JPH0216775A - Manufacture of metal sulfide semiconductor composite film - Google Patents

Manufacture of metal sulfide semiconductor composite film

Info

Publication number
JPH0216775A
JPH0216775A JP63167058A JP16705888A JPH0216775A JP H0216775 A JPH0216775 A JP H0216775A JP 63167058 A JP63167058 A JP 63167058A JP 16705888 A JP16705888 A JP 16705888A JP H0216775 A JPH0216775 A JP H0216775A
Authority
JP
Japan
Prior art keywords
substrate
composite film
film
porous polymer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63167058A
Other languages
Japanese (ja)
Inventor
So Miyama
三山 創
Hidekuni Yokoyama
英邦 横山
Yoshio Nosaka
芳雄 野坂
Nobuyuki Fujii
信行 藤井
Toshio Hayakawa
早川 敏男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAYAKAWA SENI KOGYO KK
Original Assignee
HAYAKAWA SENI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAYAKAWA SENI KOGYO KK filed Critical HAYAKAWA SENI KOGYO KK
Priority to JP63167058A priority Critical patent/JPH0216775A/en
Publication of JPH0216775A publication Critical patent/JPH0216775A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To securely deposit a metal layer on a substrate by forming the substrate with a porous polymer film, and applying electroless plating to the resulting film to permit the film to carry metal. CONSTITUTION:A substrate formed of a porous polymer film is previously degreased (e) with acetone, and thereafter subjected to a catalysis treatment (f) by which Ag is added to the substrate. Then, there is carried out electroless plating (g) by copper sulfate. This is done by alkali plating with use of formaldehyde as a reducing agent and of sodium and pattasium tartarate as a complexing agent. A sulfate treatment (h) is done by dissolving sulfur into dimethyl sulfoxide and dipping the substrate into the sulfur dimethyl sulfoxide solution. Hereby, a metal layer is formed on a substrate surface, and enters partly into the porous polymer film for secure deposition.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電気デバイス装置を制御する半導体として使
用される金属硫化物半導体複合膜の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a metal sulfide semiconductor composite film used as a semiconductor for controlling electrical devices.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

金属硫化物はすぐれた光伝導性を有する化合物半導体で
あることが知られており、光検出器や太陽電池などの分
野に応用されている。
Metal sulfides are known to be compound semiconductors with excellent photoconductivity, and are used in fields such as photodetectors and solar cells.

ところが、それらの金属硫化物は一般に成形性に劣り、
強度が弱いなどの欠点を有している。
However, these metal sulfides generally have poor formability;
It has drawbacks such as low strength.

しかし、これらの金属硫化物を高分子材料中に埋め込め
ばフレキシブルにして丈夫な半導体複合膜ができると予
想される。
However, it is expected that embedding these metal sulfides in polymeric materials will result in flexible and durable semiconductor composite films.

この場合、金属硫化物半導体としての性質が複合膜にお
いても保たれるかどうかが問題である。
In this case, the question is whether the properties as a metal sulfide semiconductor are maintained in the composite film.

いままでに各種硫化物コロイドを高分子材料中に分散さ
せた複合膜については半導体性が確認されているし、ま
た、高分子材料の表面上に金属塩を吸、収させた後に硫
化処理する方法も試みられているか、これらの従来の半
導体膜は使用できる溶媒や高分子材料が限定されるとい
う問題を有している。
Semiconducting properties have so far been confirmed for composite films in which various sulfide colloids are dispersed in polymer materials, and metal salts are absorbed onto the surface of the polymer material and then sulfurized. However, these conventional semiconductor films have the problem that the solvents and polymer materials that can be used are limited.

