JPH0194689A - Optoelectronic semiconductor element - Google Patents

Optoelectronic semiconductor element

Info

Publication number
JPH0194689A
JPH0194689A JP62252194A JP25219487A JPH0194689A JP H0194689 A JPH0194689 A JP H0194689A JP 62252194 A JP62252194 A JP 62252194A JP 25219487 A JP25219487 A JP 25219487A JP H0194689 A JPH0194689 A JP H0194689A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
semiconductor
type
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62252194A
Other languages
Japanese (ja)
Other versions
JPH0793473B2 (en
Inventor
Akihiko Kasukawa
秋彦 粕川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62252194A priority Critical patent/JPH0793473B2/en
Publication of JPH0194689A publication Critical patent/JPH0194689A/en
Publication of JPH0793473B2 publication Critical patent/JPH0793473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18302Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] comprising an integrated optical modulator

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor with small chirping at high speed modulation while maintaining a single mode property by forming a light modulator with a certain constitution on a plane-emitted type laser element having a reflecting layer of multistructure consisting of heterojunction semiconductor thin films while interposing a semiconductor insulating layer which transmits laser beams, or like means. CONSTITUTION:A surface emitted type laser element is provided by sequentially arranging a first conductivity type reflecting layer 13 of multistructure consisting of heterojunction semiconductor thin films; an activated layer 14; and a second conductivity type reflecting layer of multistructure consisting of heterojunction semiconductor thin films, on a first conductivity type semiconductor substrate 11. Further, a light modulator is provided by sequentially arranging a semiconductor insulating layer 19 which transmits a laser beam coming from said activated layer 14; a first conductivity or second conductivity type semiconductor layer 20; an activated layer 21 whose light emitting wavelength is equal to or shorter than that of said activated layer 14; and a second conductivity or first conductivity type semiconductor layer 22, on said second conductivity type reflecting layer 15. Said plane-emitted type laser element and light modulator are driven independently. For example, the activated layer 21 is a quantum well activated layer consisting of an InP layer and a GaInAsP layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光変調器イ]面発光型半導体レーザ素子に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical modulator (a) and a surface-emitting semiconductor laser device.

〔従来の技術〕[Conventional technology]

面発光型半導体レーザ素子は、レーザ光の出射方向が基
板に垂直であるため、へき開面による共振器の形成が不
要であり、従って、多機能集積化が求められる光電子集
積回路(OEIC)用の半導体レーザ素子として存望視
されている。このような特徴を有する面発光型半導体レ
ーザ素子の構造は、例えば第2図に示されるように、n
型InP基板(1)上に、n型1nPバフ77層(2)
、n型InP[とn型Ga1nAsP層から成る半導体
多層膜による反射鏡(3)、ノンドープGa I nA
s P活性層(4)、p型InP層とp型Ga1nAs
P層から成る半導体多層膜による反射鏡(5)、p型G
aT nAs Pコンタクト層(6)を順次形成し、最
後に電極(6)、(7)を上下に付けたものである。レ
ーザ共振器長から決まる縦モード間隔は共振器長に反比
例する。従って、本構造では共振器長が約10−と短い
ため、縦モード間隔は約200人となり、通常のファプ
リー・ベロー型半導体レーザ素子(共振器長的300−
)の30倍程度に拡がり、安定な単一モード発振が得ら
れる。
Since the emission direction of the laser beam is perpendicular to the substrate, surface-emitting semiconductor laser devices do not require the formation of a resonator using a cleavage plane, and are therefore suitable for optoelectronic integrated circuits (OEICs) that require multifunctional integration. It is considered to be a viable semiconductor laser device. The structure of a surface-emitting semiconductor laser device having such characteristics is, for example, as shown in FIG.
N-type 1nP buff 77 layer (2) on type InP substrate (1)
, a reflecting mirror made of a semiconductor multilayer film consisting of n-type InP and n-type Ga1nAsP layers (3), non-doped GaInA
s P active layer (4), p-type InP layer and p-type Ga1nAs
Reflector (5) made of semiconductor multilayer film consisting of P layer, p-type G
An aT nAs P contact layer (6) is sequentially formed, and finally electrodes (6) and (7) are attached above and below. The longitudinal mode spacing determined from the laser cavity length is inversely proportional to the cavity length. Therefore, in this structure, the resonator length is as short as about 10 -, so the longitudinal mode spacing is about 200.
), and stable single mode oscillation can be obtained.

