JPH0216931B2 - - Google Patents

Info

Publication number
JPH0216931B2
JPH0216931B2 JP16208783A JP16208783A JPH0216931B2 JP H0216931 B2 JPH0216931 B2 JP H0216931B2 JP 16208783 A JP16208783 A JP 16208783A JP 16208783 A JP16208783 A JP 16208783A JP H0216931 B2 JPH0216931 B2 JP H0216931B2
Authority
JP
Japan
Prior art keywords
weight
pentene
methyl
graft
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16208783A
Other languages
Japanese (ja)
Other versions
JPS6053549A (en
Inventor
Koji Niimi
Hiroshi Kiga
Shunji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP16208783A priority Critical patent/JPS6053549A/en
Publication of JPS6053549A publication Critical patent/JPS6053549A/en
Publication of JPH0216931B2 publication Critical patent/JPH0216931B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明は無機繊維匷化ポリ−メチル−−ペ
ンテン組成物に関する。曎に詳しくは、䞍飜和カ
ルボン酞たたはその誘導䜓グラフト倉性ポリ−
メチル−−ペンテン及びナむロン66を含む耐熱
性及び機械的匷床に優れた無機繊維匷化ポリ−
メチル−−ペンテン組成物に関する。 ポリオレフむンにガラス繊維等の補匷材を添加
しお、ポリオレフむンの匕匵匷床、曲げ匷床、衝
撃匷床等の機械的性質や耐熱性を改善するこずは
知られおいる。しかしながらポリオレフむンにガ
ラス繊維を単に混和させただけでは、ポリオレフ
むンずガラス繊維ずは結合力がないのでポリオレ
フむンの機械的性質や耐熱性の改良効果には自ず
ず限界があり、分子内に極性基を有する䞍飜和ポ
リ゚ステルが゚ポキシ暹脂の改良効果には及ばな
い。 䞀方、ポリオレフむンずガラス繊維ずの結合力
を改良する方法も数倚く提案されおいる。䟋えば
マレむン酞たたは無氎マレむン酞ず、ポリオレフ
むンずアミノシラン系化合物で衚面凊理したガラ
ス繊維ずを有機過酞化物の存圚䞋でポリオレフむ
ンの融点以䞊の枩床で反応させる方法特公昭49
−41096号公報、ポリオレフむンず芳銙族カルボ
ン酞無氎物単䜍を有する倉性ポリオレフむンずア
ミノシラン系化合物で衚面凊理したガラス繊維ず
からなる組成物特公昭52−31895号公報、ポリ
オレフむンず無氎マレむン酞ずを有機過酞化物の
存圚䞋窒玠雰囲気䞋に溶融混緎するこずによ぀お
埗た倉性ポリオレフむンずガラス系補匷材、或は
これらず未倉性ポリオレフむンずからなる組成物
の補法特公昭51−10265号公報等が提案され
おおり、それなりに効果を䞊げおいる。 しかしながら最近では、曎に耐熱性に優れ、し
かも機械的匷床、成圢性をも優えた熱可塑性暹
脂、所謂゚ンゞニアリングプラスチツクスぞの芁
求が高た぀おおり、前述の倉性ポリオレフむンず
ガラス繊維ずからなる組成物ではいずれも耐熱性
及び機械的匷床が䞍充分であり、曎に改良するこ
ずが望たれおいる。その改良方法の䞀぀ずしお、
特公昭56−9943号公報に(A)䞍飜和カルボン酞付加
ポリオレフむン暹脂たたはポリオレフむン暹脂で
垌釈された䞍飜和カルボン酞付加ポリオレフむン
暹脂、(B)含窒玠暹脂および(C)充填剀よりなるポリ
オレフむン暹脂組成物が提案され、含窒玠暹脂を
混合するこずにより、機械的匷床、耐熱性、塗装
性等にすぐれた組成物が埗られるずされおいる。
しかしながらポリオレフむンの䞭でもずくに耐熱
性に優れるポリ−メチル−−ペンテンに該公
報に具䜓的に蚘茉されおいるABSやナむロン
を添加しおも、耐熱性は党く改善されず、ABS
等を混合するず、むしろ耐熱性が䜎䞋するこずが
分か぀た。 かかる状況に鑑み、本発明者らは、耐熱性、機
械的匷床が改善された無機繊維匷化ポリ−メチ
ル−−ペンテン組成物を埗るべく、皮々怜蚎し
た結果、本発明に到達した。 すなわち本発明は、ポリ−メチル−−ペン
テン(A)10ないし90重量、䞍飜和カルボン酞た
たはその誘導䜓成分単䜍のグラフト量が0.5ない
し15重量グラフト倉性物に察しお及び極限
粘床〔η〕が0.3ないし10dlの範囲のグラフ
ト倉性ポリ−メチル−−ペンテン(B)0.1な
いし40重量、ナむロン66ないし85重量、
及び無機繊維(C)ないし80重量ずからなるこ
ずを特城ずする耐熱性、機械的匷床に優れた無機
繊維匷化ポリ−メチル−−ペンテン組成物を
提䟛するものである。 本発明に甚いるポリ−メチル−−ペンテン
(A)ずは−メチル−−ペンテンの単独重合䜓も
しくは−メチル−−ペンテンず他のα−オレ
フむン、䟋えば゚チレン、プロピレン、−ブテ
ン、−ヘキセン、−オクテン、−デセン、
−テトラデセン、−オクタデセン等の炭玠数
ないし20のα−オレフむンずの共重合䜓で通垞
−メチル−−ペンテンを85モル以䞊、奜た