発明者らは特に支持体、マトリックスに限定されること
なく金属硫化物半導体を担持することができ、そして容
易に大面積化が可能な方法がないかと研究し、多孔質高
分子膜に無電解メッキを行い、その後硫化処理する本発
明を完成した。
In particular, the inventors investigated whether there is a method that can support metal sulfide semiconductors without being limited to supports or matrices, and that can easily increase the area. The present invention, which involves plating and then sulfiding, has been completed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記諸問題を解決したもので、添付図面を参
照して詳述すると、多孔質高分子膜を基板1とし、この
基板1に無電解メッキを施して金属を担持させ、この金
属層2に硫化処理を施すことを特徴とする金属硫化物半
導体複合膜の製造法に係るものである。
The present invention has solved the above-mentioned problems, and will be described in detail with reference to the accompanying drawings.The present invention uses a porous polymer membrane as a substrate 1, performs electroless plating on this substrate 1 to support a metal, and The present invention relates to a method for producing a metal sulfide semiconductor composite film, characterized in that layer 2 is subjected to sulfurization treatment.

〔作用〕[Effect]

基板lを多孔質高分子膜で形成し、この多孔質高分子膜
に無電解メッキを施して金属を担持させ、基板lの表面
に金属層2を形成するから金属層2は一部が多孔質高分
子膜に喰い込んだ状態となり、確固に被着されることに
なる。
The substrate 1 is formed of a porous polymer film, and the porous polymer film is subjected to electroless plating to support metal, and the metal layer 2 is formed on the surface of the substrate 1. Therefore, the metal layer 2 is partially porous. It becomes embedded in the high quality polymer film and firmly adheres to it.

また無電解メッキを採用するから材質に制約されずに多
孔質高分子膜へのメッキ層の形成も硫化処理も可能とな
り、金属硫化物半導体が表面に均一に形成された金属硫
化物半導体複合膜が作成され、これをダイオードのよう
な電気デバイスに応用したところ整流特性の見られる素
子であることが確認された。
In addition, since electroless plating is used, it is possible to form a plating layer on a porous polymer membrane and perform sulfurization treatment without being restricted by the material, and the metal sulfide semiconductor composite film has a metal sulfide semiconductor uniformly formed on the surface. was created, and when it was applied to electrical devices such as diodes, it was confirmed that the device had rectifying properties.

〔実施例〕 第1図は本発明の製造法のフローチャートを示したもの
で、このフローチャートにおいて用いられた溶液の組成
は次の通りである。
[Example] FIG. 1 shows a flowchart of the production method of the present invention, and the composition of the solution used in this flowchart is as follows.

本発明者らは次の実験を行った。The present inventors conducted the following experiment.

無電解メッキに用いられた基板はハイボア2000若し
くはtooo (ポリオレフィン系多孔質膜、脂化成製
)又はセルロース紙(東洋濾紙株式会社製−般定性用濾
紙)を用いた。
The substrate used for the electroless plating was Hibore 2000 or Tooo (polyolefin porous membrane, manufactured by Seikasei) or cellulose paper (filter paper for general determination manufactured by Toyo Roshi Co., Ltd.).

この基板の物性値は下表の通りである。The physical properties of this substrate are shown in the table below.

CuS複合体膜の作製方法は以下の手順で行った。The CuS composite film was produced using the following procedure.

まず基板は予めアセトンで脱脂した後にAgを付与する
触媒化処理を行った。
First, the substrate was previously degreased with acetone and then subjected to a catalytic treatment to add Ag.

この触媒化処理は、0.13M(モル)の5nCIt水
溶液(40°C)に浸漬する感応化処理と、その後5.
9mMのAgN0* (40°C)に浸漬することによ
りAgを析出する次式の活性化行程の2行程で行った。
This catalytic treatment consists of a sensitization treatment by immersion in a 0.13 M (mol) 5nCIt aqueous solution (40°C), and then 5.
This was carried out in two steps: an activation step according to the following formula, in which Ag was precipitated by immersion in 9 mM AgN0* (40° C.).

2Ag”+ Sn”  →2Ag+ S n’″″続い
て硫酸銅による無電解メッキを行った。
2Ag"+Sn"→2Ag+Sn'""Subsequently, electroless plating with copper sulfate was performed.