〔発明が解決しようとする問題点] 面発光型半導体レーザ素子の光出力は、高速変調におい
て、安定した単一モード発振である。しかしながら、注
入キャリア密度が増加すると、プラズマ効果によりレー
ザ媒質の屈折率が減少し、発振波長は短波長側にずれる
。このように、半導体レーザ素子に直接変調を行うと、
発振波長が時間的に変化するという、いわゆるチャーピ
ング現象が生じる問題がある。
[Problems to be Solved by the Invention] The optical output of a surface-emitting semiconductor laser element is stable single mode oscillation during high-speed modulation. However, when the injected carrier density increases, the refractive index of the laser medium decreases due to the plasma effect, and the oscillation wavelength shifts to the shorter wavelength side. In this way, when directly modulating the semiconductor laser element,
There is a problem that a so-called chirping phenomenon occurs in which the oscillation wavelength changes over time.

本発明は以上のような点にかんがみてなされたもので、
その目的とするところは、単一モード性を維持しつつ、
高速変調時にもチャーピングの小さな光半導体素子を提
供することにある。
The present invention has been made in view of the above points.
The aim is to maintain unimodal nature while
An object of the present invention is to provide an optical semiconductor element that exhibits small chirping even during high-speed modulation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明によれば、第1の導電
型半導体基板上にヘテロ半導体薄膜の多層構造をもつ第
1の導電型反射層、活性層、ヘテロ半導体薄膜の多層構
造をもつ第2の導電型反射層を順次形成して構成されて
いる面発光型レーザ素子部と、前記第2の導電型反射層
上に、前記活性層よりのレーザ光を透過する半導体絶縁
層、第1導電型或いは第2導電型半導体層、発光波長が
前記活性層と同じか、或いはより短い活性層、第2導電
型或いは第り導電型半導体層を順次形成して構成されて
いる光変調器とを有し、面発光型レーザ素子部と光変調
器部を独立に駆動することを特徴とする光半導体素子が
提供される。
In order to achieve the above object, the present invention provides a first conductivity type reflective layer having a multilayer structure of hetero semiconductor thin films on a first conductivity type semiconductor substrate, an active layer, and a first conductivity type reflective layer having a multilayer structure of hetero semiconductor thin films. a surface-emitting laser element section configured by sequentially forming two conductive type reflective layers; a semiconductor insulating layer that transmits laser light from the active layer on the second conductive type reflective layer; An optical modulator configured by sequentially forming a semiconductor layer of a conductive type or a second conductive type, an active layer whose emission wavelength is the same as or shorter than that of the active layer, and a semiconductor layer of a second conductive type or a second conductive type. Provided is an optical semiconductor device having a surface-emitting laser element section and an optical modulator section that are independently driven.

ところで、pn接合部の空乏層に高い電界がかかるとフ
ランツ・ケルデイツシュ効果といわれる高電界によるバ
ンド・ギャップの縮少現象が生じ、光吸収係数が光の長
波長側にすそを引く。そのため、高電界を接合部に印加
すると、光は長波長側で透過しにくくなる。
By the way, when a high electric field is applied to the depletion layer of the pn junction, a phenomenon called the Franz-Kjelditzsch effect, which reduces the band gap due to the high electric field, occurs, and the optical absorption coefficient shifts toward the longer wavelength side of light. Therefore, when a high electric field is applied to the junction, it becomes difficult for light to pass through at longer wavelengths.

本構造の光半導体素子では、面発光型レーザ素子部を直
流電流で駆動して連続発振させ、それとは独立に光変調
器部に電圧を印加し、その電圧を変化させることにより
、レーザ光に対する吸収係数を変化させ、レーザ光を変
調する。その結果、レーザ光は直流電流で駆動されるた
め、その波長は安定しチャーピングを生ずることもない
In the optical semiconductor device with this structure, the surface-emitting laser element section is driven with a direct current to cause continuous oscillation, and independently of this, a voltage is applied to the optical modulator section and the voltage is changed. Modulates laser light by changing the absorption coefficient. As a result, since the laser light is driven by direct current, its wavelength is stable and chirping does not occur.