しくは91モル以䞊含む−メチル−−ペンテ
ンを䞻䜓ずした重合䜓である。ポリ−メチル−
−ペンテン(A)のメルトフロヌレヌト荷重
Kg、枩床260℃は奜たしくはないし500
10min、そくに奜たしくは25ないし15010min
の範囲のものである。メルトフロヌレヌトが
10min未満のものは溶融粘床が高く成圢性に
劣り、メルトフロヌレヌトが50010minを越
えるものは溶融粘床床が䜎く成圢型に劣り、たた
機械的匷床も䜎い。 䞍飜和カルボン酞たたはその誘導䜓をグラフト
するポリ−メチル−−ペンテンは前述のポリ
−メチル−−ペンテン(A)ず同じ範疇のもので
あるが、奜たしくはデカリン溶媒䞭で135℃で枬
定した極限粘床〔η〕が0.5ないし25dlの範
囲のものである。〔η〕が䞊蚘範囲倖のものでは
グラフト倉性した埌の極限粘床が0.3ないし10
dlの範囲内のものが埗られ難い。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)は、前蚘ポリ−メチル−−ペ
ンテンに䞍飜和カルボン酞たたはその誘導䜓をグ
ラフト共重合したものであり、その基䜓構造は実
質䞊線状であり、䞉次元架橋構造を有しないこず
を意味し、このこずは有機溶媒たずえば−キシ
レンに溶解し、ゲル状物が存圚しないこずによ぀
お確認するこずができる。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)ずは、䞍飜和カルボン酞たたはそ
の誘導䜓成分単䜍のグラフト量が0.5ないし15重
量、奜たしくはないし10重量の範囲及び極
限粘床〔η〕デカリン溶媒135℃䞭で枬定した
倀が0.3ないし10dl、奜たしくは0.5ないし
dlの範囲である。グラフト量が0.5重量
未満のものを本発明の組成物に甚いおも熱倉性枩
床、匕匵匷床、曲げ匷床、衝撃匷床等の改善効果
が充分でなく、䞀方15重量を越えるものは、組
成物の耐氎性が劣るようになる。 グラフト倉性ポリ−メチル−−ペンテン(B)
の〔η〕が0.3dl未満のものを本発明の組成
物に甚いおも、熱倉圢枩床、匕匵匷床、曲げ匷
床、衝撃匷床等の改善効果が充分でなく、䞀方、
10dlを越えるものは、溶融粘床が倧きすぎお
ガラス繊維ずのぬれが劣るため、組成物の機械的
物性の改善効果が充分ずはならない。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)は前蚘範囲のものであれば本発明
の目的を達成できるが、以䞋の特性を有するもの
を甚いるこずにより、曎に耐熱性、機械的匷床が
改善された組成物を埗るこずができる。すなわち
奜たしくは分子量分垃がないし
、融点が170ないし245℃、結晶化床がないし
45、及びDSCパラメヌタヌが4.0以䞋の範囲の
特性を有するグラフト倉性ポリ−メチル−−
ペンテン(B)である。 グラフト倉性ポリ−メチル−−ペンテン(B)
の重量平均分子量数平均分子量で衚わした分子
量分垃はゲルパヌミ゚ヌシペンク
ロマトグラフむヌGPCにより枬定される。
GPCによる分子量分垃の枬定は次の方法に埓぀
お実斜した。すなわち、溶媒ずしお−ゞクロロ
ベンれンを甚い、溶媒100重量郚に察し、ポリマ
ヌ0.04安定剀ずしお−ゞ−tert−ブチ
ル−−クレゟヌルをポリマヌ100重量郚に察し
0.05重量郚添加を加え、溶液ずしたあず、1Όの
フむルタヌを通しおゎミなどの䞍溶物を陀去す
る。その埌、カラム枩床135℃、流速1.0ml分に
蚭定したGPC枬定装眮を甚いお枬定し、数倀比
はポリスチレンベヌスで換算した。 グラフト倉性ポリ−メチル−−ペンテン(B)
の融点は瀺差走査型熱量蚈DSCによ぀お枬
定した倀である。なお、ここで融点は次のように
しお枬定される。すなわち詊料を瀺差走査型熱量
蚈do Pout990型に仕蟌み、宀枩から20℃
minの速床で昇枩し、250℃に達した所で20℃
minの速床で降枩しお䞀旊25℃たで䞋げた埌、再
び20℃minの速床で昇枩し、このずきの融解ピ
ヌクから融点を読み取る倚くの堎合、耇数の融
解ピヌクが珟われるので、この堎合は高融点偎の
倀を採甚した。たた結晶化床は次のような方法
によ぀お枬定した。すなわち、前蚘したDSCに
よる融点枬定時のチダヌトを甚い、単䜍量圓りの
枬定詊料の融解面積ず、察照サンプルであ
るむンゞりムの単䜍量圓りの融解゚ネルギヌ
Poに盞圓する蚘録玙䞊の融解面積Soを比
べる。むンゞりムのPoは既知量であり、䞀方ポ
リ−メチル−−ペンテンの結晶郚の単䜍量圓
りの融解゚ネルギヌも䞋蚘のように既知で
あるので、枬定詊料の結晶化床は次匏により求た
る。 結晶化床So×Po×100 ここに、Po27Joulat156±0.5
℃ 141.7Joul〔F.C.Frank、etal、
Philosophical Magazine、、200
1959〕 たた、グラフト倉性ポリ−メチル−−ペン
テン(B)の組成分垃のパラメヌタヌずなるDSCパ
ラメヌタヌは、前蚘したDSCによる枬定詊料の
融解面積を融点即ち最倧ピヌクにおけ
るピヌク高さで陀したものである。埓぀お、
DSCパラメヌタで小さいほどDSC曲線がシダヌ
プで組成分垃が狭いこずが掚定される。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)を構成する䞍飜和カルボン酞たた
はその誘導䜓成分単䜍はアクリル酞、メタクリル
酞、α−メチルアクリル酞、マレむン酞、フマヌ
ル酞、むタコン酞、シトラコン酞、テトラヒドロ
フタル酞、メチルテトラヒドロフタル酞、゚ンド
シス−ビシクロ〔2.2.1〕ヘプト−−−