還元剤にホルムアルデヒドを、錯化剤に酒石酸ナトリウ
ムカリウムを用い、メッキ浴60℃でアルカリメッキに
より行った。
Alkaline plating was carried out at a plating bath of 60° C. using formaldehyde as a reducing agent and sodium potassium tartrate as a complexing agent.

反応は次式の通りである。The reaction is as shown in the following equation.

Cu”+2HCHO+40H−−”  Cu+Ht+2
HCOO−硫化物処理は、ジメチルスルホキシドに硫黄
(5g/1g)を溶かし、この硫黄のジメチルスルホキ
シド溶液(70℃)に浸漬することによって行った。
Cu"+2HCHO+40H--"Cu+Ht+2
HCOO-sulfide treatment was performed by dissolving sulfur (5 g/1 g) in dimethyl sulfoxide and immersing it in a solution of sulfur in dimethyl sulfoxide (70° C.).

第2図はメッキ時間と硫化処理後の硫化銅含有m依存性
を示したもので、0から40分程度までは時間経過と共
に含有量は増加するがそれ以降は膜から剥離する傾向が
見られ、ある一定置上しか含有量が増加しないことがわ
かる。
Figure 2 shows the dependence of copper sulfide content on plating time and m after sulfiding treatment.The content increases with time from 0 to about 40 minutes, but after that it tends to peel off from the film. , it can be seen that the content increases only at a certain temperature.

このようにして得られた複合膜のホール効果の測定を行
いキャリアおよび移動度を決定した。
The Hall effect of the thus obtained composite film was measured to determine carriers and mobility.

この結果は下表の通りである。The results are shown in the table below.

表中のベレットとはCuS粉末を加圧成形したものであ
る。
The pellet in the table is formed by pressure molding CuS powder.

その結果からp型半導体であり、ペレットのものより2
から3桁程度低い伝導度および移動度であることが確認
された。
The results show that it is a p-type semiconductor, and it is 2
It was confirmed that the conductivity and mobility were about 3 orders of magnitude lower than that of the previous study.

上記の方法により作成した複合膜の同定はX線回折法で
行″った。
The composite membrane prepared by the above method was identified by X-ray diffraction.

第3図はハイボア2000に銅および硫化銅を担持した
複合膜の粉末X線回折である。
FIG. 3 shows powder X-ray diffraction of a composite film in which copper and copper sulfide are supported on HiBore 2000.

Cuの回折線(2θ=43.3°、50.4°)がCu
S担持複合膜の回折図から見られなかった(上図のピー
クが下図に現れてない)ことから、全てのCuがCuS
に変換されたものと推定される。
The diffraction lines of Cu (2θ=43.3°, 50.4°)
Since it was not seen in the diffraction diagram of the S-supported composite film (the peak in the upper figure does not appear in the lower figure), all Cu was CuS.
It is estimated that it was converted into .

第4図は硫化銅複合膜の導電率の温度依存性を示すもの
で、温度を35℃から100℃に上昇するにつれて電気
導電度が1.58X 1O−3S/ cmから2.4I
X 10−38/amに増加していることがわかる。
Figure 4 shows the temperature dependence of the electrical conductivity of the copper sulfide composite film. As the temperature increases from 35°C to 100°C, the electrical conductivity increases from 1.58X 1O-3S/cm to 2.4I
It can be seen that the value increases to X 10-38/am.

このことから半導体物性を有することが確認できる。This confirms that it has semiconductor physical properties.

一般に硫化銅はn型半導体として知られており、この複
合膜とn型半導体とを接触することによって整流特性を
示すデバイスが作成出来ると推論し、次の確認を行った
Copper sulfide is generally known as an n-type semiconductor, and we deduced that a device exhibiting rectifying characteristics could be created by contacting this composite film with an n-type semiconductor, and the following confirmation was made.

