector, 39...i-rational calendar , 40...diffusion area,
41・pfr1 pole, 42...n electrode. 51 semiconductor laser, 52... matching resistor, 53... bias T
EE, 54-constant current source, 55--pulse pattern generator. third country

Claims (1)

【特許請求の範囲】 1、所定の半導体基板上に、少なくとも第1半導体層と
該第1半導体層より屈折率の大きな第2半導体層を周期
的に積層してなる第1半導体多層膜と、第3半導体層と
該第3半導体層より屈折率の大きな第4半導体層を周期
的に積層してなる第2半導体多層膜、および上記第1半
導体多層膜と第2半導体多層膜の間に設けられ上記第1
、第2、第3、第4半導体層より屈折率が大きくかつ禁
制帯幅の小さい第5半導体層から成り、膜厚方向と垂直
な一方向において、該第5半導体層の2つの面が平行に
向い合い、その面間の距離が、該第5半導体層の膜厚よ
りも大きいことを特徴とする半導体発光装置。 2、特許請求の範囲第1項記載の半導体発光装置におい
て、前記第1、第2、第3、第4半導体層のそれぞれの
厚さが、半導体内での発光中心波長の4分の1程度であ
ることを特徴とする半導体発光装置。 3、特許請求の範囲第1項または第2項記載の半導体発
光装置において、前記半導体基板、前記第1及び第2半
導体層が第1導電型であり、前記第3及び第4半導体層
が第2導電型であることを特徴とする半導体発光装置。
[Claims] 1. A first semiconductor multilayer film formed by periodically laminating at least a first semiconductor layer and a second semiconductor layer having a higher refractive index than the first semiconductor layer on a predetermined semiconductor substrate; a second semiconductor multilayer film formed by periodically laminating a third semiconductor layer and a fourth semiconductor layer having a higher refractive index than the third semiconductor layer; and a second semiconductor multilayer film provided between the first semiconductor multilayer film and the second semiconductor multilayer film. 1st above
, a fifth semiconductor layer having a larger refractive index and a smaller forbidden band width than the second, third, and fourth semiconductor layers, and two planes of the fifth semiconductor layer are parallel in one direction perpendicular to the film thickness direction. A semiconductor light emitting device characterized in that the distance between the surfaces facing each other is greater than the thickness of the fifth semiconductor layer. 2. In the semiconductor light emitting device according to claim 1, each of the first, second, third, and fourth semiconductor layers has a thickness of approximately one-fourth of the emission center wavelength within the semiconductor. A semiconductor light emitting device characterized by: 3. In the semiconductor light emitting device according to claim 1 or 2, the semiconductor substrate, the first and second semiconductor layers are of a first conductivity type, and the third and fourth semiconductor layers are of a first conductivity type. A semiconductor light emitting device characterized by being of two conductivity types.
JP63323299A 1988-12-23 1988-12-23 Semiconductor light-emitting device Pending JPH02170486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63323299A JPH02170486A (en) 1988-12-23 1988-12-23 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63323299A JPH02170486A (en) 1988-12-23 1988-12-23 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPH02170486A true JPH02170486A (en) 1990-07-02

Family

ID=18153233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63323299A Pending JPH02170486A (en) 1988-12-23 1988-12-23 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPH02170486A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
US5260589A (en) * 1990-11-02 1993-11-09 Norikatsu Yamauchi Semiconductor device having reflecting layers made of varying unit semiconductors
US5264715A (en) * 1992-07-06 1993-11-23 Honeywell Inc. Emitting with structures located at positions which prevent certain disadvantageous modes and enhance generation of light in advantageous modes
WO1996002949A1 (en) * 1994-07-15 1996-02-01 The Whitaker Corporation Semi-insulating surface light emitting devices
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
US5789772A (en) * 1994-07-15 1998-08-04 The Whitaker Corporation Semi-insulating surface light emitting devices
JPH10229243A (en) * 1997-02-18 1998-08-25 Hitachi Ltd Organic light emitting element
WO2001022545A1 (en) * 1999-09-22 2001-03-29 Mitsubishi Chemical Corporation Luminous element and luminous element module
JP2008235691A (en) * 2007-03-22 2008-10-02 Anritsu Corp Semiconductor light emitting element
JP2013005115A (en) * 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5260589A (en) * 1990-11-02 1993-11-09 Norikatsu Yamauchi Semiconductor device having reflecting layers made of varying unit semiconductors
US5264715A (en) * 1992-07-06 1993-11-23 Honeywell Inc. Emitting with structures located at positions which prevent certain disadvantageous modes and enhance generation of light in advantageous modes
US5244749A (en) * 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
WO1996002949A1 (en) * 1994-07-15 1996-02-01 The Whitaker Corporation Semi-insulating surface light emitting devices
US5789772A (en) * 1994-07-15 1998-08-04 The Whitaker Corporation Semi-insulating surface light emitting devices
JPH10229243A (en) * 1997-02-18 1998-08-25 Hitachi Ltd Organic light emitting element
WO2001022545A1 (en) * 1999-09-22 2001-03-29 Mitsubishi Chemical Corporation Luminous element and luminous element module
EP1146615A1 (en) * 1999-09-22 2001-10-17 Mitsubishi Chemical Corporation Luminous element and luminous element module
EP1146615A4 (en) * 1999-09-22 2005-10-19 Mitsubishi Chem Corp Luminous element and luminous element module
US7102174B2 (en) 1999-09-22 2006-09-05 Mitsubishi Chemical Corporation Light emitting device and light emitting device module
US7164157B2 (en) 1999-09-22 2007-01-16 Mitsubishi Chemical Corporation Light emitting device and light emitting device module
JP2008235691A (en) * 2007-03-22 2008-10-02 Anritsu Corp Semiconductor light emitting element
JP2013005115A (en) * 2011-06-14 2013-01-07 Rohm Co Ltd Radio transmission apparatus

Similar Documents

Publication Publication Date Title
JPH02170486A (en) Semiconductor light-emitting device
US5574304A (en) Superluminescent diode with offset current injection regions
JPH0194689A (en) Optoelectronic semiconductor element
US4636821A (en) Surface-emitting semiconductor elements
JPH04144183A (en) Surface light emitting type semiconductor laser
US20090268770A1 (en) Gain Clamped Optical Device For Emitting LED Mode Light
JPH05167197A (en) Optical semiconductor device
JP2009503887A (en) Injection laser
JPS59152683A (en) Surface light emitting semiconductor laser
JPH05259508A (en) Light emitting element
JP2834757B2 (en) Light emitting device and method of manufacturing the same
JPS6342867B2 (en)
JP2655411B2 (en) Edge-emitting semiconductor light emitting device
JP3408247B2 (en) Semiconductor laser device
JPS59125684A (en) Buried type semiconductor laser
JP2726601B2 (en) Super luminescent diode and method for producing the same
JPH0325037B2 (en)
JPH0433386A (en) End surface emitting type semiconductor light emitting element and driving method therefor
JPS63128777A (en) Semiconductor light-emitting diode
JP2574670B2 (en) Surface emitting laser
JP3060511B2 (en) Semiconductor laser
JPS5923585A (en) Semiconductor laser element
JPH0697494A (en) Super luminescent diode and its production
JPH01185979A (en) Semiconductor light emitting diode
JPH05335687A (en) Semiconductor laser element