ゞカルボン酞ナゞツク酞 、メチル−゚ンド
シス−ビシクロ〔2.2.1〕ヘプト−−゚ン−
−ゞカルボン酞メチルナゞツク酞 などの
䞍飜和カルボン酞、該䞍飜和カルボン酞の酞ハラ
むド、アミド、むミド、酞無氎物、゚ステルなど
の䞍飜和カルボン酞の誘導䜓が挙げられ、該誘導
䜓ずしおは具䜓的には、塩化マレニル、マレむミ
ド、無氎マレむン酞、無氎シトラコン酞、マレむ
ン酞モノメチル、マレむン酞ゞメチル、グリシゞ
ルマレ゚ヌトなどが䟋瀺される。これらの䞭で
は、䞍飜和ゞカルボン酞たたはその無氎物が奜適
であり、ずくにマレむン酞、ナゞツク酞 たたは
これらの酞無氎物が奜適である。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)を埗る奜適な方法を以䞋に瀺す。
すなわちポリ−メチル−−ペンテンを溶媒の
存圚䞋に溶液状態で䞍飜和カルボン酞たたはその
誘導䜓ずラゞカル開始剀ずを添加し加熱しおグラ
フ倉性するこずにより行う。ラゞカル開始剀の䜿
甚割合は、ポリ−メチル−−ペンテン100重
量郚に察しお0.1ないし100重量郚、奜たしくは
ないし50重量郚の範囲である。該倉性反応を溶液
状態で実斜する際の溶媒の䜿甚割合は、前蚘−
メチル−−ペンテン重合䜓100重量郚に察しお
通垞100ないし100000重量郚、奜たしくは200ない
し10000重量郚の範囲である。該倉性反応の際の
枩床は通垞100ないし250℃、奜たしくは110ない
し200℃の範囲であり、反応の際の時間は通垞15
ないし600分、奜たしくは30ないし360分の範囲で
ある。倉性反応に䜿甚する溶剀ずしおは、ヘキサ
ン、ヘプタン、オクタン、デカン、ドデカン、テ
トラデカン、灯油のような脂肪族炭化氎玠、メチ
ルシクロペンタン、シクロヘキサン、メチルシク
ロヘキサン、シクロオクタン、シクロドデカンの
ような脂環族炭化氎玠、ベンれン、トル゚ン、キ
シレン、゚チルベンれン、クメン、゚チルトル゚
ン、トリメチルベンれン、シメン、ゞむ゜プロピ
ルベンれンなどの芳銙族炭化氎玠、クロロベンれ
ン、ブロモベンれン、−ゞクロロベンれン、四
塩化炭玠、トリクロロ゚タン、トリクロロ゚チレ
ン、テトラクロロ゚タン、テトラクロロ゚チレン
のようなハロゲン化炭化氎玠などを䟋瀺するこず
ができる。これらの䞭ではずくにアルキル芳銙族
炭化氎玠が奜適である。 前蚘グラフト倉性反応においお䜿甚されるラゞ
カル開始剀ずしお代衚的なものは有機過酞化物で
あり、さらに具䜓的にはアルキルペルオキシド、
アリヌルペルオキシド、アシルペルオキシド、ア
ロむルペルオキシド、ケトンペルオキシド、ペル
オキシカヌボネヌト、ペルオキシカルボキシレヌ
ト、ヒドロペルオキシド等がある。アルキルペル
オキシドずしおはゞむ゜プロピルペルオキシド、
ゞ−tert−ブチルペルオキシド、−ゞメチ
ル−−ゞtert−ブチルペルオキシヘキシン
−など、アリヌルペルオキシドずしおはゞクミ
ルペルオキシドなど、アシルペルオキシドずしお
はゞラりロむルペルオキシドなど、アロむルペル
オキシドずしおはゞベンゟむルペルオキシドな
ど、ケトンペルオキシドずしおはメチル゚チルケ
トンヒドロペルオキシド、シクロヘキサノンペル
オキシドなど、ヒドロペルオキシドずしおはtert
−ブチルヒドロペルオキシド、クメンヒドロペル
オキシドなどを挙げるこずができる。これらの䞭
では、ゞ−tert−ブチルペルオキシド、−
ゞメチル−−ゞtertブチルペルオキシ−ヘ
キシン−、ゞクミルペルオキシド、ゞベンゟむ
ルペルオキシドなどが奜たしい。 䞍飜和カルボン酞たたはその誘導䜓の䜿甚割合
は、ポリ−メチル−−ペンテン100重量郚に
察しお通垞ないし500重量郚、奜たしくはな
いし100重量郚である。䞍飜和カルボン酞たたは
その誘導䜓の添加量が重量郚未満では埗られる
グラフト倉性ポリ−メチル−−ペンテン䞭の
䞍飜和カルボン酞たたはその誘導䜓のグラフト量
が0.5重量より䜎くなるため改善効果が充分で
なく、たた、䞍飜和カルボン酞たたはその誘導䜓
の添加量が500重量郚を越えるず䞍飜和カルボン
酞たたはその誘導䜓のグラフト量が15重量より
倧きくなるため、改善効果が充分ではない。 本発明に甚いるグラフト倉性ポリ−メチル−
−ペンテン(B)を埗る方法は以䞊の劂く、奜たし
くは溶液法によ぀お埗られる。他の方法ずしおポ
リ−メチル−−ペンテン、䞍飜和カルボン酞
たたはその誘導䜓及びラゞカル開始剀からなる混
合物を抌出機で溶融混緎する方法でグラフトする
方法があるが、該方法はポリ−メチル−−ペ
ンテンの熱分解が起こり易く、本発明に甚いる前
蚘範囲の〔η〕及び䞍飜和カルボン酞たたはその
誘導䜓のグラフト量を有するグラフト倉性−メ
チル−−ペンテンは埗られ難く、䞍飜和カルボ
ン酞たたはその誘導䜓のグラフト量が0.5重量
のものでも〔η〕が0.3dl以䞋になる堎合が
倚く、本発明の組成物に甚いおも熱倉性枩床の改
善効果に劣る堎合がある。 本発明に甚いるナむロン66は、ヘキサメチレン
ゞアミンずアゞピン酞を重瞮合しお埗られる公知
のポリアミドの䞀皮であり、暹脂ずしお䜿甚でき
る皋床の分子量を有するものである限り、ずくに
限定はされない。 本発明に甚いる無機繊維(C)は、ガラス繊維、炭
玠繊維、ボロン繊維、チタン酞カリりム繊維、り
オラストナむト、アスベスト繊維等の無機物から
なる繊維状物質である。たた無機繊維の衚面をシ
ラン系化合物、䟋えばビニルトリ゚トキシシラ
ン、γ−アミノプロピルトリ゚トキシシラン、γ
−アミノプロピルトリメトキシシラン、−β
−アミノ゚チル−γ−アミノプロピルトリメト
キシシラン、γ−グリシドキシプロピルトリメト