硫化カドミウムを電着したITO(インジウム錫酸化物
)ガラスと硫化銅複合膜を圧着した第5図のセルを作成
し、i −V特性の測定を行った。
A cell as shown in FIG. 5 was prepared in which a copper sulfide composite film was bonded to ITO (indium tin oxide) glass on which cadmium sulfide was electrodeposited, and its i-V characteristics were measured.

その結果は第6図の図表で、整流比(−4vと+4Vと
の電流値の比)は1:4程度の整流素子が得られること
を確認した。
The results are shown in the graph of FIG. 6, and it was confirmed that a rectifying element with a rectifying ratio (ratio of current values of -4V and +4V) of about 1:4 was obtained.

■特性図に若干の乱れが生じている原因についてはCu
S複合膜とCd51i着層との接触が不十分のためと考
えられる。
■As for the cause of the slight disturbance in the characteristic diagram,
This is thought to be due to insufficient contact between the S composite film and the Cd51i deposited layer.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように構成したから半導体膜が基板に確
固に被着され、且つ基板の材質に制約されることのない
フレキシブルな半導体が簡易に量産でき、電気素子とし
て多方面に応用できる秀れた特長を発揮する。
Since the present invention is constructed as described above, a semiconductor film can be firmly adhered to a substrate, and flexible semiconductors can be easily mass-produced without being restricted by the material of the substrate. Demonstrates its unique characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示すもので、第1図は本発明
の製造法のフローチャート、第2図はメッキ時間に対す
る含有量の依存性カーブを示す図表、第3図はCuとC
uSのX線回折図、第4図はCuS複合膜の導電率の温
度依存性を示した図表、第5図はデバイスのセルの説明
略図、第6図はそのセルの特性を示す図表である。 1・・・基板、・2・・・金属層。 昭和63年 7月 5日 出願人  早川繊維工業株式会社 発明者  三  山     創 同     横    山    英    部間  
   野   坂   芳   椎間     藤  
  井    信    行間      早    
川    敏    男代理人  吉  井  昭  
栄 Aへ9 774月 2Ag’+5n2−−−−2Ag  +Sn”↓ 圃5Tり困 Cu”+2)(CHO+40H−→ Cu+H= +2
8COO−↓ 圓扇田 TMflt (5cy/ l )  DMS O溶渣ニ
浸漬口 in ゛プ0a 2θldegl  jcu−に−) −11/頻 ″y%15i、、4 プク部 手続補装置(方式) %式% 発明の名称 金属硫化物半導体複合膜の製造法 補正をする者 事件との関係
The drawings show one embodiment of the present invention, and FIG. 1 is a flowchart of the manufacturing method of the present invention, FIG. 2 is a diagram showing the dependence curve of content on plating time, and FIG. 3 is a diagram showing the dependence curve of content on plating time.
An X-ray diffraction diagram of uS, Figure 4 is a diagram showing the temperature dependence of the conductivity of the CuS composite film, Figure 5 is a schematic illustration of the device cell, and Figure 6 is a diagram showing the characteristics of the cell. . 1...Substrate, 2...Metal layer. July 5, 1988 Applicant: Hayakawa Textile Industry Co., Ltd. Inventor: Sodo Miyama Hide Yokoyama Buma
Yoshi Nosaka Fuji Shiima
Nobuo I, Haya Yukima
Satoshi Kawa Male agent Akira Yoshii
To Sakae A 9 77 April 2Ag'+5n2---2Ag +Sn"↓ Field 5T difficulty Cu"+2) (CHO+40H-→ Cu+H= +2
8COO-↓ Ensugida TMflt (5cy/l) DMS O molten immersion port in ゛pu0a 2θldegl jcu-ni-) -11/Frequency"y%15i,, 4 Puku section procedure auxiliary device (method) % formula% Title of the invention Relationship to the case concerning a person amending the manufacturing method of a metal sulfide semiconductor composite film

Claims (1)