〔実施例〕〔Example〕

以下図面に示した実施例に基づいて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明にかかる光半導体素子の一実施例の要部
断面図である。n型InP基板00上に、n型1nPバ
ッファ層02)、n型1nP層とn型GaInAsP層
とからなる半導体多層膜0■による反射鏡、ノンドープ
Ga1nAsP活性層04)、p型1nP層とp型Ga
1nAsPとからなる半導体多層膜05)による反射鏡
、p型Ga1nAsPコンタクト層0θを順次形成する
。直流電流を電極0η、00間に流すことにより波長1
.3−の連続したレーザ光を得ることができる。さらに
、前記Ga1nAsPコンタクト層00上に、素子分離
のためのInP絶縁層09)を介して、n型1nP層e
l、ノンドープInP層とノンドープGa1nAsPと
からなる量子井戸活性層(21)、p型1nP層(22
)、p型Ga1nAsPコンタクトJ!i (23)を
順次形成する。量子井戸構造をもつ活性層では、レーザ
発振が生じる波長位置の吸収係数はきわめて低い。しか
しながら、電極(23)、(24)間に電圧を印加する
と、エネルギーギャップ縮少効果により、量子井戸活性
層の光吸収係数は光の長波長側にすそを引き、活性層0
4からのレーザ光の透過率は低くなる。従って、電極(
23)、(24)間の印加電圧を変調させることにより
、出力光を変調することができる。本実施例に示す構造
の素子は、膜厚の制御性がよく、極薄膜の成長が可能で
ある有機金属気相成長(MOCVD)法により作製する
ことができる。
FIG. 1 is a sectional view of a main part of an embodiment of an optical semiconductor device according to the present invention. On an n-type InP substrate 00, an n-type 1nP buffer layer 02), a reflector made of a semiconductor multilayer film 0■ consisting of an n-type 1nP layer and an n-type GaInAsP layer, a non-doped Ga1nAsP active layer 04), a p-type 1nP layer and a Type Ga
A reflecting mirror made of a semiconductor multilayer film 05) made of 1nAsP and a p-type Ga1nAsP contact layer 0θ are successively formed. By passing a direct current between electrodes 0η and 00, wavelength 1
.. 3- consecutive laser beams can be obtained. Furthermore, an n-type 1nP layer e is formed on the Ga1nAsP contact layer 00 via an InP insulating layer 09 for device isolation.
l, a quantum well active layer (21) consisting of a non-doped InP layer and a non-doped Ga1nAsP, and a p-type 1nP layer (22).
), p-type Ga1nAsP contact J! i (23) are formed in sequence. In an active layer with a quantum well structure, the absorption coefficient at the wavelength position where laser oscillation occurs is extremely low. However, when a voltage is applied between the electrodes (23) and (24), due to the energy gap reduction effect, the light absorption coefficient of the quantum well active layer is shifted toward the long wavelength side of the light, and the active layer 0
The transmittance of the laser beam from 4 becomes low. Therefore, the electrode (
By modulating the applied voltage between 23) and (24), the output light can be modulated. The element having the structure shown in this example can be manufactured by metal organic chemical vapor deposition (MOCVD), which has good controllability of film thickness and allows the growth of extremely thin films.

なお、本実施例の発振波長は1.3−であるが、活性層
の材質を変えることにより1.1〜1.6−の所望の波
長を得ることができる。また、構造を埋め込み型にする
ことにより闇値電流を低くすることができる。
Although the oscillation wavelength in this embodiment is 1.3-, a desired wavelength of 1.1-1.6- can be obtained by changing the material of the active layer. Further, by making the structure a buried type, the dark value current can be lowered.