キシシラン等で凊理しおおいおもよい。 本発明の組成物は、前蚘ポリ−メチル−−
ペンテン(A)10ないし90重量、奜たしくは10な
いし70重量、グラフト倉性ポリ−メチル−
−ペンテン(B)0.1ないし40重量、奜たしくは
0.5ないし20重量、ナむロン66ないし80重
量、奜たしくは10ないし80重量、及び無機繊
維(C)ないし80重量、奜たしくは10ないし60
重量ずから構成される。 グラフト倉性ポリ−メチル−−ペンテン(B)
の量が0.1重量未満では、耐熱性、機械的匷床
の改善効果が少なく、䞀方40重量を越えるず、
機械的匷床の改善効果は飜和しおしたう。ナむロ
ン66の量が重量未満では、耐熱性、機械的匷
床の改善効果が少なく、80重量を越えるず、耐
氎性、ずくに耐熱性が䜎䞋する。無機繊維(C)の量
が重量未満では、耐熱性、機械的匷床の改善
効果が少なく、䞀方80重量を越えるず、無機繊
維が成圢品衚面に浮き出し、著しく倖芳を損う。
たたグラフトしおいる䞍飜和カルボン酞たたはそ
の誘導䜓単䜍の含有量は、ポリ−メチル−−
ペンテン(A)グラフト倉性ポリ−メチル−−
ペンテン(B)100重量郚に察しお0.01ないし重
量の範囲にあるこずが奜たしい。含有量が0.01
重量未満では、耐熱性、機械的匷床の改善効果
が劣る堎合があり、䞀方重量を越えるず、吞
氎性が増す堎合がある。 本発明の組成物を埗る方法ずしおは、前蚘各成
分(A)、(B)、ナむロン66及び(C)を前蚘範囲で混合す
るこずにより埗られる。混合方法ずしおは皮々公
知の方法䟋えばヘキシ゚ルミキサヌ、−ブレン
ダヌ、リボンブレンダヌ、タンブラヌブレンダヌ
等で混合する方法、混合埌曎に䞀軞抌出機、二軞
抌出機、ニヌダヌ等により溶融混緎埌、造粒ある
いは粉砕する方法が挙げられる。 本発明の組成物には、耐熱安定剀、耐候安定
剀、栞剀、顔料、染料、滑剀、発錆防止剀等の通
垞ポリオレフむンに添加混合しお甚いるこずので
きる各皮配合剀を本発明の目的を損わない範囲で
添加しおおいおもよい。 本発明の組成物は、埓来のガラス繊維匷化ポリ
−メチル−−ペンテンに比べお著しく熱倉圢
枩床が高く、機械的匷床も改善されおいるので、
コネクタヌ、チナヌナヌ、スむツチ、ヒヌタヌダ
クト、ラゞ゚ヌタヌフアン等の耐熱性の必芁な家
電、自動車郚品ぞ応甚される。 次に実斜䟋を挙げお本発明を曎に具䜓的に説明
する。 補造䟋  −メチル−−ペンテン単独重合䜓〔η〕
1.7dl、n7.5、融点241℃、結晶化床
42、DSCパラメヌタ3.0を甚い、トル゚ン溶
媒䞭、145℃でゞクミルペルオキシド觊媒により
無氎マレむン酞のグラフト反応を行぀た。埗られ
た反応物に倧過剰のアセトンを加えるこずによ
り、ポリマヌを沈殿させ、取し、沈殿物をアセ
トンで繰返し掗浄するこずにより、無氎マレむン
酞グラフト倉性ポリ−メチル−−ペンテン
以䞋グラフト倉性TPX(A)ず呌ぶを埗た。 この倉性ポリマヌの無氎マレむン酞単䜍のグラ
フト割合は4.0重量であり、〔η〕0.95dl、
融点210℃、結晶化床18、n4.5、DSC
パラメヌタヌ2.8であ぀た。 補造䟋  −メチル−−ペンテン単独重合䜓〔η〕
3.8dl、n7.3、融点240℃、結晶化床
41、DSCパラメヌタヌ3.2に察し、無氎マレ
むン酞および−ゞメチル−−ゞtert
ブチルペルオキシ−ヘキシン−を添加し、この
混合物をN2雰囲気䞋260℃に蚭定した軞抌出機
に䟛絊し、溶融混緎するこずにより無氎マレむン
酞グラフト倉性ポリ−メチル−−ペンテン
以䞋グラフト倉性TPX(B)ず呌ぶを埗た。 この倉性ポリマヌの無氎マレむン酞単䜍のグラ
フト割合は1.4重量であり、〔η〕0.15dl、
融点212℃、結晶化床24、n5.2、DSC
パラメヌタヌ4.3であ぀た。 実斜䟋 〜 補造䟋で䜿甚した−メチル−−ペンテン
単独重合䜓以䞋TPXず呌ぶ、ナむロン66商
品名 東レ アラミンCM3006 東レ(æ ª)補、補
造䟋で埗たグラフト倉性TPX−(A)及びガラス
繊維GFを第衚に瀺す割合で混合埌、単軞
抌出機成圢枩床280℃で溶融混緎しお組成物
を埗た。該組成物を射出成圢機名機補䜜所補
M100成圢枩床280℃を甚いお、詊隓片を䜜補
し、以䞋の方法で物性を評䟡した。 熱倉圢枩床HDTASTM  648、荷
重264psi アむゟツト衝撃匷床IZODASTM 
256 曲げ匟性率FMASTM  790 結果を第衚に瀺す。 比范䟋 〜 実斜䟋で甚いたナむロン66の代わりにナむロ
ン商品名 東レ アラミンCM1026 東レ(æ ª)
補を甚いる以倖は実斜䟋〜ず同様に行぀
た。結果を第衚に瀺す。 比范䟋  実斜䟋で甚いた䞍飜和カルボン酞グラフト倉
性ポリ−メチル−−ペンテンの代わりに、
補造䟋で埗たグラフト倉性TPX−(B)を甚いる
以倖は実斜䟋ず同様に行぀た。結果を第衚に
瀺す。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to inorganic fiber reinforced poly-4-methyl-1-pentene compositions. More specifically, unsaturated carboxylic acid or its derivative graft-modified poly-4-
Inorganic fiber-reinforced poly(4-) containing methyl-1-pentene and nylon 66 with excellent heat resistance and mechanical strength.