【特許請求の範囲】[Claims] 多孔質高分子膜を基板とし、この基板に無電解メッキを
施して金属を担持させ、この金属層に硫化処理を施すこ
とを特徴とする金属硫化物半導体複合膜の製造法。
A method for producing a metal sulfide semiconductor composite film, which comprises using a porous polymer film as a substrate, electroless plating the substrate to support a metal, and subjecting the metal layer to sulfurization treatment.
JP63167058A 1988-07-05 1988-07-05 Manufacture of metal sulfide semiconductor composite film Pending JPH0216775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167058A JPH0216775A (en) 1988-07-05 1988-07-05 Manufacture of metal sulfide semiconductor composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167058A JPH0216775A (en) 1988-07-05 1988-07-05 Manufacture of metal sulfide semiconductor composite film

Publications (1)

Publication Number Publication Date
JPH0216775A true JPH0216775A (en) 1990-01-19

Family

ID=15842621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167058A Pending JPH0216775A (en) 1988-07-05 1988-07-05 Manufacture of metal sulfide semiconductor composite film

Country Status (1)

Country Link
JP (1) JPH0216775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160425A (en) * 1999-12-02 2001-06-12 Japan Gore Tex Inc Optical semiconductor electrode and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160425A (en) * 1999-12-02 2001-06-12 Japan Gore Tex Inc Optical semiconductor electrode and its manufacturing method

Similar Documents

Publication Publication Date Title
Savadogo Chemically and electrochemically deposited thin films for solar energy materials
JP3513154B2 (en) Solar cell having chalcopyrite absorption layer
JP5827689B2 (en) Method for forming p-type semiconductor layer of photovoltaic device and method for forming thermal interface
JP3303975B2 (en) Method of manufacturing ohmic contact and photovoltaic cell having ohmic contact
JP2009515343A (en) Techniques and apparatus for depositing semiconductor layers for solar cell and module manufacturing
JP2010512647A (en) Doping technology for IBIIIAVIA group compound layer
KR960030457A (en) METHOD FOR MANUFACTURING POROUS MATERIAL, METHOD FOR MANUFACTURING ELECTRODE SUBSTRATE FOR BATTERY,
Ramachandran et al. Electrodeposition of nanostructured bilayer CuI@ CuSCN as hole transport material for highly efficient inverted perovskite solar cells
TW202315981A (en) Plating solution for electroplating gold on nickel plating, method for electroplating gold on nickel plating, and gold-plated item
Azmi et al. A green and low-cost synthetic approach based on deep eutectic choline-urea solvent toward synthesis of CZTS thin films
Sahu et al. Electrodeposition of CuInSe2 thin films from aqueous solution
KR101693192B1 (en) Perovskite solar cell and preparation method thereof
Lakhe et al. Electrochemical synthesis and characterization of Cu2ZnSnS4 thin films
JPH0216775A (en) Manufacture of metal sulfide semiconductor composite film
CN110429032B (en) Based on Ni3(HITP)2Preparation method of field effect transistor of conductive MOF film
KR102141196B1 (en) Substrate for electroless plating, method of manufacturing the same, and metal plating method using the same
Beyhan et al. Complexing agent effect on the stoichiometric ratio of the electrochemically prepared CuInSe2 thin films
Kijatkina et al. CuInS2 sprayed films on different metal oxide underlayers
JPS61222180A (en) Multilayer ohmic contact for p-type semiconductor and makingthereof
US20110005586A1 (en) Electrochemical Deposition Methods for Fabricating Group IBIIIAVIA Compound Absorber Based Solar Cells
Vitanov et al. Low cost multilayer metallization system for silicon solar cells
US10115849B2 (en) Solar cell and method of fabricating the same
WO2007088146A1 (en) Method for applying alkali ions to the surface of the cigsse absorber layer of a chalcopyrite solar cell
RU2573903C1 (en) Method for manufacturing flexible electroconductive polymer film
CN111850627B (en) Low-cost staffinite structure copper-iron-tin-sulfur film and electrochemical preparation method thereof