〔発明の効果〕〔Effect of the invention〕

以上説明しなように本発明によれば、面発光型半導体レ
ーザ素子部と光変調器部が分離されているため、レーザ
媒介部分の屈折率の変化はほとんどなく、高速変調時に
おいても波長のチャーピングを直接変調時に比べ小さく
することができ、しかも面発光型であるため安定な単一
波長動作が得られるという優れた効果がある。
As described above, according to the present invention, since the surface-emitting semiconductor laser element section and the optical modulator section are separated, there is almost no change in the refractive index of the laser mediating section, and even during high-speed modulation, the wavelength Chirping can be reduced compared to direct modulation, and since it is a surface-emitting type, stable single-wavelength operation can be obtained, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる光半導体素子の要部断面図、第
2図は従来の面発光型半導体レーザ素子の要部断面図で
ある。 1.11−・・n型1nP基板、 2.12−n型In
Pバッフ’y N、  3 、13・・・n型rnP層
とn型Ga1nAsP層からなる半導体多層膜、 4.
14・・・ノンドープGa1nAsP活性層、  5.
15・・・p型1nP層とp型Ga1nAsP層からな
る半導体多層膜、 、6 、16・P型CralnAs
P:Iンタクト層、 7. 8.17.18.24.2
5・・・電極、19−1 n P絶縁層、 20・・・
n型InP層、 21−・・ノンドープInP層とノン
ドープGa1nAsP層とからなる量子井戸活性層、 
22・・・p型rnP層、 23・・・p型GaTnA
sPコンタクト層。 特許出願人   古河電気工業株式会社第1図 第2図
FIG. 1 is a sectional view of a main part of an optical semiconductor device according to the present invention, and FIG. 2 is a sectional view of a main part of a conventional surface-emitting semiconductor laser device. 1.11-...n-type 1nP substrate, 2.12-n-type In
P buffer'y N, 3, 13...Semiconductor multilayer film consisting of an n-type rnP layer and an n-type Ga1nAsP layer, 4.
14... Non-doped Ga1nAsP active layer, 5.
15... Semiconductor multilayer film consisting of a p-type 1nP layer and a p-type Ga1nAsP layer, , 6, 16. P-type CralnAs
P:I contact layer, 7. 8.17.18.24.2
5... Electrode, 19-1 nP insulating layer, 20...
n-type InP layer, 21-... quantum well active layer consisting of a non-doped InP layer and a non-doped Ga1nAsP layer;
22... p-type rnP layer, 23... p-type GaTnA
sP contact layer. Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型半導体基板上に、ヘテロ半導体薄膜の多層
構造をもつ第1の導電型反射層、活性層、ヘテロ半導体
薄膜の多層構造をもつ第2の導電型反射層を順次形成し
て構成されている面発光型レーザ素子部と、前記第2の
導電型反射層上に、前記活性層よりのレーザ光を透過す
る半導体絶縁層、第1導電型或いは第2導電型半導体層
、発光波長が前記活性層と同じか、あるいはより短い活
性層、第2導電型或いは第1導電型半導体層を順次形成
して構成されている光変調器とを有し、面発光型レーザ
素子部と光変調器部を独立に駆動することを特徴とする
光半導体素子。
A first conductivity type reflective layer having a multilayer structure of a hetero semiconductor thin film, an active layer, and a second conductivity type reflection layer having a multilayer structure of a hetero semiconductor thin film are sequentially formed on a first conductivity type semiconductor substrate. a surface-emitting laser element section, a semiconductor insulating layer that transmits laser light from the active layer, a semiconductor layer of a first conductivity type or a second conductivity type, and a semiconductor layer of a first conductivity type or a second conductivity type, on the second conductivity type reflective layer; has an optical modulator configured by sequentially forming an active layer that is the same as or shorter than the active layer, and a semiconductor layer of a second conductivity type or a first conductivity type; An optical semiconductor device characterized by independently driving a modulator section.
JP62252194A 1987-10-06 1987-10-06 Optical semiconductor device Expired - Fee Related JPH0793473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252194A JPH0793473B2 (en) 1987-10-06 1987-10-06 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252194A JPH0793473B2 (en) 1987-10-06 1987-10-06 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH0194689A true JPH0194689A (en) 1989-04-13
JPH0793473B2 JPH0793473B2 (en) 1995-10-09

Family

ID=17233811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252194A Expired - Fee Related JPH0793473B2 (en) 1987-10-06 1987-10-06 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH0793473B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999843A (en) * 1990-01-09 1991-03-12 At&T Bell Laboratories Vertical semiconductor laser with lateral electrode contact
US5012486A (en) * 1990-04-06 1991-04-30 At&T Bell Laboratories Vertical cavity semiconductor laser with lattice-mismatched mirror stack
EP0473983A2 (en) * 1990-08-14 1992-03-11 Canon Kabushiki Kaisha Light emitting device utilizing cavity quantum electrodynamics
EP0483868A2 (en) * 1990-11-02 1992-05-06 Norikatsu Yamauchi Semiconductor device having reflecting layer
JPH04233293A (en) * 1990-07-05 1992-08-21 American Teleph & Telegr Co <Att> Semiconductor laser
US5289489A (en) * 1991-02-28 1994-02-22 Canon Kabushiki Kaisha All-optical light modulating apparatus and all-optical process for modulating light
US5289018A (en) * 1990-08-14 1994-02-22 Canon Kabushiki Kaisha Light emitting device utilizing cavity quantum electrodynamics
EP0618651A2 (en) * 1993-03-31 1994-10-05 Fujitsu Limited Surface emitting laser provided with light modulator
JPH0964334A (en) * 1995-08-28 1997-03-07 Toshiba Corp Integrated element of light emitting element and external modulator
US5940422A (en) * 1996-06-28 1999-08-17 Honeywell Inc. Laser with an improved mode control
WO2003058327A1 (en) * 2002-01-07 2003-07-17 Matsushita Electric Industrial Co., Ltd. Surface type optical modulator and its manufacturing method
WO2005093918A1 (en) * 2004-03-26 2005-10-06 Nec Corporation Surface emitting laser
EP3163691A1 (en) * 2015-10-27 2017-05-03 Seiko Epson Corporation Light source and atomic oscillator
JP2017084935A (en) * 2015-10-27 2017-05-18 セイコーエプソン株式会社 Atomic oscillator