The present invention relates to methyl-1-pentene compositions. It is known to improve the mechanical properties and heat resistance of polyolefins, such as tensile strength, bending strength, and impact strength, by adding reinforcing materials such as glass fibers to polyolefins. However, simply mixing glass fibers with polyolefins will naturally limit the effect of improving the mechanical properties and heat resistance of polyolefins because there is no bonding force between the polyolefins and glass fibers. Saturated polyester does not have the same improvement effect as epoxy resin. On the other hand, many methods have been proposed for improving the bonding strength between polyolefin and glass fiber. For example, a method in which maleic acid or maleic anhydride is reacted with polyolefin and glass fiber whose surface has been treated with an aminosilane compound in the presence of an organic peroxide at a temperature higher than the melting point of the polyolefin (Japanese Patent Publication No. 49
-41096 Publication), a composition comprising a polyolefin, a modified polyolefin having an aromatic carboxylic acid anhydride unit, and a glass fiber surface-treated with an aminosilane compound (Japanese Patent Publication No. 52-31895), a polyolefin and maleic anhydride A process for producing a composition comprising a modified polyolefin and a glass reinforcing material obtained by melt-kneading the above in the presence of an organic peroxide in a nitrogen atmosphere, or a composition comprising these and an unmodified polyolefin (Japanese Patent Publication No. 51-10265) Public bulletin), etc. have been proposed, and have shown some effectiveness. However, recently, there has been an increasing demand for thermoplastic resins that have even better heat resistance, mechanical strength, and moldability, so-called engineering plastics. Both of these have insufficient heat resistance and mechanical strength, and further improvements are desired. As one of the improvement methods,
Japanese Patent Publication No. 56-9943 describes a polyolefin resin composition consisting of (A) an unsaturated carboxylic acid-added polyolefin resin or an unsaturated carboxylic acid-added polyolefin resin diluted with the polyolefin resin, (B) a nitrogen-containing resin, and (C) a filler. It is said that by mixing a nitrogen-containing resin, a composition with excellent mechanical strength, heat resistance, paintability, etc. can be obtained.
However, among polyolefins, poly4-methyl-1-pentene, which has particularly excellent heat resistance, has ABS and nylon 6, which are specifically described in this publication.
Even if ABS was added, the heat resistance was not improved at all, and ABS
It has been found that when mixed with other materials, the heat resistance actually decreases. In view of this situation, the present inventors conducted various studies in order to obtain an inorganic fiber-reinforced poly-4-methyl-1-pentene composition with improved heat resistance and mechanical strength, and as a result, they arrived at the present invention. That is, the present invention comprises poly4-methyl-1-pentene (A): 10 to 90% by weight, a graft amount of unsaturated carboxylic acid or its derivative component unit from 0.5 to 15% by weight (based on the graft modified product), and Graft-modified poly-4-methyl-1-pentene (B) with an intrinsic viscosity [η] in the range of 0.3 to 10 dl/g: 0.1 to 40% by weight, nylon 66: 5 to 85% by weight,
and inorganic fiber (C): 2 to 80% by weight, and provides an inorganic fiber-reinforced poly-4-methyl-1-pentene composition having excellent heat resistance and mechanical strength. Poly4-methyl-1-pentene used in the present invention
(A) is a homopolymer of 4-methyl-1-pentene or 4-methyl-1-pentene and other α-olefins, such as ethylene, propylene, 1-butene, 1-hexene, 1-octene, 1- Desen,
4-Methyl-1 is a copolymer with an α-olefin having 2 to 20 carbon atoms such as 1-tetradecene and 1-octadecene, and usually contains 4-methyl-1-pentene in an amount of 85 mol% or more, preferably 91 mol% or more. - It is a polymer mainly composed of pentene. Poly 4-methyl-
1- Melt flow rate of pentene (A) (load: 5
kg, temperature: 260℃) is preferably 5 to 500g/
10min, preferably 25 to 150/10min
It is within the range of . Melt flow rate is 5
Those with a melt flow rate of less than 500 g/10 min have a high melt viscosity and poor moldability, and those with a melt flow rate of more than 500 g/10 min have a low melt viscosity and are inferior to molds, and also have low mechanical strength. Poly-4-methyl-1-pentene grafted with unsaturated carboxylic acids or derivatives thereof is in the same category as poly-4-methyl-1-pentene (A) described above, but preferably in a decalin solvent at 135°C. The measured intrinsic viscosity [η] is in the range of 0.5 to 25 dl/g. If [η] is outside the above range, the intrinsic viscosity after graft modification will be 0.3 to 10.
It is difficult to obtain one within the dl/g range. Graft-modified poly-4-methyl- used in the present invention
1-Pentene (B) is obtained by graft-copolymerizing the poly-4-methyl-1-pentene with an unsaturated carboxylic acid or a derivative thereof, and its base structure is substantially linear and has a three-dimensional crosslinked structure. This can be confirmed by the absence of gel-like substances when dissolved in organic solvents such as p-xylene. Graft-modified poly-4-methyl- used in the present invention
1-Pentene (B) has a grafting amount of unsaturated carboxylic acid or its derivative component unit in the range of 0.5 to 15% by weight, preferably 1 to 10% by weight, and an intrinsic viscosity [η] (decalin solvent at 135°C). The measured value) is in the range of 0.3 to 10 dl/g, preferably 0.5 to 5 dl/g. Graft amount is 0.5% by weight
Even if less than 15% by weight is used in the composition of the present invention, the effect of improving heat denaturation temperature, tensile strength, bending strength, impact strength, etc. will not be sufficient, while if it exceeds 15% by weight, the water resistance of the composition will be poor. It becomes like this. Graft modified poly-4-methyl-1-pentene (B)
Even if a composition with [η] of less than 0.3 dl/g is used in the composition of the present invention, the effect of improving heat distortion temperature, tensile strength, bending strength, impact strength, etc. is not sufficient;
If it exceeds 10 dl/g, the melt viscosity is too high and wettability with glass fibers is poor, so that the effect of improving the mechanical properties of the composition will not be sufficient. Graft-modified poly-4-methyl- used in the present invention
The purpose of the present invention can be achieved if 1-pentene (B) is within the above range, but by using one having the following properties, a composition with further improved heat resistance and mechanical strength can be obtained. Can be done. That is, it preferably has a molecular weight distribution (w/n) of 1 to 8, a melting point of 170 to 245°C, and a crystallinity of 1 to 8.
45% and a DSC parameter of 4.0 or less.
It is pentene (B). Graft modified poly-4-methyl-1-pentene (B)
The molecular weight distribution (w/n) expressed as weight average molecular weight/number average molecular weight is measured by gel permeation chromatography (GPC).
Measurement of molecular weight distribution by GPC was carried out according to the following method. That is, using o-dichlorobenzene as a solvent, 0.04 g of polymer per 100 parts by weight of solvent (2,6-di-tert-butyl-p-cresol as a stabilizer per 100 parts by weight of polymer)
Add 0.05 parts by weight) to form a solution, and then pass through a 1Ό filter to remove insoluble matter such as dust. Thereafter, measurement was performed using a GPC measuring device set at a column temperature of 135°C and a flow rate of 1.0 ml/min, and the numerical ratio was converted on a polystyrene basis. Graft modified poly-4-methyl-1-pentene (B)
The melting point of is the value measured by differential scanning calorimeter (DSC). Note that the melting point here is measured as follows. In other words, the sample was placed in a differential scanning calorimeter (do Pout990 type) and heated from room temperature to 20℃/
The temperature increases at a rate of min, and when it reaches 250℃, the temperature increases by 20℃/min.
After lowering the temperature to 25°C at a rate of 20°C/min, the temperature is raised again at a rate of 20°C/min, and the melting point is read from the melting peak at this time (in many cases, multiple melting peaks appear, so (in cases where the value on the high melting point side was adopted). Further, the degree of crystallinity was measured by the following method. In other words, using the chart used to measure the melting point by DSC described above, the melting area (S) of the measurement sample per unit amount and the melting energy (Po) of the control sample indium per unit amount on the recording paper are calculated. Compare the area (So). The amount of Po in indium is known, and the melting energy (P) per unit amount of the crystalline part of poly-4-methyl-1-pentene is also known as shown below, so the crystallinity of the sample to be measured is determined by the following formula: It is determined by Crystallinity (%) = S/So×Po/P×100 Here, Po: 27 Joul/g (at156±0.5
℃) P: 141.7Joul/g [FCFrank, etal,
Philosophical Magazine, 4, 200
(1959)] In addition, the DSC parameter, which is a parameter of the composition distribution of graft-modified poly-4-methyl-1-pentene (B), is the melting area (S) of the sample measured by DSC described above at the melting point (i.e., the maximum peak). divided by the peak height. Therefore,
It is estimated that the smaller the DSC parameter, the sharper the DSC curve and the narrower the composition distribution. Graft-modified poly-4-methyl- used in the present invention
The unsaturated carboxylic acid or its derivative component units constituting 1-pentene (B) are acrylic acid, methacrylic acid, α-methylacrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, tetrahydrophthalic acid, and methyltetrahydrophthalic acid. Acid, endocys-bicyclo[2.2.1]hept-5-2,3-
dicarboxylic acid (nadic acid), methyl-endocys-bicyclo[2.2.1]hept-5-ene-2,
Examples include unsaturated carboxylic acids such as 3-dicarboxylic acid (methylnadzic acid), and derivatives of unsaturated carboxylic acids such as acid halides, amides, imides, acid anhydrides, and esters of the unsaturated carboxylic acids. Specific examples include maleyl chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, and glycidyl maleate. Among these, unsaturated dicarboxylic acids or their anhydrides are preferred, and maleic acid, nadic acid, and their acid anhydrides are particularly preferred. Graft-modified poly-4-methyl- used in the present invention
A preferred method for obtaining 1-pentene (B) is shown below.
That is, poly-4-methyl-1-pentene is subjected to graph modification by adding an unsaturated carboxylic acid or a derivative thereof and a radical initiator in a solution state in the presence of a solvent and heating the mixture. The proportion of the radical initiator used is 0.1 to 100 parts by weight, preferably 1 part by weight, per 100 parts by weight of poly4-methyl-1-pentene.
and 50 parts by weight. The proportion of the solvent used when carrying out the modification reaction in a solution state is as specified in 4- above.
The amount is generally 100 to 100,000 parts by weight, preferably 200 to 10,000 parts by weight, per 100 parts by weight of the methyl-1-pentene polymer. The temperature during the modification reaction is usually in the range of 100 to 250°C, preferably 110 to 200°C, and the reaction time is usually in the range of 15 to 250°C.
It ranges from 30 to 600 minutes, preferably from 30 to 360 minutes. Solvents used in the modification reaction include aliphatic hydrocarbons such as hexane, heptane, octane, decane, dodecane, tetradecane, and kerosene, and alicyclic hydrocarbons such as methylcyclopentane, cyclohexane, methylcyclohexane, cyclooctane, and cyclododecane. Hydrocarbons, aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene, ethyltoluene, trimethylbenzene, cymene, diisopropylbenzene, chlorobenzene, bromobenzene, o-dichlorobenzene, carbon tetrachloride, trichloroethane, trichloroethylene, tetrachloroethane , halogenated hydrocarbons such as tetrachloroethylene, and the like. Among these, alkyl aromatic hydrocarbons are particularly preferred. Typical radical initiators used in the graft modification reaction are organic peroxides, more specifically alkyl peroxides,
Examples include aryl peroxide, acyl peroxide, aroyl peroxide, ketone peroxide, peroxycarbonate, peroxycarboxylate, and hydroperoxide. As the alkyl peroxide, diisopropyl peroxide,
Di-tert-butyl peroxide, 2,5-dimethyl-2,5-di-tert-butylperoxyhexine-3, etc.; aryl peroxides such as dicumyl peroxide; acyl peroxides such as dilauroyl peroxide; aroyl peroxides; is dibenzoyl peroxide, ketone peroxides are methyl ethyl ketone hydroperoxide, cyclohexanone peroxide, etc. hydroperoxides are tert.
-butyl hydroperoxide, cumene hydroperoxide and the like. Among these are di-tert-butyl peroxide, 2,5-
Dimethyl-2,5-di-tert-butylperoxy-hexyne-3, dicumyl peroxide, dibenzoyl peroxide and the like are preferred. The proportion of the unsaturated carboxylic acid or its derivative used is usually 1 to 500 parts by weight, preferably 2 to 100 parts by weight, per 100 parts by weight of poly-4-methyl-1-pentene. If the amount of unsaturated carboxylic acid or its derivative added is less than 1 part by weight, the amount of grafted unsaturated carboxylic acid or its derivative in the graft-modified poly-4-methyl-1-pentene obtained will be lower than 0.5% by weight, resulting in an improvement effect. Moreover, if the amount of unsaturated carboxylic acid or its derivative added exceeds 500 parts by weight, the amount of grafted unsaturated carboxylic acid or its derivative becomes greater than 15% by weight, so that the improvement effect is not sufficient. Graft-modified poly-4-methyl- used in the present invention
As described above, 1-pentene (B) is preferably obtained by a solution method. Another method is to graft a mixture of poly4-methyl-1-pentene, an unsaturated carboxylic acid or its derivative, and a radical initiator in an extruder; -1-Pentene is easily thermally decomposed, and it is difficult to obtain graft-modified 4-methyl-1-pentene having [η] and the amount of unsaturated carboxylic acid or its derivative grafted within the above range, which is used in the present invention. Grafting amount of carboxylic acid or its derivative is 0.5% by weight
Even in the case of polyester resins, [η] is often less than 0.3 dl/g, and even when used in the composition of the present invention, the effect of improving the heat denaturation temperature may be poor. Nylon 66 used in the present invention is a type of known polyamide obtained by polycondensation of hexamethylene diamine and adipic acid, and is not particularly limited as long as it has a molecular weight that can be used as a resin. The inorganic fiber (C) used in the present invention is a fibrous substance made of an inorganic material such as glass fiber, carbon fiber, boron fiber, potassium titanate fiber, wollastonite, and asbestos fiber. Additionally, the surface of the inorganic fibers can be coated with silane compounds such as vinyltriethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriethoxysilane,
-aminopropyltrimethoxysilane, N-(β
-aminoethyl)-γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, or the like. The composition of the present invention comprises the poly-4-methyl-1-
Pentene (A): 10 to 90% by weight, preferably 10 to 70% by weight, graft modified poly-4-methyl-1
- Pentene (B): 0.1 to 40% by weight, preferably
0.5 to 20% by weight, nylon 66: 5 to 80% by weight, preferably 10 to 80% by weight, and inorganic fiber (C): 2 to 80% by weight, preferably 10 to 60%.
% by weight. Graft modified poly-4-methyl-1-pentene (B)
If the amount is less than 0.1% by weight, the effect of improving heat resistance and mechanical strength will be small, while if it exceeds 40% by weight,
The effect of improving mechanical strength is saturated. If the amount of nylon 66 is less than 5% by weight, the effect of improving heat resistance and mechanical strength will be small, and if it exceeds 80% by weight, water resistance, especially heat resistance, will decrease. If the amount of inorganic fiber (C) is less than 2% by weight, the effect of improving heat resistance and mechanical strength will be small, while if it exceeds 80% by weight, the inorganic fibers will stand out on the surface of the molded product, significantly impairing its appearance.
In addition, the content of the grafted unsaturated carboxylic acid or its derivative unit is poly-4-methyl-1-
Pentene (A) + graft modified poly 4-methyl-1-
It is preferably in the range of 0.01 to 5% by weight based on 100 parts by weight of pentene (B). Content is 0.01
If it is less than 5% by weight, the effect of improving heat resistance and mechanical strength may be poor, while if it exceeds 5% by weight, water absorption may increase. The composition of the present invention can be obtained by mixing the components (A), (B), nylon 66, and (C) within the ranges described above. There are various known mixing methods, such as mixing using a hexyl mixer, V-blender, ribbon blender, tumbler blender, etc. After mixing, melt kneading using a single screw extruder, twin screw extruder, kneader, etc., followed by granulation or An example is a method of pulverizing. The composition of the present invention contains various compounding agents that can be added and mixed with ordinary polyolefins, such as heat stabilizers, weather stabilizers, nucleating agents, pigments, dyes, lubricants, and rust inhibitors. may be added as long as it does not impair it. The composition of the present invention has a significantly higher heat distortion temperature and improved mechanical strength than conventional glass fiber-reinforced poly-4-methyl-1-pentene.
It is applied to home appliances and automobile parts that require heat resistance, such as connectors, tuners, switches, heater ducts, and radiator fans. Next, the present invention will be explained in more detail with reference to Examples. Production example 1 4-methyl-1-pentene homopolymer ([η]
1.7dl/g, w/n7.5, melting point 241℃, crystallinity
The grafting reaction of maleic anhydride was carried out with dicumyl peroxide catalyst at 145 °C in toluene solvent using DSC parameter 3.0 (42%, DSC parameter 3.0). By adding a large excess of acetone to the obtained reaction product, the polymer was precipitated and collected, and the precipitate was repeatedly washed with acetone to obtain maleic anhydride graft-modified poly-4-methyl-1-pentene A.
(hereinafter referred to as graft-modified TPX(A)) was obtained. The grafting ratio of maleic anhydride units in this modified polymer was 4.0% by weight, [η] 0.95dl/g,
Melting point 210℃, crystallinity 18%, w/n 4.5, DSC
The parameter was 2.8. Production example 2 4-methyl-1-pentene homopolymer ([η]
3.8dl/g, w/n7.3, melting point 240℃, crystallinity
41%, DSC parameter 3.2) for maleic anhydride and 2,5-dimethyl-2,5-ditert
Butylperoxy-hexyne-3 was added, and the mixture was supplied to a single-screw extruder set at 260°C under an N2 atmosphere and melt-kneaded to obtain maleic anhydride-grafted poly-4-methyl-1-pentene B.
(hereinafter referred to as graft-modified TPX(B)) was obtained. The grafting ratio of maleic anhydride units in this modified polymer was 1.4% by weight, [η] 0.15dl/g,
Melting point 212℃, crystallinity 24%, w/n5.2, DSC
The parameter was 4.3. Examples 1 to 3 4-methyl-1-pentene homopolymer (hereinafter referred to as TPX) used in Production Example 1, nylon 66 (trade name Toray Alamine CM3006 manufactured by Toray Industries, Inc.), and the graft obtained in Production Example 1 Modified TPX-(A) and glass fiber (GF) were mixed in the proportions shown in Table 1, and then melt-kneaded in a single-screw extruder (molding temperature 280°C) to obtain a composition. The composition was molded using an injection molding machine (manufactured by Meiki Seisakusho).
A test piece was prepared using M100 (molding temperature: 280°C), and its physical properties were evaluated using the following method. Heat distortion temperature (HDT): ASTM D 648, load 264psi Izod impact strength (IZOD): ASTM D
256 Flexural Modulus (FM): ASTM D 790 Results are shown in Table 1. Comparative Examples 1 to 3 Nylon 6 (product name Toray Alamine CM1026 Toray Industries, Inc.) was used instead of nylon 66 used in Example 1.
The same procedure as in Examples 1 to 3 was carried out except that the following methods were used. The results are shown in Table 1. Comparative Example 4 Instead of the unsaturated carboxylic acid graft modified poly 4-methyl-1-pentene A used in Example 1,
The same procedure as in Example 1 was conducted except that the graft-modified TPX-(B) obtained in Production Example 2 was used. The results are shown in Table 1. 【table】

Claims (1)

【特蚱請求の範囲】  ポリ−メチル−−ペンテン(A)10ないし
90重量、 䞍飜和カルボン酞たたはその誘導䜓成分単䜍の
グラフト量が0.5ないし15重量グラフト倉性
物に察しお及び極限粘床〔η〕が0.3ないし10
dlの範囲のグラフト倉性ポリ−メチル−
−ペンテン(B)0.1ないし40重量、 ナむロン66ないし85重量、及び 無機繊維(C)ないし80重量、 ずからなるこずを特城ずする無機繊維匷化ポリ
−メチル−−ペンテン組成物。
[Claims] 1 Poly-4-methyl-1-pentene (A): 10 to
90% by weight, the amount of grafting of unsaturated carboxylic acid or its derivative component unit is 0.5 to 15% by weight (based on the graft modified product), and the intrinsic viscosity [η] is 0.3 to 10
Graft modified poly-4-methyl-1 in the range of dl/g
- Inorganic fiber-reinforced poly 4 comprising: 0.1 to 40% by weight of pentene (B), 5 to 85% by weight of nylon 66, and 2 to 80% by weight of inorganic fiber (C).
-Methyl-1-pentene composition.
JP16208783A 1983-09-05 1983-09-05 Poly-4-methyl-1-pentene composition reinforced with inorganic fiber Granted JPS6053549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16208783A JPS6053549A (en) 1983-09-05 1983-09-05 Poly-4-methyl-1-pentene composition reinforced with inorganic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16208783A JPS6053549A (en) 1983-09-05 1983-09-05 Poly-4-methyl-1-pentene composition reinforced with inorganic fiber

Publications (2)

Publication Number Publication Date
JPS6053549A JPS6053549A (en) 1985-03-27
JPH0216931B2 true JPH0216931B2 (en) 1990-04-18

Family

ID=15747831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16208783A Granted JPS6053549A (en) 1983-09-05 1983-09-05 Poly-4-methyl-1-pentene composition reinforced with inorganic fiber

Country Status (1)

Country Link
JP (1) JPS6053549A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721097B2 (en) * 1983-12-22 1995-03-08 東レ株匏䌚瀟 Resin composition for automobile parts requiring calcium chloride resistance
CN103189442A (en) * 2010-10-19 2013-07-03 䞉井化孊株匏䌚瀟 Poly-4-methyl-1-pentene based resin composition and molded products obtained from the composition

Also Published As

Publication number Publication date
JPS6053549A (en) 1985-03-27

Similar Documents

Publication Publication Date Title
KR910008578B1 (en) Fiber reinforced heatresistant polyolefin composition
JPH0242109B2 (en)
JPH0330624B2 (en)
JPS5966448A (en) Thermoplastic resin composition
JPH0940865A (en) Polyarylene sulfide resin composition
JPH0216931B2 (en)
JPS647620B2 (en)
JPH0554863B2 (en)
JPS647621B2 (en)
WO1996001873A1 (en) Thermoplastic polyester resin composition
JPS59105042A (en) Propylene polymer composition
JPS62236851A (en) Reinforced thermoplastic resin composition
JPS59221353A (en) Thermoplastic polyester composition
JPH03247642A (en) Production of glass fiber-reinforced poly-4-methyl-1-pentene composition
JPS6076548A (en) Polypropylene composition containing incorporated inorganic filler
JPH06228436A (en) Thermoplastic resin composition
JPH0959438A (en) Polyamide-polyolefin resin composition
JP2825882B2 (en) 4-Methyl-1-pentene polymer composition
JPH0359934B2 (en)
JPH0112782B2 (en)
JPH0517646A (en) Thermoplastic resin composition
EP0593254A2 (en) Thermoplastic resin composition and process for producing the same
JPS647625B2 (en)
JPS63215761A (en) Fiber-reinforced 4-methyl-1-pentene polymer composition
JP2815027B2 (en) Poly 4-methyl-1-pentene resin film