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999843A (en) * 1990-01-09 1991-03-12 At&T Bell Laboratories Vertical semiconductor laser with lateral electrode contact
US5012486A (en) * 1990-04-06 1991-04-30 At&T Bell Laboratories Vertical cavity semiconductor laser with lattice-mismatched mirror stack
JPH04233293A (en) * 1990-07-05 1992-08-21 American Teleph & Telegr Co <Att> Semiconductor laser
EP0473983A2 (en) * 1990-08-14 1992-03-11 Canon Kabushiki Kaisha Light emitting device utilizing cavity quantum electrodynamics
US5289018A (en) * 1990-08-14 1994-02-22 Canon Kabushiki Kaisha Light emitting device utilizing cavity quantum electrodynamics
EP0724300A2 (en) * 1990-11-02 1996-07-31 Norikatsu Yamauchi Semiconductor device having reflecting layer
EP0483868A2 (en) * 1990-11-02 1992-05-06 Norikatsu Yamauchi Semiconductor device having reflecting layer
EP0724300A3 (en) * 1990-11-02 1996-12-27 Norikatsu Yamauchi Semiconductor device having reflecting layer
US5289489A (en) * 1991-02-28 1994-02-22 Canon Kabushiki Kaisha All-optical light modulating apparatus and all-optical process for modulating light
US5408486A (en) * 1993-03-31 1995-04-18 Fujitsu Limited Surface emitting laser provided with light modulator
EP0618651A3 (en) * 1993-03-31 1994-12-21 Fujitsu Ltd Surface emitting laser provided with light modulator.
EP0618651A2 (en) * 1993-03-31 1994-10-05 Fujitsu Limited Surface emitting laser provided with light modulator
JPH0964334A (en) * 1995-08-28 1997-03-07 Toshiba Corp Integrated element of light emitting element and external modulator
US5940422A (en) * 1996-06-28 1999-08-17 Honeywell Inc. Laser with an improved mode control
WO2003058327A1 (en) * 2002-01-07 2003-07-17 Matsushita Electric Industrial Co., Ltd. Surface type optical modulator and its manufacturing method
US6778308B2 (en) 2002-01-07 2004-08-17 Matsushita Electric Industrial Co., Ltd. Process of fabricating semiconductor light emitting device
US6917457B2 (en) 2002-01-07 2005-07-12 Matsushita Electric Industrial Co., Ltd. Process of fabricating semiconductor light emitting device
WO2005093918A1 (en) * 2004-03-26 2005-10-06 Nec Corporation Surface emitting laser
EP3163691A1 (en) * 2015-10-27 2017-05-03 Seiko Epson Corporation Light source and atomic oscillator
JP2017084935A (en) * 2015-10-27 2017-05-18 セイコーエプソン株式会社 Atomic oscillator

Also Published As

Publication number Publication date
JPH0793473B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US4803692A (en) Semiconductor laser devices
JPH0256837B2 (en)
JPH07105571B2 (en) Individually addressable laser diode array
JPH0194689A (en) Optoelectronic semiconductor element
JP2587628B2 (en) Semiconductor integrated light emitting device
JPS62189785A (en) Semiconductor device with distributed bragg reflector
JPS6412114B2 (en)
JPH0732279B2 (en) Semiconductor light emitting element
US4636821A (en) Surface-emitting semiconductor elements
JPH01319986A (en) Semiconductor laser device
JPS6140159B2 (en)
JP4411938B2 (en) Modulator integrated semiconductor laser, optical modulation system, and optical modulation method
US5828085A (en) Light emitting diode having light-emitting and light-absorbing regions
JP3264179B2 (en) Semiconductor light emitting device and method of manufacturing the same
KR20040034351A (en) Semiconductor laser and element for optical communication
JP2508332B2 (en) Integrated optical modulator
JPS6218782A (en) Semiconductor laser of buried structure
JPH0671121B2 (en) Semiconductor laser device
JPS59184585A (en) Semiconductor laser of single axial mode
US6008066A (en) Method of manufacturing a light emitting diode to vary band gap energy of active layer
JPS621277B2 (en)
JPH0656907B2 (en) Method for manufacturing semiconductor light emitting device
JPH03192788A (en) Integrated optical modulator
JP3045098B2 (en) Tunable laser diode
JP2924433B2 (en) Semiconductor laser and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees