JPH02167359A - Flame retardant resin composition for electroless plating - Google Patents

Flame retardant resin composition for electroless plating

Info

Publication number
JPH02167359A
JPH02167359A JP1230434A JP23043489A JPH02167359A JP H02167359 A JPH02167359 A JP H02167359A JP 1230434 A JP1230434 A JP 1230434A JP 23043489 A JP23043489 A JP 23043489A JP H02167359 A JPH02167359 A JP H02167359A
Authority
JP
Japan
Prior art keywords
parts
rubber
weight
resin
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1230434A
Other languages
Japanese (ja)
Other versions
JP2727240B2 (en
Inventor
Toshiaki Ozeki
寿朗 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23043489A priority Critical patent/JP2727240B2/en
Publication of JPH02167359A publication Critical patent/JPH02167359A/en
Application granted granted Critical
Publication of JP2727240B2 publication Critical patent/JP2727240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composition, consisting of PPE resin, specific rubber- modified resin, red phosphorus and phosphoric acid ester and capable of providing plated articles, capable of electroless plating in the simplest plating process and excellent in electromagnetic wave shielding effects and reliability thereof. CONSTITUTION:A composition containing (A) a polyphenylene ether-based resin, (B) a rubber-modified resin composition, (C) a polystyrene-based resin, (D) red phosphorus and (E) a phosphoric acid ester. The amounts of the blended components are 10-60wt.% component (A), 10-90wt.% component (B) and 0-80wt.% component (C) based on the total amount of the components (A), (B) and (C) and 1-4 pts.wt. component (D) and 1-12 pts.wt. component (E) based on 100 pts.wt. total amount of the components (A), (B) and (C). The component (B) contains 1-7wt.% acrylonitrile units having a rubber phase obtained by grafting acrylonitrile onto a rubber elastomer at 40-300wt.% grafting ratio and a resin phase consisting of a (co)polymer of acrylonitrile and a vinyl aromatic compound and 5-20wt.% rubber-like elastomer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無電解メッキ用難燃樹脂組成物及びその無電
解メッキ物品に関するものである。更に詳しくは、本発
明はポリフェニレンエーテル系樹脂及びゴム状弾性体と
アクリロニトリル及びビニル芳香族化合物とのグラフト
共重合体を主体とした組成物を赤燐及びリン酸エステル
で難燃化して得た、脱脂、エツチング、触媒付与、触媒
活性化、無電解メッキの最も簡略なメッキ工程で無電解
メッキが出来る難燃樹脂組成物及び該樹脂組成物の成形
品を支持体とする無電解メッキ物品に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flame retardant resin composition for electroless plating and an electroless plated article thereof. More specifically, the present invention is obtained by flame-retardating a composition mainly composed of a polyphenylene ether resin and a graft copolymer of a rubbery elastic body, acrylonitrile, and a vinyl aromatic compound with red phosphorus and a phosphoric acid ester. A flame-retardant resin composition that can be electrolessly plated through the simplest plating process of degreasing, etching, catalyst application, catalyst activation, and electroless plating, and an electroless plated article using a molded article of the resin composition as a support. It is.

〔従来の技術とその解決課題〕[Conventional technology and issues to be solved]

近年のエレクトロニクス技術の発達と共に電子機器の発
達が進む中で、電子機器に使用されている電子部品から
発生する高周波の電磁波の進入による他の電子機器の誤
動作、受信装置のノイズ発生等の所謂電磁波障害が、社
会的な問題になりつつあり、米国や西ドイツでは、既に
規制が実施され、日本でも自主規制が実施され、更に厳
しさを増しつつある。
In recent years, with the development of electronic devices along with the development of electronics technology, so-called electromagnetic waves such as malfunctions of other electronic devices and noise generation of receiving devices due to the intrusion of high-frequency electromagnetic waves generated from electronic components used in electronic devices. Disability is becoming a social problem, and regulations have already been implemented in the United States and West Germany, and voluntary regulations have been implemented in Japan, and are becoming even stricter.

一方、エレクトロニクスの発達と歩調を合わせるように
、電子機器筐体への樹脂の使用が広がっている。通常の
樹脂筐体は導電性が無いため、電磁波シールド能が無く
、電磁波障害を助長する結果となっている。又、電子機
器用はその殆どが活電部を有するため、これに用いる筐
体も難燃性を有する必要があり、加えて耐衝撃性や耐熱
性も要求される。
On the other hand, the use of resin for electronic device housings is expanding to keep pace with the development of electronics. Ordinary resin casings do not have electrical conductivity, so they do not have the ability to shield electromagnetic waves, resulting in increased electromagnetic interference. Furthermore, since most electronic devices have live parts, the casings used therein must also be flame retardant, and are also required to have impact resistance and heat resistance.

ポリフェニレンエーテル(以後屡々PPEと略称する)
系樹脂とポリスチレン(以後屡々PSと略称する〉系樹
脂を主体とした難燃性の樹脂組成物は、機械的物性、熱
的物性、電気的物性等に優れる上に、比重が小さく、吸
水性も低い等の特性を有するため、電子機器の筐体等に
広く用いられている。
Polyphenylene ether (hereinafter often abbreviated as PPE)
Flame-retardant resin compositions based on polystyrene-based resins and polystyrene (hereinafter often abbreviated as PS)-based resins have excellent mechanical, thermal, and electrical properties, as well as low specific gravity and water absorption. Because it has characteristics such as low energy consumption, it is widely used in the housings of electronic devices and the like.

しかし、この樹脂組成物もそれ自体では導電性を持たな
いため、電磁波シールド能は無い。
However, since this resin composition itself does not have conductivity, it has no electromagnetic shielding ability.

樹脂筐体を用いて電磁波シールドする方法としては、樹
脂に導電性の充填剤を配合する方法や、導電塗装、金属
溶射、真空蒸着、スパッタリング、或いは金属メッキ等
の導電性表面処理による方法等がある。これらの方法の
中では、無電解メンキ法が、シールド効果の高さと確実
性等の点で最も優れている。一方、無電解メッキの容易
な樹脂はアクリロニトリル−ブタジェン−スチレン三元
共重合体(以後ABSと略称する)系樹脂のみであり、
他の樹脂は例外なく樹脂本体への無機充填剤の配合やメ
ッキ工程でのエツチング前処理、ポストエツチング、中
和等による表面調整や、アニーリングによる密着強度の
向上を図る等の必要があるため、物性低下やコスト高を
伴い好ましくない。又、ABSの#M燃化物(以後FR
ABSと略称する)は、熱変形温度が低い上に、難燃剤
であるハロゲン化合物による、成形金型の腐食やメッキ
工程における触媒の劣化を伴う等の問題を有する。
Methods for shielding electromagnetic waves using resin casings include adding conductive fillers to the resin, and using conductive surface treatments such as conductive coating, metal spraying, vacuum deposition, sputtering, or metal plating. be. Among these methods, the electroless Menki method is the most excellent in terms of high shielding effect and reliability. On the other hand, the only resin that can be easily electroless plated is acrylonitrile-butadiene-styrene terpolymer (hereinafter abbreviated as ABS) based resin.
With all other resins, it is necessary to mix inorganic fillers into the resin body, to condition the surface by pre-etching in the plating process, post-etching, neutralization, etc., and to improve adhesion strength by annealing. This is undesirable as it causes deterioration in physical properties and high cost. Also, ABS #M combustion material (hereinafter referred to as FR
ABS (abbreviated as ABS) has a low heat distortion temperature and also has problems such as corrosion of the molding die and deterioration of the catalyst in the plating process due to the halogen compound which is a flame retardant.

本発明者は、かかる状況の中で、無電解メッキ性の優れ
た難燃樹脂組成物を得るべく PPE系樹脂とABS系
樹脂の組合せに着目し検討を行った。米国特許第3,3
83,435号明細書には、ABS樹脂とポリ (2,
6−シメチルー1,4−フェニレン)エーテルとからな
る組成物が記載されている。しかし、該米国特許には、
アクリロニトリル単位16%、スチレン単位41%、ブ
タジェン単位43%のABS樹脂とポリフェニレンエー
テルとの配合例が示されているものの、該米国特許のポ
リスチレン又は耐衝撃性ポリスチレンと配合剤との物性
比較にも現れているように、該ABS樹脂とポリフェニ
レンエーテルとは、相溶性が極めて悪く、得られる組成
物は非常に脆く実用には供し得ない。
Under such circumstances, the present inventors focused on and studied a combination of PPE resin and ABS resin in order to obtain a flame retardant resin composition with excellent electroless plating properties. U.S. Patent No. 3,3
No. 83,435 discloses that ABS resin and poly(2,
6-dimethyl-1,4-phenylene) ether. However, the U.S. patent states:
Although a compounding example of ABS resin containing 16% acrylonitrile units, 41% styrene units, and 43% butadiene units and polyphenylene ether is shown, there is also no comparison of the physical properties of the polystyrene or high-impact polystyrene of the U.S. patent and the compounding agent. As shown, the ABS resin and polyphenylene ether have extremely poor compatibility, and the resulting composition is extremely brittle and cannot be put to practical use.

米国特許第3,663,654号明細書には、PPE系
樹脂とps系樹脂とよりなる樹脂組成物を赤燐で難燃化
する技術が記載されており、ps系樹脂の例としてAB
S樹脂を用いることが挙げられている。しかし、該米国
特許の例5に記載されているように、ABS樹脂は、M
arbon Chemica1社のBlendex40
1と極く一般的なABs樹脂であるため相溶性を改良す
るものではない。
U.S. Patent No. 3,663,654 describes a technique for making a resin composition consisting of a PPE resin and a PS resin flame retardant with red phosphorus, and uses AB as an example of the PS resin.
It is mentioned that S resin is used. However, as described in Example 5 of the US patent, ABS resin
Blendex40 from arbon Chemica1
1, which is a very common ABs resin, does not improve compatibility.

一方、ABS樹脂の如く、不飽和の二重結合を持つゴム
成分を多く含む樹脂を燐酸エステル等の燐化合物で難燃
化する場合、多量の難燃剤を配合する必要があり、耐熱
性等の物性を保つことが出来ない。前記米国特許開示の
技術は、赤燐を用いて難燃化するために耐熱性を低下さ
せるものではないが、その特許請求の範囲に記載されて
いる難燃性のレベルは、3.2mmの厚みでUL−94
規格V−1に該当するレベルに過ぎないため電子機器の
筐体に供し得ない事態が屡々生じる。
On the other hand, when making a resin containing a large amount of rubber components with unsaturated double bonds, such as ABS resin, flame retardant with a phosphorus compound such as a phosphoric acid ester, it is necessary to blend a large amount of flame retardant. Physical properties cannot be maintained. Although the technology disclosed in the above US patent does not reduce heat resistance due to the use of red phosphorus for flame retardation, the level of flame retardancy described in the claims is 3.2 mm. UL-94 in thickness
Since it is only at a level that corresponds to standard V-1, situations often arise where it cannot be used for the housing of electronic devices.

耐溶剤性及び着色性を改良した技術として、米国特許第
4,599,380号明細書には、特定のABS樹脂を
用いる方法が開示されている。しかし、該特許開示の技
術は、無電解メッキが容易で、かつ、密着性が良く、し
かも、難燃性、耐衝撃性及び耐熱性を十分に保ち得る技
術の範囲を示すものではない。
As a technique for improving solvent resistance and coloring properties, US Pat. No. 4,599,380 discloses a method using a specific ABS resin. However, the technology disclosed in the patent does not indicate the range of technology that allows easy electroless plating, good adhesion, and sufficient flame retardancy, impact resistance, and heat resistance.

一方、特開昭61−1261683公報には、PPE系
樹脂とABS樹脂とからなるメッキ物品に関する技術が
開示され、難燃剤として芳香族リン酸エステル、赤燐、
芳香族ハロゲン化合物及び三酸化アンチモンが例示され
ている。しかし、該公報には、無電解メッキ性及び難燃
性に及ぼす難燃剤の影響は全く言及されておらず、実施
例も記載されていない。
On the other hand, JP-A-61-1261683 discloses a technology related to plated articles made of PPE resin and ABS resin, and uses aromatic phosphate ester, red phosphorus, etc. as a flame retardant.
Aromatic halogen compounds and antimony trioxide are exemplified. However, this publication makes no mention of the influence of flame retardants on electroless plating properties and flame retardancy, and does not describe any examples.

従って、該公報開示の技術も又無電解メッキが容易でか
つ密着性が良く、しかも難燃性、耐衝撃性及び耐熱性を
十分に保持し得る技術の範囲を示すものではない。
Therefore, the technique disclosed in this publication also does not indicate the scope of a technique that allows easy electroless plating, good adhesion, and sufficient flame retardancy, impact resistance, and heat resistance.

このようにPPE系樹脂とABS系樹脂を成分とする従
来の組成物は、無電解メッキ性と難燃性を併せ持ち、し
かも剥離性がなく、例えば電気、電子截器の筐体として
使用し得る耐衝撃性及び耐熱性を持ち、しかも最も簡単
なメブキ工程で無電解メッキが出来る成形品を提供でき
るものではなかった。
In this way, conventional compositions containing PPE resin and ABS resin have both electroless plating properties and flame retardancy, and are not peelable, so they can be used, for example, as casings for electric and electronic cutters. It has not been possible to provide a molded product that has impact resistance and heat resistance, and that can be electrolessly plated using the simplest coating process.

〔課題を解決するための手段及び作用〕本発明者は、P
PE系樹脂及びABS系樹脂を主体にして、難燃性、耐
衝撃性及び耐熱性を十分に保ちつつ、容易に無電解メン
キができる難燃樹脂組成物を得るべく鋭意検討した結果
、次に述べる知見を得た。
[Means and effects for solving the problem] The present inventor has
As a result of intensive study to obtain a flame-retardant resin composition that can be easily coated electrolessly while maintaining sufficient flame retardancy, impact resistance, and heat resistance, the following results were obtained: I obtained the following knowledge.

1) Jl燃剤として芳香族燐酸エステルを多量に使用
した場合i燃性は満足するが、樹脂組成物の熱変形温度
が低下し、これを保つためには、PPE樹脂の量を増さ
ねばならない。しかし、芳香族燐酸エステル及びPPE
樹脂の量が多くなると無電解メッキの析出性及び密着性
が低下する。
1) When a large amount of aromatic phosphoric acid ester is used as a Jl fuel, the flammability is satisfied, but the heat distortion temperature of the resin composition decreases, and in order to maintain this, the amount of PPE resin must be increased. . However, aromatic phosphate esters and PPE
If the amount of resin increases, the deposition properties and adhesion of electroless plating will decrease.

2) M燃剤として赤燐を使用した場合、樹脂組成物の
熱変形温度の低下はない。従って、赤燐を使用した場合
、難燃性が得られるだけでなく、芳香族燐酸エステル及
びPPE樹脂の量を減じられるため優れた無電解メッキ
性が得られる。多量の赤燐を用いた場合、樹脂組成物の
耐衝撃性が低下′Xl−る。
2) When red phosphorus is used as the M fuel, there is no decrease in the heat distortion temperature of the resin composition. Therefore, when red phosphorus is used, not only flame retardance is obtained, but also excellent electroless plating properties are obtained because the amounts of aromatic phosphoric acid ester and PPE resin can be reduced. When a large amount of red phosphorus is used, the impact resistance of the resin composition decreases.

耐ih撃性を損なうことなく必要な難燃性を得るために
は、赤燐と芳香族燐酸エステルを併用する必要がある。
In order to obtain the necessary flame retardancy without impairing induction shock resistance, it is necessary to use red phosphorus and aromatic phosphate ester together.

3) ABS樹脂とPPE樹脂の相溶性を改良した場合
、無電解メッキは均一な厚さで密着性も良いものが得ら
れる。
3) If the compatibility of ABS resin and PPE resin is improved, electroless plating can provide uniform thickness and good adhesion.

4) ABS樹脂の量が多すぎると、工・ノチング工程
での成形品表面が、工・ノチング過剰になるため無電解
メッキ品の表面状態が悪化する。
4) If the amount of ABS resin is too large, the surface of the molded product will be excessively worked and notched during the working and notching process, which will deteriorate the surface condition of the electroless plated product.

5) PPE樹脂/ABS樹脂組成物中のアクリロニト
リル量は、成形品の剥離性だけでなく、無電解メッキの
析出量や密着性にも大きな影響を持つ。
5) The amount of acrylonitrile in the PPE resin/ABS resin composition has a large effect not only on the releasability of the molded product but also on the amount of precipitation and adhesion of electroless plating.

これらの新しい知見に基づいて、本発明者しま、更に研
究を進め、本発明を完成した。
Based on these new findings, the present inventor Shima further conducted research and completed the present invention.

即ち、本発明は、(A)ポリフェニレンニーアル系樹脂
が成分(A)、CB)及び(C)の総量当り10〜60
重量%、(B)ゴム変性樹脂組底物力<成分(A)、(
B)及び(C)の総量当り10〜90重量%、(C)ポ
リスチレン系樹脂が成分(A)、(B)及び(C)の総
量当り0〜80重量%、(D)赤燐が成分(A)、(B
)及び(C)100重量部乙こ対して1〜4重量部、及
び(E)燐酸エステル成分が成分(A)、(B)及び(
C)100重量部に対して1〜12重量部、よりなり、
成分(B)のゴム変性樹脂組成物が(α)ゴム状弾性体
にアクリロニトリル単位及びビニル芳香族化合物単位が
グラフト共重合したグラフトゴム相と(β)アクリロニ
トリル単位及びビニル芳香族化合物の重合体及び共重合
体よりなる樹脂相からなり、グラフトゴム相(α)のグ
ラフト率が40〜300%、ゴム状弾性体にグラフトし
たグラフト成分中及び樹脂相(β)中のアクリロニトリ
ル単位の量が、夫々10〜30重量%及び3〜9重量%
であり、かつ、成分(A)(B)及び(C)の総量中に
占めるアクリロニトリル単位及びゴム状弾性体の量が夫
々1〜7重量%及び5〜20重量%であることを特徴と
する無電解メッキ用難燃樹脂組成物を提供するものであ
る。
That is, in the present invention, (A) polyphenylene Nial resin has a content of 10 to 60% based on the total amount of components (A), CB) and (C).
Weight %, (B) Rubber modified resin sole physical strength < Component (A), (
10 to 90% by weight based on the total amount of components (B) and (C), (C) polystyrene resin is 0 to 80% by weight based on the total amount of components (A), (B) and (C), and (D) red phosphorus is a component (A), (B
) and (C) 1 to 4 parts by weight relative to 100 parts by weight, and (E) the phosphoric acid ester component is the component (A), (B) and (
C) 1 to 12 parts by weight per 100 parts by weight,
The rubber-modified resin composition of component (B) comprises (α) a graft rubber phase in which acrylonitrile units and vinyl aromatic compound units are graft copolymerized onto a rubbery elastomer, (β) a polymer of acrylonitrile units and vinyl aromatic compound units, and It consists of a resin phase made of a copolymer, the graft ratio of the graft rubber phase (α) is 40 to 300%, and the amounts of acrylonitrile units in the graft component grafted to the rubber-like elastic body and in the resin phase (β) are respectively 10-30% by weight and 3-9% by weight
and characterized in that the amounts of acrylonitrile units and rubber-like elastic bodies in the total amount of components (A), (B), and (C) are 1 to 7% by weight and 5 to 20% by weight, respectively. The present invention provides a flame retardant resin composition for electroless plating.

本発明の技術によって得られるH燃組成物の成形品は、
脱脂、エツチング、触媒付与、触媒活性化及び無電解メ
ッキの標準工程で無電解メ・ツキが出来るため最も低い
コストでメッキ品が得られる。
The molded article of the H fuel composition obtained by the technique of the present invention is
Electroless plating can be performed using the standard processes of degreasing, etching, catalyst application, catalyst activation, and electroless plating, so plated products can be obtained at the lowest cost.

又、PPE系樹脂の含有量によって任意の熱変形温度の
樹脂組成物が得られるためFRABSのように熱変形温
度が低い故に用途が限定されることもない。
Furthermore, since a resin composition having an arbitrary heat distortion temperature can be obtained depending on the content of the PPE resin, the application is not limited due to the low heat distortion temperature unlike FRABS.

更に、メンキ工程での触媒の劣化の促進や残留歪による
応力亀裂の発生等も無く、優れた作業性を持つものであ
る。
Furthermore, there is no acceleration of deterioration of the catalyst in the coating process, no generation of stress cracks due to residual strain, and excellent workability.

本発明の難燃組成物の成形品を支持体とする無電解メッ
キ物品は密着性に優れ、粘着テープ剥離法による剥離テ
ストや一40℃と熱変形温度の10℃下の温度の間での
冷熱サイクルテスト等でメッキ部分が剥離することはな
い。更に、該メッキ物品はボス内部や嵌合部のコーナー
等まで完全にメッキされるため電磁波のシールド不良を
起こすことはなく、社会的な問題になりつつある電磁波
障害に関する問題の解決に役立つものである。加えて耐
衝撃性や難燃性が十分優れているため、外力による破壊
に基づくシールド性の悪化にも十分抗し得るものである
Electroless plated articles using the molded article of the flame retardant composition of the present invention as a support have excellent adhesion, and can be tested in peel tests using adhesive tape peeling methods and at temperatures between -40°C and 10°C below the heat distortion temperature. The plated parts will not peel off during thermal cycle tests, etc. Furthermore, since the plated product is completely plated to the inside of the boss and the corners of the mating parts, there will be no electromagnetic shielding failure, and it will help solve problems related to electromagnetic interference, which is becoming a social issue. be. In addition, since it has sufficiently excellent impact resistance and flame retardancy, it can sufficiently resist deterioration in shielding properties due to destruction caused by external forces.

本発明の組成物において、(A)成分として用いられる
ポリフェニレンエーテルは、一般式(式中のR1及びR
2は、夫々独立に直鎖状又は第−級若しくは第二級分岐
鎮状の炭素数1〜4のアルキル、ヒドロキシアルキル又
はハロアルキル基、アリール基、ハロゲン原子又は水素
原子であるが、R1及びR2は同時に水素原子になるこ
とはない)で示される繰り返し単位をからなる単独重合
体、前記一般式(1)で示される繰り返し単位と、般式
(It) (式中のR3、R4、炉及びR6は、夫々独立に直鎖状
又は第−級若しくは第二級分岐鎖状の炭素数1〜4のア
ルキル、ヒドロキシアルキル又はハロアルキル基、アリ
ール基、ハロゲン原子又は水素原子であるが、を及びR
6は同時に水素原子になることはない) で示される繰り返し単位とからなる共重合体、これらの
単独重合体や共重合体にスチレンをグラフト重合させた
グラフト共重合体などである。
In the composition of the present invention, the polyphenylene ether used as component (A) has the general formula (R1 and R
2 is each independently a linear, primary or secondary branched alkyl, hydroxyalkyl or haloalkyl group, aryl group, halogen atom or hydrogen atom having 1 to 4 carbon atoms, but R1 and R2 are not hydrogen atoms at the same time), a homopolymer consisting of repeating units represented by the general formula (1) and general formula (It) (in which R3, R4, furnace and R6 is each independently a linear, secondary or secondary branched alkyl, hydroxyalkyl or haloalkyl group, aryl group, halogen atom or hydrogen atom having 1 to 4 carbon atoms, and R
6 is not a hydrogen atom at the same time), and graft copolymers obtained by graft polymerizing styrene to these homopolymers or copolymers.

これらのポリフェニレンエーテルは、米国特許第3,8
25,521号、同第4.558.119号、同第4.
188゜277号明m書の方法などで製造することがで
きる。
These polyphenylene ethers are described in U.S. Pat.
No. 25,521, No. 4.558.119, No. 4.
It can be manufactured by the method described in Memorandum No. 188°277.

これらの重合体、共重合体及びグラフト共重合体は、ア
セチル化、エステル化、ベンゾイル化等によって化学処
理し、末端を安定化したものであっても良い。
These polymers, copolymers, and graft copolymers may be chemically treated by acetylation, esterification, benzoylation, etc. to stabilize the ends.

ポリフェニレンエーテルの単独重合体の代表例としては
、ポリ (2,6−シメチルー1.4−フェニレン)エ
ーテル、ポリ (2−メチル−6−エチル−1,4−フ
エニレン)エーテル、ポリ (2,6−シエチルー1.
4−フェニレン)エーテル、ポリ (2−エチル−6−
n−7”ロビルー1,4−フェニレン)エーテル、ポリ
 (2,6−ジn−プロピル−1,4−フェニレン)エ
ーテル、ポリ(2−メチル−6−n−ブチル−1,4−
フェニレン)エーテル、ポリ (2−エチル−6−イソ
プロビル−1,4−フエニレン)エーテル、ポリ (2
−メチル−6−クロロ−1,4−フェニレン)エーテル
、ポリ (2−メチル−6ヒドロキシエチルー1.4−
フェニレン)エーテル、ポリ (2−メチル−6−クロ
ロエチル−1,4〜フエニレン)エーテルなどのホモポ
リマーが挙げられる。
Typical examples of homopolymers of polyphenylene ether include poly(2,6-dimethyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, and poly(2,6-dimethyl-1,4-phenylene) ether. -Siechilu 1.
4-phenylene)ether, poly(2-ethyl-6-
n-7” lobi-1,4-phenylene)ether, poly(2,6-di-n-propyl-1,4-phenylene)ether, poly(2-methyl-6-n-butyl-1,4-
phenylene) ether, poly (2-ethyl-6-isopropyl-1,4-phenylene) ether, poly (2
-Methyl-6-chloro-1,4-phenylene)ether, poly(2-methyl-6hydroxyethyl-1,4-
Examples include homopolymers such as phenylene) ether and poly(2-methyl-6-chloroethyl-1,4-phenylene) ether.

ポリフェニレンエーテル共重合体は、2,6−シメチル
フエノールと、0−クレゾール又は一般式(式中のR3
、R4、R5及び炉は前記と同じ意味を持つ) で表される2、3.6−ドリメチルフエノールなどのア
ルキルM換フェノールと共重合して得られるポリフェニ
レンエーテル共重合体を包含する。
The polyphenylene ether copolymer is composed of 2,6-dimethylphenol and 0-cresol or the general formula (R3 in the formula
, R4, R5 and furnace have the same meanings as above).

又、ポリフェニレンエーテルの重合度はホモポリマー、
共重合体共に固有粘度〔η〕 (クロロホルムン容Y夜
、30”C)で0.30〜1.5、好ましくは0.4〜
1.0の範囲のものが用いられる。
In addition, the degree of polymerization of polyphenylene ether is homopolymer,
Both copolymers have an intrinsic viscosity [η] (Chloroformin content, 30"C) of 0.30 to 1.5, preferably 0.4 to 1.5.
A value in the range of 1.0 is used.

本発明の組成物において、(B)成分として用いられる
ゴム変性樹脂組成物は、(α)グラフトゴム相と(β)
樹脂相からなる。グラフトゴム相(α)は、ゴム状弾性
体にアクリロニトリル単位とビニル芳香族化合物単位と
よりなるグラフトa分がグラフトしたものである。樹脂
相(β)はアクリロニトリルとビニル芳香族化合物との
共重合体、アクリロニトリルのホモポリマー及びビニル
芳香族化合物のホモポリマー又はこれらの一種以上の混
合物である。
In the composition of the present invention, the rubber-modified resin composition used as component (B) comprises (α) a grafted rubber phase and (β)
Consists of a resin phase. The grafted rubber phase (α) is obtained by grafting a graft a consisting of an acrylonitrile unit and a vinyl aromatic compound unit onto a rubber-like elastic body. The resin phase (β) is a copolymer of acrylonitrile and a vinyl aromatic compound, a homopolymer of acrylonitrile, a homopolymer of a vinyl aromatic compound, or a mixture of one or more of these.

ゴム変性樹脂組成物(B)のグラフトゴム相(α)に用
いられるゴム状弾性体は、共役ジエン系ゴムの如く二重
結合を有するものが望ましく、例えば、ポリブタジェン
、スチレンーブダジェン共重合体、ブタジェン−ANP
:重合体、スチレン−ブタジェン・ブロック共重合体、
ポリイソプレン、天然ゴム等である。エチレン−プロピ
レン共重合体或いはスチレン−ブタジェン・ブロック共
重合体の水素添加物の如く共役二重結合を含まないゴム
状弾性体を使用した場合は、エツチングされ難く、アン
カー効果が少なくなり、メッキ密着性が劣悪になるため
避けた方が良い。
The rubber-like elastic body used in the graft rubber phase (α) of the rubber-modified resin composition (B) is preferably one having a double bond such as a conjugated diene rubber, such as polybutadiene, styrene-butadiene copolymer, Butadiene-ANP
: Polymer, styrene-butadiene block copolymer,
Polyisoprene, natural rubber, etc. When using a rubber-like elastic material that does not contain conjugated double bonds, such as hydrogenated ethylene-propylene copolymer or styrene-butadiene block copolymer, it is difficult to be etched, the anchoring effect is reduced, and plating adhesion is reduced. It is better to avoid it as it causes poor quality.

ゴム変性樹脂組成物(B)のグラフトゴム相(α)及び
樹脂相(β)に用いられるビニル芳香族化合物は、次の
一般式(rV) (式中、Rは水素原子、ハロゲン原子又はアルキル基で
あり、Zは水素原子、ハロゲン原子、ビニル基又はアル
キル基であり、pは1〜5の整数である。) で表されるものであり、これらを1種以上使用すること
ができる。上記ビニル芳香族化合物の具体例としては、
スチレン、α−メチルスチレン、ビニルトルエン、ビニ
ルエチルベンゼン、ビニルキシレン、ter t−ブチ
ルスチレン、クロルスチレン等が挙げられる。
The vinyl aromatic compound used in the graft rubber phase (α) and resin phase (β) of the rubber modified resin composition (B) has the following general formula (rV) (wherein, R is a hydrogen atom, a halogen atom, or an alkyl atom). Z is a hydrogen atom, a halogen atom, a vinyl group, or an alkyl group, and p is an integer of 1 to 5.) One or more types of these can be used. Specific examples of the above vinyl aromatic compounds include:
Examples include styrene, α-methylstyrene, vinyltoluene, vinylethylbenzene, vinylxylene, tert-butylstyrene, chlorostyrene, and the like.

グラフトゴム相(α)に用いられるビニル芳香族化合物
は樹脂相(β)に用いられるものと同しである必要はな
い。換言すれば、グラフトゴム相(α)に用いられるビ
ニル芳香族化合物は樹脂相(β)で用いたものでも良く
、無関係に上述のビニル芳香族化合物から選ぶこともで
きる。
The vinyl aromatic compound used in the grafted rubber phase (α) need not be the same as that used in the resin phase (β). In other words, the vinyl aromatic compound used in the grafted rubber phase (α) may be the same as that used in the resin phase (β), or may be selected independently from the vinyl aromatic compounds described above.

本発明において、成分(B)中のグラフトゴム相(α)
のゴム状弾性体に対するグラフト成分のグラフト率は4
0〜300%、好ましくは40〜200 %の範囲が望
ましい。グラフト率が40%以下の場合は、成分(A)
及び(C)と成分(B)の相溶性が不十分なため成形品
に剥離が生じ易くなると共に成分(B)の分散性が悪く
なるためメッキの厚さに斑が生し、密着性も低下するた
め好ましくない。グラフト率が300%を超えるものを
得ようとすれば、重合時間を著しく長くする必要がある
ため経済的な観点から好ましくない。
In the present invention, the graft rubber phase (α) in component (B)
The grafting ratio of the graft component to the rubber-like elastic body is 4
A range of 0 to 300%, preferably 40 to 200% is desirable. If the grafting rate is 40% or less, component (A)
Also, due to insufficient compatibility between (C) and component (B), molded products tend to peel off, and the dispersibility of component (B) deteriorates, resulting in uneven plating thickness and poor adhesion. This is not preferable because it lowers the temperature. In order to obtain a graft with a graft ratio exceeding 300%, it is necessary to significantly lengthen the polymerization time, which is not preferable from an economic point of view.

グラフト成分及び樹脂相(β)中のアクリロニトリル単
位の含有量は、夫々10〜30重量%及び3〜9重量%
の範囲が望ましい。グラフト成分及び樹脂相(β)中の
アクリロニトリル単位の含有量が夫々10重量%及び3
重量%を下回る場合は、成形品表面への無電解メッキ析
出が難しく、密着性も悪化する。一方、含有量が夫々3
0重量%及び9重量%を上回る場合は、成形品が剥離し
易くなるばかりでなく、無電解メッキ工程でエツチング
され難くなる。
The content of acrylonitrile units in the graft component and the resin phase (β) is 10 to 30% by weight and 3 to 9% by weight, respectively.
A range of is desirable. The content of acrylonitrile units in the graft component and resin phase (β) is 10% by weight and 3% by weight, respectively.
When the amount is less than % by weight, it is difficult to deposit electroless plating on the surface of the molded product, and the adhesion is also deteriorated. On the other hand, the content is 3
If it exceeds 0% by weight or 9% by weight, the molded product will not only easily peel off, but also be difficult to be etched in the electroless plating process.

本発明の組成物の成分(B)としてのゴム変性樹脂組成
物は、後述するように、ゴム状弾性体、アクリロニトリ
ル及びビニル芳香族化合物から容易に得ることができる
。ゴム変性樹脂組成物の代表例として例えばアクリロニ
トリル、スチレン及びブタジェンよりなるグラフトゴム
相(α)とアクリロニトリル及びスチレンよりなる樹脂
相(β)の二つの相よりなるABS樹脂やABS樹脂〔
グラフトゴム相(α)として〕と〕アクリロニトリルー
スチレン樹脂樹脂相(β)として〕の混合物がある。
The rubber-modified resin composition as component (B) of the composition of the present invention can be easily obtained from a rubbery elastomer, acrylonitrile, and a vinyl aromatic compound, as described below. Typical examples of rubber-modified resin compositions include ABS resins and ABS resins consisting of two phases: a graft rubber phase (α) made of acrylonitrile, styrene, and butadiene, and a resin phase (β) made of acrylonitrile and styrene.
There is a mixture of a graft rubber phase (α) and an acrylonitrile-styrene resin phase (β).

本発明の組成物において、(C)成分として用いられる
ポリスチレン系樹脂は、通常PPE樹脂と共に用いられ
る当業者には周知のものである。因にこれを述べれば、
一般式(IV)で表される化合物から誘導される単位を
少なくとも25重量%有する樹脂である。例示すると、
ホモポリマーとしては、例えばポリスチレン、共重合体
としては、例えばスチレン−無水マレイン酸共重合体、
変性ポリスチレンとしては、例えばゴム変性ポリスチレ
ンなどが挙げられる。本発明に特に好適なPS系樹脂戊
9は、ゴム変性耐衝撃性ポリスチレン樹脂(以下屡々旧
psと略称する)、例えば天然又は台底ゴムで変性され
たポリスチレンである。変性用合成ゴムは、例えばポリ
ブタジェン、ポリイソプレン、スチレン−ブタジェン共
重合体等があるが、中でもポリスチレンをポリブタジェ
ンゴムで変性するのが最も好適である。
In the composition of the present invention, the polystyrene resin used as component (C) is commonly used in conjunction with PPE resin and is well known to those skilled in the art. By the way, if I mention this,
The resin has at least 25% by weight of units derived from the compound represented by the general formula (IV). For example,
Examples of the homopolymer include polystyrene, and examples of the copolymer include styrene-maleic anhydride copolymer,
Examples of modified polystyrene include rubber-modified polystyrene. Particularly suitable PS-based resins for the present invention are rubber-modified high-impact polystyrene resins (hereinafter often abbreviated as old PS), such as polystyrenes modified with natural or base rubber. The synthetic rubber for modification includes, for example, polybutadiene, polyisoprene, styrene-butadiene copolymer, etc. Among them, it is most suitable to modify polystyrene with polybutadiene rubber.

本発明において、成分(A)、(B)及び(C)の総重
量中の(A)成分であるPPP樹脂の量は10〜60重
量%の範囲が、好ましくは20〜40i量%の範囲が望
ましい。含有量が10重量%を下回る場合には、PPE
系樹脂による改良効果が十分発揮されないため好ましく
なく、60重量%を上回る場合、クロム酸を含むエツチ
ング液で表面が侵され過ぎるためメッキの密着性が損な
われ、しかも表面が荒れるため好ましくない。
In the present invention, the amount of the PPP resin as component (A) in the total weight of components (A), (B) and (C) is in the range of 10 to 60% by weight, preferably in the range of 20 to 40% by weight. is desirable. If the content is less than 10% by weight, PPE
This is undesirable because the improvement effect of the system resin is not fully exhibited, and if it exceeds 60% by weight, the surface is too attacked by the etching solution containing chromic acid, impairing the adhesion of plating, and furthermore, the surface becomes rough, which is undesirable.

本発明において、成分(A)、(B)及び(C)の総重
量中の(B)成分であるゴム変性樹脂組成物の量は、成
分(B)中のゴム状弾性体量及びアクリロニトリル単位
量によって異なるが、通常10〜90重量%、好ましく
は15〜70重量%の範囲より選ばれる。含有量が10
重量%を下回る場合には、十分な無電解メッキ性が得ら
れず、90重量%を上回る場合にはPPE系樹脂を必要
量添加できないため好ましくない。
In the present invention, the amount of the rubber-modified resin composition that is component (B) in the total weight of components (A), (B), and (C) is determined by the amount of rubbery elastic body in component (B) and the acrylonitrile unit. Although it varies depending on the amount, it is usually selected from the range of 10 to 90% by weight, preferably 15 to 70% by weight. Content is 10
If it is less than 90% by weight, sufficient electroless plating properties cannot be obtained, and if it exceeds 90% by weight, the required amount of PPE resin cannot be added, which is not preferable.

本発明において、成分(A)、(B)及び(C)の総重
量中の(C)成分であるps系樹脂の量は0〜80重量
%好ましくは0〜65重量%の範囲が望ましい。本発明
において、成分(C)は成分(A)と成分(B)間の相
溶性、最終組成物の熱変形温度及び耐衝撃性の調節のた
め80重量%まで添加できる。成分(C)のゴム変性樹
脂組成物が相溶性良好で適切な熱変形温度及び耐衝撃性
を持つ場合、添加する必要がない。成分(C)が80重
量%を超える場合は、成分(A)及び/又は(B)を本
発明の目的を達成するための十分な量添加できない。
In the present invention, the amount of the PS resin as component (C) in the total weight of components (A), (B) and (C) is preferably in the range of 0 to 80% by weight, preferably 0 to 65% by weight. In the present invention, component (C) can be added up to 80% by weight to adjust the compatibility between component (A) and component (B), the heat distortion temperature and impact resistance of the final composition. If the rubber-modified resin composition of component (C) has good compatibility and has appropriate heat distortion temperature and impact resistance, it is not necessary to add it. If component (C) exceeds 80% by weight, component (A) and/or (B) cannot be added in a sufficient amount to achieve the object of the present invention.

本発明において、成分(A)、(B)及び(C)の総重
量中に占めるゴム変性樹脂組成物中のアクリロニトリル
(以下屡々ANと略称する)単位の量は、1〜7重量%
、好ましくは1〜5重量%の範囲が望ましい。AN単位
が1重量%を下回る場合は、無電解メッキ工程において
成形品表面にメッキを析出させるに必要な触媒(例えは
パラジウム)が析出し難くなる。AN単位が7重量%を
上回る場合には、エツチング工程でPPE系樹脂が侵さ
れないで済む条件下では、エツチングがされ難くなり、
メッキの密着性が劣悪になるためと、実質的に剥離のな
い組成物が得られないため好ましくない。
In the present invention, the amount of acrylonitrile (hereinafter often abbreviated as AN) units in the rubber modified resin composition in the total weight of components (A), (B) and (C) is 1 to 7% by weight.
, preferably in the range of 1 to 5% by weight. When the AN unit content is less than 1% by weight, it becomes difficult to deposit a catalyst (for example, palladium) necessary for depositing plating on the surface of the molded product in the electroless plating process. When the AN unit content exceeds 7% by weight, it becomes difficult to etch under conditions where the PPE resin is not attacked during the etching process.
This is undesirable because the adhesion of plating becomes poor and a composition that is substantially free from peeling cannot be obtained.

本発明において、成分(A)、(B)及び(C)の総重
量中に占めるゴム状弾性体の含有量は、5〜20重量%
の範囲、好ましくは5〜15重量%の範囲である。ゴム
状弾性体量が5重量%未満では、アンカー効果の不足か
らメッキの密着性が得られず、20重量%を超えると、
H燃比が困難になると共にエツチング過剰になるためメ
ッキ表面が著しく荒れる。
In the present invention, the content of the rubber-like elastic body in the total weight of components (A), (B) and (C) is 5 to 20% by weight.
, preferably in the range of 5 to 15% by weight. If the amount of rubber-like elastic material is less than 5% by weight, plating adhesion cannot be obtained due to insufficient anchoring effect, and if it exceeds 20% by weight,
The H fuel ratio becomes difficult and the plated surface becomes extremely rough due to excessive etching.

本発明に使用し得る(D) 成分である赤燐は特に限定
されるものではないが、熱硬化性樹脂や無機物によって
被覆されたものが安全性の上から好ましい。熱硬化性樹
脂としては、例えばフェノール樹脂、エポキシ樹脂、ジ
ビニルベンゼンとスチレンとの共重合体等が挙げられ、
無機物としては、酸化チタン、珪酸化合物等が挙げられ
る。
The red phosphorus that is component (D) that can be used in the present invention is not particularly limited, but it is preferably coated with a thermosetting resin or an inorganic substance from the viewpoint of safety. Examples of thermosetting resins include phenol resins, epoxy resins, copolymers of divinylbenzene and styrene, etc.
Examples of inorganic substances include titanium oxide and silicic acid compounds.

本発明に使用し得る(E)7m分であるv4酸エステル
は特に限定されるものではないが、芳香族燐酸エステル
類が最も効果的であり、その具体例としては、トリフェ
ニルホスフェート、トリクレジルホスフェート、トリキ
シレニルホスフェート、タレジルジフェニルホスフェー
ト、キシレニルジフェニルホスフェート、ジキシレニル
フェニルホスフェート、ヒドロキノンビスホスフェート
、レゾルシノールビスホスフェート、ビスフェノールA
ビスホスフェートなどが挙げられ、単独でも2種以上組
み合わせて使用しても良い。
The (E) 7 mV4 acid ester that can be used in the present invention is not particularly limited, but aromatic phosphoric esters are the most effective, and specific examples thereof include triphenyl phosphate, trichloride, Dyl phosphate, tricylenyl phosphate, talesyl diphenyl phosphate, xylenyl diphenyl phosphate, dixylenyl phenyl phosphate, hydroquinone bisphosphate, resorcinol bisphosphate, bisphenol A
Examples include bisphosphates, which may be used alone or in combination of two or more.

本発明において、成分(A)、(B)及び(C)の10
0重量部に対する赤燐(D)の添加量は1〜4重量部の
範囲、好ましくは1.5〜3.5重量部の範囲である。
In the present invention, 10 of components (A), (B) and (C)
The amount of red phosphorus (D) added to 0 parts by weight is in the range of 1 to 4 parts by weight, preferably in the range of 1.5 to 3.5 parts by weight.

赤燐の添加量が1重量部未満では、難燃化効果が低くな
り、4重量部を超えると、耐衝撃性の低下が著しくなる
ため好ましくない。
If the amount of red phosphorus added is less than 1 part by weight, the flame retardant effect will be low, and if it exceeds 4 parts by weight, the impact resistance will be significantly lowered, which is not preferable.

本発明において、燐酸エステル(E)の添加量は、成分
(A)、(B)及び(C)の100重量部に対して1〜
12重量部、好ましくは3〜10重量部の範囲である。
In the present invention, the amount of phosphoric ester (E) added is 1 to 100 parts by weight of components (A), (B), and (C).
12 parts by weight, preferably in the range of 3 to 10 parts by weight.

燐酸エステルの添加量が1重量部に満たない場合は、難
燃性を十分に付与することができず、添加量が12重量
部を超える場合は、熱変形温度の低下及び無電解メッキ
の密着性の低下が著しくなるため好ましくない。熱変形
温度が低下した場合、これを調整するためPPE系樹脂
の含有量を増さねばならず、無電解メッキの析出性及び
密着性の悪化が助長されることからも好ましくない。
If the amount of phosphoric acid ester added is less than 1 part by weight, sufficient flame retardancy cannot be imparted, and if the amount added exceeds 12 parts by weight, the heat distortion temperature may be lowered and the adhesion of electroless plating may be reduced. This is not preferable because the quality deteriorates significantly. When the heat distortion temperature decreases, the content of the PPE resin must be increased in order to adjust this, which is also undesirable because the deterioration of electroless plating precipitation and adhesion is promoted.

本発明において、樹脂組成物を難燃化する場合PPE系
樹脂及び燐酸エステル共に添加量が増すとメッキ密着性
が低下するため高い熱変形温度を得るためにPPE系樹
脂成分の量を上げた場合、これに伴って燐酸エステルの
量を減しなければならない。
In the present invention, when making a resin composition flame retardant, if the amount of both PPE resin and phosphoric acid ester added increases, plating adhesion decreases, so when increasing the amount of the PPE resin component in order to obtain a high heat distortion temperature. , the amount of phosphoric ester must be reduced accordingly.

(B)成分であるゴム変性樹脂組成物の製造方法は、ゴ
ム変性樹脂組成物がグラフト率及びグラフトゴム相及び
樹脂相のAN含有量の点で上記の範囲内であれば、限定
されるものではない。例えばゴム変性樹脂組成物は乳化
重合、塊状重合、溶液重合、懸濁重合のような一般に知
られた重合方法で調製できる。ゴム変性樹脂組成物はグ
ラフトゴム相と樹脂相を別個に重合して二つの相を混合
しても良い。これとは別にゴム変性樹脂組成物を例えば
下のように二段法によって一度に製造することもできる
The method for producing the rubber-modified resin composition, which is component (B), is limited as long as the rubber-modified resin composition is within the above range in terms of graft ratio and AN content of the grafted rubber phase and resin phase. isn't it. For example, the rubber-modified resin composition can be prepared by commonly known polymerization methods such as emulsion polymerization, bulk polymerization, solution polymerization, and suspension polymerization. In the rubber-modified resin composition, the graft rubber phase and the resin phase may be separately polymerized and the two phases may be mixed. Alternatively, the rubber-modified resin composition can also be produced all at once, for example, by a two-step process as shown below.

それはゴム状弾性体ラテックスを含む反応器中に16〜
40重量%のANと60〜84重量%のビニル芳香族化
合物との七ツマー混合物を添加し、第一段の重合反応を
行い、AN単位が15〜40重量%である重合体10〜
90重量%を得る。次いで0〜15重量%のANと85
〜100重量%のビニル芳香族化合物との七ツマー混合
物を反応器に加え第二段の重合反応を行い、AN単位が
0〜15重言%である重合体10〜90重量%を得る。
It consists of 16~
A 7-mer mixture of 40% by weight of AN and 60-84% by weight of a vinyl aromatic compound is added to carry out the first stage polymerization reaction, resulting in polymers 10 to 10 containing 15 to 40% by weight of AN units.
Obtain 90% by weight. Then 0-15% by weight of AN and 85
A heptamer mixture with ~100% by weight of a vinyl aromatic compound is added to the reactor for a second stage polymerization reaction, yielding 10 to 90% by weight of a polymer having 0 to 15% AN units.

この方法では、樹脂相とグラフトゴム相を同時に製造で
きる。
In this method, the resin phase and the graft rubber phase can be produced simultaneously.

なお、ゴム変性樹脂組成物のグラフト状態等を分析する
方法は種々報告されている。例えば、J。
Various methods have been reported for analyzing the graft state of rubber-modified resin compositions. For example, J.

Polymer Sci、 A33825 (1965
) 、Rubber Chem、 &Techno1.
38 No、3655 (1965)等がある。
Polymer Sci, A33825 (1965
), Rubber Chem, &Techno1.
38 No., 3655 (1965), etc.

本発明者はグラフトゴム相と樹脂相との分別及びグラフ
ト率の分析を下記の方法で実施した。即ち、ゴム変性樹
脂組成物1gをメチルエチルケトン25ccに加え十分
層とう後、不溶分を0℃、20,000rpmで遠心分
離し、上澄液と沈澱物とに分離した。上澄液中には樹脂
相が含まれており、これはメタノール中に加えることに
より沈澱させ回収した。又、遠心分離により得られた沈
澱物はグラフトゴム相として分離回収した。本発明に云
うグラフト率は下記の計算式より求めた。
The present inventor carried out separation of the grafted rubber phase and resin phase and analysis of the grafting rate using the following method. That is, 1 g of the rubber-modified resin composition was added to 25 cc of methyl ethyl ketone, and after sufficient layering, the insoluble matter was centrifuged at 0° C. and 20,000 rpm to separate the supernatant liquid and the precipitate. The supernatant liquid contained a resin phase, which was precipitated and recovered by adding it to methanol. Further, the precipitate obtained by centrifugation was separated and recovered as a graft rubber phase. The grafting rate referred to in the present invention was determined using the following formula.

又、グラフトゴム相及び樹脂相中のAN単位の量は、窒
素の量を元素分析することで求めた。
Further, the amount of AN units in the graft rubber phase and resin phase was determined by elemental analysis of the amount of nitrogen.

本発明の組成物に他の添加剤、例えば、可塑剤、安定剤
、紫外線吸収剤、着色剤、離型剤及びガラス繊維、炭素
繊維などの繊維状補強剤、更にはガラスピーズ、炭酸カ
ルシウム、タルク等の充填剤を添加し得る。
Other additives may be added to the composition of the present invention, such as plasticizers, stabilizers, ultraviolet absorbers, colorants, mold release agents, and fibrous reinforcing agents such as glass fibers and carbon fibers, as well as glass peas, calcium carbonate, Fillers such as talc may be added.

可塑剤としては、ポリブテン、低分子量ポリエチレン、
ミネラルオイル、エポキシ化大豆油、ポリエチレングリ
コール、脂肪酸エステル類が特に有効である。
Plasticizers include polybutene, low molecular weight polyethylene,
Mineral oil, epoxidized soybean oil, polyethylene glycol, and fatty acid esters are particularly effective.

安定剤としては、亜燐酸エステル類、ヒンダードフェノ
ール類、アルカノ−ルアくン類、酸アミド類、ジチオカ
ルバミン酸金属塩類、無機硫化物類、金属酸化物類の中
から単独で又は組合せて使用することができる。
As stabilizers, phosphorous esters, hindered phenols, alkanolamines, acid amides, dithiocarbamic acid metal salts, inorganic sulfides, and metal oxides may be used alone or in combination. be able to.

本発明を構成する各成分を混合する方法は如何なる方法
でも良いが、例えば押出機、加熱ロール、バンバリーく
キサ−、ニーダ−等を使用することができる。
Any method may be used to mix the components constituting the present invention, and for example, an extruder, heated roll, Banbury mixer, kneader, etc. can be used.

無電解メッキ物品は、本発明の難燃樹脂組成物を射出成
形、圧縮成形或いはブロー成形等によって底形した成形
品に無電解メッキを施したものである。
The electroless plated article is obtained by applying electroless plating to a bottom-shaped molded article made of the flame retardant resin composition of the present invention by injection molding, compression molding, blow molding, or the like.

本発明によって得た無電解メッキ物品は、樹脂に導電性
の充填剤を配合する方法や導電塗装、金属溶射、真空蒸
着或いはスパッタリング等の方法で得たものに比べ、電
磁波シールド効果及びシールドの確実性において数段優
れたものである。
The electroless plated article obtained by the present invention has a better electromagnetic shielding effect and shielding reliability than those obtained by mixing a conductive filler with resin, conductive coating, metal spraying, vacuum evaporation, sputtering, etc. It is much superior in terms of performance.

〔実施例〕〔Example〕

本発明をより詳細に記述するために実施例及び比較例に
より説明するが、本発明の範囲はこれらの実施例にのみ
限定されるものではない。なお以下に示す%及び部は夫
々重量%及び重量部である。
EXAMPLES In order to describe the present invention in more detail, Examples and Comparative Examples will be described, but the scope of the present invention is not limited only to these Examples. Note that % and parts shown below are weight % and parts by weight, respectively.

ゴム・   、  の1− ゴム状弾性体とAN及びビニル芳香族化合物とよりなる
ゴム変性樹脂組成物は二つの方法で製造した。夫々の代
表的な製造方法を以下に示す。
1 - A rubber-modified resin composition comprising a rubbery elastomer, AN and a vinyl aromatic compound was produced by two methods. Typical manufacturing methods for each are shown below.

立法上 方法1はグラフトゴム相と樹脂相を別個に調製しそれら
を組合せる方法である。
Legislative Method 1 is a method in which the graft rubber phase and the resin phase are prepared separately and then combined.

(1)  グラフトゴム相用ラテックスの調製重量平均
粒径4500Eのポリブタジェンラテックスを固形分で
60部と水120部とを反応器に仕込み、攪拌下窒素雰
囲気中で70℃に加熱した。次いで6810部とスチレ
ン30部及びドデシルメルカプタン0.1部からなるモ
ノマー相と、過硫化カリウム0.2部と水50部との水
溶液を各々5時間に亘って連続的にポリブタジェンラテ
ックスに添加した。添加終了後反応器を70℃に保ち、
2時間かけ重合を完結した。七ツマ−の転化率は95%
であった。
(1) Preparation of latex for graft rubber phase 60 parts solids of polybutadiene latex having a weight average particle size of 4500E and 120 parts water were charged into a reactor and heated to 70° C. in a nitrogen atmosphere with stirring. Next, a monomer phase consisting of 6,810 parts of styrene, 30 parts of styrene, and 0.1 part of dodecyl mercaptan, and an aqueous solution of 0.2 parts of potassium persulfide and 50 parts of water were each continuously added to the polybutadiene latex over a period of 5 hours. did. After the addition is complete, keep the reactor at 70°C.
Polymerization was completed over 2 hours. Conversion rate of Nanatsuma is 95%
Met.

(2)  樹脂相用ラテックスの調製 120部の水と1部の不均化ロジン酸石鹸を反応器に仕
込み、攪拌下窒素雰囲気中にて70℃に加熱した。次い
で4.5部のANと95.5部のスチレンと0.2部の
ドデシルメルカプタンからなるモノマー相と過硫化カリ
ウムo 、 2 gと水50eとの水溶液を各々5時間
に亘って連続的に反応器に添加した。添加終了後反応器
を70℃にて2時間保ち重合反応を完結した。モノマー
の転化率は96%であった。
(2) Preparation of latex for resin phase 120 parts of water and 1 part of disproportionated rosin acid soap were charged into a reactor and heated to 70° C. under stirring in a nitrogen atmosphere. Next, a monomer phase consisting of 4.5 parts of AN, 95.5 parts of styrene, and 0.2 parts of dodecyl mercaptan, an aqueous solution of 2 g of potassium persulfide, and 50 e of water were each continuously added for 5 hours. added to the reactor. After the addition was completed, the reactor was kept at 70° C. for 2 hours to complete the polymerization reaction. The monomer conversion rate was 96%.

(3)  ゴム変性樹脂組成物の調製 上で調製したグラフトゴム相用ラテックスを固形分とし
て52部と上で調製した樹脂相用ラテックスを固形分と
して48部を十分に混合して分散させた。得られたラテ
ックスに2部の硫酸アルミニウムを加えて塩析した後濾
過した。得られたケーキを水洗、乾燥してゴム変性樹脂
組成物を得た。
(3) Preparation of Rubber Modified Resin Composition 52 parts of the latex for the graft rubber phase prepared above as a solid content and 48 parts of the latex for the resin phase prepared above as a solid content were thoroughly mixed and dispersed. The obtained latex was salted out by adding 2 parts of aluminum sulfate, and then filtered. The obtained cake was washed with water and dried to obtain a rubber modified resin composition.

得られたゴム変性樹脂組成物を前述した方法で分別して
分析した。結果は次の如くである。
The obtained rubber modified resin composition was fractionated and analyzed by the method described above. The results are as follows.

ポリブタジェン量        32%グラフト率 
          52%グラフト威分中のAN量 
     24%非グラフト相中のAN量      
7%(4)  グラフト率とAN量の調整 グラフト相の調製において、グラフト率は通常ドデシル
メルカプタンの量で調整する。ドデシルメルカプタンの
添加量が多くなれば、グラフト率は低下する。グラフト
率は重合時のゴムと七ツマ−の量比或いは反応器に添加
するモノマー相と過硫酸カリウムの添加時間を変えるこ
とによって調整できる。
Polybutadiene amount 32% grafting rate
AN amount in 52% graft strength
24% AN amount in non-grafted phase
7% (4) Adjustment of graft ratio and AN amount In the preparation of the graft phase, the graft ratio is usually adjusted by the amount of dodecyl mercaptan. As the amount of dodecyl mercaptan added increases, the grafting rate decreases. The grafting rate can be adjusted by changing the ratio of rubber and hexamer during polymerization, or by changing the monomer phase added to the reactor and the addition time of potassium persulfate.

グラフ)6分のAN量はグラフトゴム相のラテックスの
調製時に加えるAN量を変化させることで調整できる。
Graph) The amount of AN for 6 minutes can be adjusted by changing the amount of AN added when preparing the latex of the graft rubber phase.

非グラフト相のAN量は樹脂相ラテックスの調製時に添
加するAN量及びグラフトゴム相ラテックスと樹脂相ラ
テックスの混合比によって調整できる。
The amount of AN in the non-grafted phase can be adjusted by the amount of AN added during preparation of the resin phase latex and the mixing ratio of the grafted rubber phase latex and the resin phase latex.

1造ニー 重量平均粒子径4500′Aのポリブタジェンラテック
スを固形分として50部と水100部とを反応器に仕込
み攪拌下窒素雰囲気中にて70℃に昇温した。
A reactor was charged with 50 parts of polybutadiene latex having a knee weight average particle diameter of 4500'A as a solid content and 100 parts of water, and the temperature was raised to 70° C. in a nitrogen atmosphere with stirring.

70℃に到達後AN量O部とスチレン40部及びドデシ
ルメルカプタン0.1部を含む第一モノーマー相及び過
硫酸カリウム0.1部と水50部との水溶液を各々3時
間に亘って連続的に添加し、第一段目の重合反応を行っ
た。添加終了後更にスチレン60部及びドデシルメルカ
プタン0.IWを含む第二モノマー相及び過硫酸カリウ
ム0.1部と水50部との水溶液を各々3時間に亘って
連続的に添加し、第二段目の重合反応を行った。添加終
了後更に2時間70℃に保ち重合反応を完結した。加え
たモノマー類のポリマーへの転化率は93%であった。
After reaching 70°C, a first monomer phase containing 0 parts of AN, 40 parts of styrene, and 0.1 part of dodecyl mercaptan, and an aqueous solution of 0.1 part of potassium persulfate and 50 parts of water were each continuously added for 3 hours. was added to perform the first stage polymerization reaction. After the addition is complete, 60 parts of styrene and 0.0 parts of dodecyl mercaptan are added. A second monomer phase containing IW and an aqueous solution of 0.1 part of potassium persulfate and 50 parts of water were each continuously added over a period of 3 hours to carry out the second stage polymerization reaction. After the addition was completed, the temperature was kept at 70°C for an additional 2 hours to complete the polymerization reaction. The conversion rate of the added monomers into polymer was 93%.

このラテックスに3部の硫酸アルミニウムを加えて塩析
した後濾過した。得られたケーキを水洗、乾燥してゴム
変性樹脂組成物を得た。得られたゴム変性樹脂組成物を
前述した方法で分別し分析した。結果は次の如くである
This latex was salted out by adding 3 parts of aluminum sulfate, and then filtered. The obtained cake was washed with water and dried to obtain a rubber modified resin composition. The obtained rubber modified resin composition was fractionated and analyzed by the method described above. The results are as follows.

ポリブタジェン量       32%グラフト率  
        80%グラフト成分中のAN量   
  16%非グラフト相中のAN量      5%以
下の実施例及び比較例において用いたゴム変性樹脂組成
物は、以上述べた製造方法によって調製したものである
。実施例及び比較例で用いたゴム変性樹脂組成物の製造
方法、製造条件及び分析結果は表−1に示す如くである
Polybutadiene amount 32% grafting rate
AN amount in 80% graft component
16% The rubber modified resin compositions used in Examples and Comparative Examples in which the amount of AN in the non-grafted phase was 5% or less were prepared by the manufacturing method described above. The manufacturing method, manufacturing conditions, and analysis results of the rubber modified resin compositions used in the Examples and Comparative Examples are as shown in Table 1.

の    と    :1 射出成形機〔東芝機械n!!IssoAM、シリンダー
温度270℃、成形サイクル1分〕で試験片を作威し、
下記試験法に従ってその物性を評価した。
and :1 Injection molding machine [Toshiba Machine n! ! IssoAM, cylinder temperature 270°C, molding cycle 1 minute]
Its physical properties were evaluated according to the following test method.

熱変形温度: ASTM 064Bに基づき成形品寸法
127X 12.7 X 6.4mm 、荷重18.6
Kg/ aINにて測定。
Heat distortion temperature: Based on ASTM 064B, molded product dimensions 127 x 12.7 x 6.4 mm, load 18.6
Measured in Kg/aIN.

難燃性:UL規格94に基づき、成形品寸法127X1
2.7X3.2mm及び127X12.7X1.6++
a+にて測定。
Flame retardancy: Based on UL standard 94, molded product size 127X1
2.7X3.2mm and 127X12.7X1.6++
Measured at a+.

剥離性:上記難燃性用成形品の向後者の成形品の中央部
を繰り返し折り曲げて破壊した後の断面の剥離の有無に
て判定。
Peelability: Determined by the presence or absence of peeling in the cross section of the flame retardant molded product after repeatedly bending and breaking the central part of the latter molded product.

Izod衝撃強さ: ASTM D256に基づき成形
寸法6.4X12.7X6.4++unのノツチ付き試
験片にて測定。
Izod impact strength: Measured using a notched test piece with molding dimensions of 6.4 x 12.7 x 6.4++ un based on ASTM D256.

懐 1メーキ の°面 射出成形機〔東芝機械■製、IS80AM、シリンダー
温度270℃、成形サイクル1分〕で50X90X2.
5開の成形品を作威し、表−2に示す条件にて無電解メ
ッキテストを行った。
A 50X90X2.
A 5-inch molded product was produced and an electroless plating test was conducted under the conditions shown in Table 2.

次いで下記方法にてメッキ性の評価を行った。Next, plating properties were evaluated using the following method.

メッキ析出性:tc形形量全面析出した場合を100と
して析出面積で表示。
Plating precipitation property: Displayed as the precipitation area, with the case of precipitation occurring on the entire surface of the TC shape being set as 100.

メッキ密着性:無電解メッキ品表面の剥離テストを粘着
テープ法にて行い、全く剥がれない場合を100とし、
残った面積で表示。
Plating adhesion: Perform a peel test on the surface of the electroless plated product using the adhesive tape method, and if no peeling occurs at all, the score is 100.
Displayed as remaining area.

メッキ表面性:表面の平滑性を目視により判定した。Plating surface properties: Surface smoothness was visually determined.

実施例1 極限粘度0.50 (クロロホルム中30℃にて測定)
のポリ (2,6−シメチルー1.4−フェニレン)エ
ーテル25部、表−1のNo、1のゴム変性樹脂組成物
20部、ゴム変性耐衝撃性ポリスチレン・スタイロン4
90(旭化威工業■社製〉55部、90%の赤燐と10
%のフェノール樹脂とよりなる被覆赤燐であるツバレッ
ド1200FA (燐化学−社M”)2.4部、トリフ
ェニレンホスフェート(以下TPPと略称する)5部及
び安定剤としてスミライザーBIT  (住友化学■社
製のヒンダードフェノール)0.5部及びマークPHP
−8(アデカアーガス社のジステアリルペンタエリスリ
トールジフォスファイト〉0.5部とをプレンダーで混
合し、280℃にて押出機で押出しペレット状にした。
Example 1 Intrinsic viscosity 0.50 (measured in chloroform at 30°C)
25 parts of poly(2,6-dimethyl-1,4-phenylene)ether, 20 parts of rubber-modified resin composition of No. 1 in Table 1, rubber-modified impact-resistant polystyrene styron 4
90 (manufactured by Asahi Kaei Kogyo Co., Ltd.) 55 parts, 90% red phosphorus and 10
2.4 parts of Tsubared 1200FA (Rin Kagaku M''), which is a coated red phosphorus made of 1% phenolic resin, 5 parts of triphenylene phosphate (hereinafter abbreviated as TPP), and Sumilizer BIT (manufactured by Sumitomo Chemical Co., Ltd.) as a stabilizer. (hindered phenol) 0.5 part and mark PHP
-8 (distearyl pentaerythritol diphosphite manufactured by Adeka Argus) and 0.5 part were mixed in a blender and extruded into pellets using an extruder at 280°C.

ペレットを射出成形機を用いて底形し、物性及び無電解
メンキ性を評価した。評価結果を表−3に示す。
The pellets were molded into bottom shapes using an injection molding machine, and their physical properties and electroless coating properties were evaluated. The evaluation results are shown in Table-3.

実施例2 表−1のNo、1のゴム変性樹脂組成物20部に替えて
表−1のNo、2のゴム変性樹脂組成物25部を添加し
、55部のスタイロン490を50部に減じた以外は、
実施例1を繰り返して成形品を得た。成形品の物性及び
無電解メッキ性の評価結果を表−3に示す。
Example 2 25 parts of the rubber modified resin composition No. 2 of Table 1 was added in place of 20 parts of the rubber modified resin composition No. 1 of Table 1, and 55 parts of Styron 490 was reduced to 50 parts. Other than that,
Example 1 was repeated to obtain a molded article. Table 3 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例1 表−1のNo、1のゴム変性樹脂組成物をABS樹脂ス
タイラック301(旭化威工業−社製)に替え、ツバレ
ッド1200FAを2.4部から4.4部に増し、TP
Pを添加しなかった以外は、実施例1を繰り返して成形
品を得た。成形品の物性の評価結果を表−3に示す。
Comparative Example 1 The rubber modified resin composition No. 1 in Table 1 was replaced with ABS resin Stylac 301 (manufactured by Asahi Kaei Kogyo Co., Ltd.), Tsubared 1200FA was increased from 2.4 parts to 4.4 parts, and TP
A molded article was obtained by repeating Example 1 except that P was not added. Table 3 shows the evaluation results of the physical properties of the molded product.

比較例2 表−1のNo、1のゴム変性樹脂組成物を用いず、スタ
イロン490を55部から75部に増した以外は、実施
例1を繰り返して成形品を得た。成形品の物性及び無電
解メッキ性の評価結果を表−3に示す。
Comparative Example 2 A molded article was obtained by repeating Example 1, except that the rubber modified resin composition No. 1 in Table 1 was not used and the amount of Styron 490 was increased from 55 parts to 75 parts. Table 3 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例3 表−1のNo、2のゴム変性樹脂組成物を表−1のNo
、3のゴム変性樹脂組成物に替えた以外は、実施例2を
繰り返し成形品を得た。成形品の物性及び無電解メッキ
性の評価結果を表−3に示す。
Comparative Example 3 The rubber modified resin compositions No. 1 and 2 in Table-1 were
A molded article was obtained by repeating Example 2, except that the rubber modified resin composition of No. 3 was used. Table 3 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

(以下余白) 実施例3 実施例1と同一のPPE 35部、表−1のNo、1の
ゴム変性樹脂組成物30部、35部のスタイロン490
、ノバレンド120FUP 2.4部、レゾルシノール
ビスホスフェート5部、スミライザーBIT  0.5
部、及び0.5部のマークPEP−8をブレンダーで混
合し280℃にて押出機で押出しペレット状にした。ペ
レットを射出成形機を用いて底形し、物性及び無電解メ
ッキ性を評価した。評価結果を表−4に示す。
(Left below) Example 3 35 parts of the same PPE as in Example 1, 30 parts of the rubber modified resin composition No. 1 in Table 1, 35 parts of Styron 490
, Novalend 120FUP 2.4 parts, Resorcinol Bisphosphate 5 parts, Sumilizer BIT 0.5
1 part and 0.5 part of Mark PEP-8 were mixed in a blender and extruded at 280°C in an extruder to form pellets. The pellets were molded into bottom shapes using an injection molding machine, and the physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-4.

比較例4 表−1のNo、1のゴム変性樹脂組成物に替えて表−1
のNo、4のゴム変性樹脂組成物を使用した以外は、実
施例3を繰り返して成形品を得た。成形品の物性の評価
結果を表−4に示す。
Comparative Example 4 In place of the rubber modified resin composition No. 1 in Table-1, Table-1
A molded article was obtained by repeating Example 3 except that rubber modified resin composition No. 4 was used. Table 4 shows the evaluation results of the physical properties of the molded product.

比較例5 表−1のNo、1のゴム変性樹脂組成物に替えて表−1
のNo、5のゴム変性樹脂組成物を使用した以外は、実
施例3を繰り返して成形品を得た。成形品の物性の評価
結果を表−4に示す。
Comparative Example 5 No. 1 in Table-1, replacing the rubber modified resin composition of Table-1
A molded article was obtained by repeating Example 3 except that rubber modified resin composition No. 5 was used. Table 4 shows the evaluation results of the physical properties of the molded product.

実施例4 表−1のNo、1のゴム変性樹脂組成物に替えて、表−
1のNo、6のゴム変性樹脂組成物を使用した以外は、
実施例3を繰り返して成形品を得た。成形品の物性及び
無電解メッキ性の評価結果を表−4に示す。
Example 4 In place of the rubber modified resin composition No. 1 in Table-1,
Except for using rubber modified resin compositions No. 1 and No. 6,
Example 3 was repeated to obtain a molded article. Table 4 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

実施例5 表−1のNo、6のゴム変性樹脂組成物30部に替えて
表−1のN007のゴム変性樹脂組成物40部を使用し
、35部のスタイロン490を25部に減じた以外は実
施例4を繰り返して成形品を得た。成形品の物性及び無
電解メッキ性の評価結果を表−4に示す。
Example 5 40 parts of the rubber modified resin composition No. 007 in Table 1 was used in place of 30 parts of the rubber modified resin composition No. 6 in Table 1, and 35 parts of Styron 490 was reduced to 25 parts. Example 4 was repeated to obtain a molded article. Table 4 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例6 表−■のNo、6のゴム変性樹脂組成物に替えて、表−
1のNO38のゴム変性樹脂組成物を使用した以外は、
実施例4を繰り返して成形品を得た。成形品の物性及び
無電解メンキ性の評価結果を表−4に示す。
Comparative Example 6 In place of the rubber-modified resin composition No. 6 in Table-■, Table-
Except for using the rubber modified resin composition of No. 1 No. 38,
Example 4 was repeated to obtain a molded article. Table 4 shows the evaluation results of the physical properties and electroless peeling properties of the molded product.

(以下余白) 実施例6 実施例1と同一のPPE 25部、表−1のNo、9の
ゴム変性樹脂組成物30部、45部のスタイロン490
、ツバレッド1200FA 2.4部、TPP 5部、
ス尖ライザーBIT 0.5部及び0.5部のマークP
EP−8をブレンダーで混合し、280℃にて押出機で
押出しペレット状にした。ペレットを射出成形機を用い
て底形し、物性及び無電解メッキ性を評価した。評価結
果を表−5に示す。
(Left below) Example 6 25 parts of the same PPE as in Example 1, 30 parts of the rubber modified resin composition No. 9 in Table 1, 45 parts of Stylon 490
, Tsuba Red 1200FA 2.4 parts, TPP 5 parts,
Sharp riser BIT 0.5 part and 0.5 part mark P
EP-8 was mixed in a blender and extruded into pellets using an extruder at 280°C. The pellets were molded into bottom shapes using an injection molding machine, and the physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-5.

実施例7 表−1のNo、9のゴム変性樹脂組成物を30部から5
0部に増し、スタイロン490を45部から25部に減
じた以外は、実施例6を繰り返して成形品を得た。
Example 7 From 30 parts to 5 parts of the rubber modified resin composition No. 9 in Table-1
A molded article was obtained by repeating Example 6 except that the amount of Styron 490 was increased to 0 parts and decreased from 45 parts to 25 parts.

成形品の物性及び無電解メッキ性の評価結果を表−5に
示す。
Table 5 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例7 表−1のNo、9のゴム変性樹脂組成物を50部から7
0部に増し、スタイロン490を25部から5部に減じ
た以外は実施例7を繰り返して成形品を得た。
Comparative Example 7 From 50 parts of the rubber modified resin composition No. 9 in Table 1, 7
A molded article was obtained by repeating Example 7 except that the amount of Styron 490 was increased to 0 parts and decreased from 25 parts to 5 parts.

成形品の物性及び無電解メッキ性の評価結果を表−5に
示す。
Table 5 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例8 表−1のNo、 9のゴム変性樹脂組成物を30部から
8部に減じ、スタイロン490を45!から67部に増
した以外は、実施例6を繰り返して成形品を得た。
Comparative Example 8 The rubber modified resin composition No. 9 in Table 1 was reduced from 30 parts to 8 parts, and Styron 490 was reduced to 45 parts! A molded article was obtained by repeating Example 6 except that the amount was increased from 67 parts.

成形品の物性及び無電解メッキ性の評価結果を表−5に
示す。
Table 5 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

(以下余白) 実施例8 実施例1と同一のPPE 25部、表−1のNo、10
のゴム変性樹脂組成物32部、スタイロン490を43
部、ツバレッド1200FA 2.2部、TPP 7部
、スミライザーBIIT O,5部及びマークPEP−
8の0.5部をブレンダーで混合し、280℃にて押出
機を用いて押出しペレット状にした。ペレットを射出底
形機を用いて成形し、物性及び無電解メッキ性の評価を
行った。評価結果を表−6に示す。
(Left below) Example 8 25 copies of the same PPE as Example 1, No. 10 in Table-1
32 parts of rubber modified resin composition, 43 parts of Styron 490
part, Tsubared 1200FA 2.2 parts, TPP 7 parts, Sumilizer BIIT O, 5 parts and mark PEP-
0.5 part of 8 was mixed in a blender and extruded into pellets using an extruder at 280°C. The pellets were molded using a bottom injection molding machine, and their physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-6.

実施例9 表−1のNo、 10のゴム変性樹脂組成物を32部か
ら45部に増し、スタイロン490を43部から30部
に減じ、ツバレッド120UFAを2.2′Bから2.
8部に増した以外は、実施例8を繰り返して成形品を得
た。
Example 9 The rubber modified resin composition No. 10 in Table 1 was increased from 32 parts to 45 parts, Styron 490 was decreased from 43 parts to 30 parts, and Tsubared 120UFA was increased from 2.2'B to 2.
A molded article was obtained by repeating Example 8 except that the amount was increased to 8 parts.

成形品の物性及び無電解メッキ性の評価結果を表−6に
示す。
Table 6 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例9 表−1のNo、10のゴム変性樹脂組成物を45部から
65部に増し、スタイロン490を30部から10部に
減し、ツバレッド120UFAを2.8部から3.3部
に増した以外は、実施例9を繰り返して成形品を得た。
Comparative Example 9 The rubber modified resin composition No. 10 in Table 1 was increased from 45 parts to 65 parts, Styron 490 was decreased from 30 parts to 10 parts, and Tsubared 120UFA was reduced from 2.8 parts to 3.3 parts. A molded article was obtained by repeating Example 9 except that the amount was increased.

成形品の物性及び無電解メッキ性の評価結果を表−6に
示す。
Table 6 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

実施例10 実施例1と同一のPPE 50部、表−1のNo、9の
ゴム変性樹脂組成物30部、スタイロン490を20部
、ツバレッド120UFA 1.7部、TPP 6部、
スミライザーBIT 0.5部及びマークPEP−8の
0.5部とをブレンダーにて混合し、300℃にて押出
機を用いて押出し、ペレット状にした。ペレットを射出
底形機を用いて成形し、物性及び無電解メッキ性の評価
を行った。評価結果を表−7に示す。
Example 10 50 parts of the same PPE as in Example 1, 30 parts of the rubber modified resin composition No. 9 in Table 1, 20 parts of Stylon 490, 1.7 parts of Tsubared 120UFA, 6 parts of TPP,
0.5 parts of Sumilizer BIT and 0.5 parts of Mark PEP-8 were mixed in a blender and extruded using an extruder at 300°C to form pellets. The pellets were molded using a bottom injection molding machine, and their physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-7.

比較例10 PPEを50部から65部に増し、スタイロン490を
20部から5部に減し、ツバレッド1200F^を1.
7部から1.1部に減じた以外は、実施例10を繰り返
して成形品を得た。成形品の物性及び無電解メ・ツキ性
の評価結果を表−7に示す。
Comparative Example 10 PPE was increased from 50 parts to 65 parts, Styron 490 was decreased from 20 parts to 5 parts, and Tubared 1200F^ was increased by 1.
A molded article was obtained by repeating Example 10, except that the amount was reduced from 7 parts to 1.1 parts. Table 7 shows the evaluation results of the physical properties and electroless metallization properties of the molded product.

実施例11 実施例1と同一のPPE 15部、表−1のNo、9の
ゴム変性樹脂組成物30部、スクイロン490を55部
、ツバレッド120UFA 3.3部、TPP 10部
、スミライザーBIT 0.5部及びマークPEP−8
の0.5部とをブレンダーにて混合し、280℃にて押
出機を用いて押出し、ペレット状にした。ペレットを射
出成形機を用いて成形し、物性及び無電解メッキ性の評
価を行った。評価結果を表−7に示す。
Example 11 15 parts of the same PPE as in Example 1, 30 parts of rubber modified resin composition No. 9 in Table 1, 55 parts of Squilon 490, 3.3 parts of Tsubared 120UFA, 10 parts of TPP, 0.0 parts of Sumilizer BIT. 5 copies and mark PEP-8
0.5 part of the above were mixed in a blender and extruded using an extruder at 280°C to form pellets. The pellets were molded using an injection molding machine, and the physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-7.

比較例11 PPEを15部から8部に減じ、スタイロン490を5
5部から62部に増した以外は、実施例11を繰り返し
て成形品を得た。成形品の物性及び無電解メッキの評価
結果を表−7に示す。
Comparative Example 11 PPE was reduced from 15 parts to 8 parts, and Styron 490 was reduced to 5 parts.
A molded article was obtained by repeating Example 11 except that the amount was increased from 5 parts to 62 parts. Table 7 shows the physical properties of the molded product and the evaluation results of electroless plating.

実施例12 実施例1と同一のPPE 30部、表−1のNo、9の
ゴム変性樹脂組成物30部、スタイロン490を40部
、ツバレッド1200FA 2.2部、TPP 8部、
スミライザーBIT  0.5部及びマークPEP−8
の0.5部とをブレンダーにて混合し、280℃にて押
出機を用いて押出し、ペレット状にした。ペレットを射
出成形機を用いて成形し、物性及び無電解メッキ性の評
価を行った。評価結果を表−7に示す。
Example 12 30 parts of the same PPE as in Example 1, 30 parts of the rubber modified resin composition No. 9 in Table 1, 40 parts of Stylon 490, 2.2 parts of Tsubared 1200FA, 8 parts of TPP,
Sumilizer BIT 0.5 part and mark PEP-8
0.5 part of the above were mixed in a blender and extruded using an extruder at 280°C to form pellets. The pellets were molded using an injection molding machine, and the physical properties and electroless plating properties were evaluated. The evaluation results are shown in Table-7.

比較例12 ツバレッド120UFAを2.2部から1.1部に減じ
、TPPを8部から14部に増した以外は、実施例12
を繰り返して成形品を得た。成形品の物性及び無電解メ
ッキ性の評価結果を表−7に示す。
Comparative Example 12 Example 12 except that Tsubared 120UFA was reduced from 2.2 parts to 1.1 parts and TPP was increased from 8 parts to 14 parts.
A molded product was obtained by repeating the steps. Table 7 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

実施例13 実施例1と同一のPPE 27部、表−1のN001の
ゴム変性樹脂組成物25部、スタイロン490を48部
、ツバレフト1200FA 3.3部、スミライザ゛−
BIT 0.5部及びマークPEP−8の0.5部とを
ブレンダーにて混合し、280℃にて押出機を用いて押
出し、ペレット状にした。ペレットを射出成形機を用い
て成形し、物性及び無電解メッキ性の評価を行った。
Example 13 27 parts of the same PPE as in Example 1, 25 parts of rubber-modified resin composition No. 001 in Table 1, 48 parts of Stylon 490, 3.3 parts of Tube Left 1200FA, Sumilizer
0.5 part of BIT and 0.5 part of Mark PEP-8 were mixed in a blender and extruded using an extruder at 280°C to form pellets. The pellets were molded using an injection molding machine, and the physical properties and electroless plating properties were evaluated.

評価結果を表−8に示す。The evaluation results are shown in Table-8.

実施例14 ツバレッド1200FAを3.3部から4.1部に増し
、TPPを7部から5部に減じた以外は、実施例13を
繰り返して成形品を得た。成形物の物性及び無電解メッ
キ性の評価結果を表−8に示す。
Example 14 A molded article was obtained by repeating Example 13, except that Tsubared 1200FA was increased from 3.3 parts to 4.1 parts and TPP was decreased from 7 parts to 5 parts. Table 8 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例14 ツバレフト1200FAを3.3部から5.6部に増し
、TPPを5部から3部に減じた以外は、実施例13を
繰り返して成形品を得た。成形品の物性及び無電解メッ
キ性の評価結果を表−8に示す。
Comparative Example 14 A molded article was obtained by repeating Example 13, except that the amount of Tube Left 1200FA was increased from 3.3 parts to 5.6 parts, and the amount of TPP was decreased from 5 parts to 3 parts. Table 8 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例15 3部のTPPを添加しなかった以外は、比較例15を繰
り返して成形品を得た。成形品の物性及び無電解メッキ
性の評価結果を表−8に示す。
Comparative Example 15 A molded article was obtained by repeating Comparative Example 15 except that 3 parts of TPP was not added. Table 8 shows the evaluation results of the physical properties and electroless plating properties of the molded product.

比較例16 ツバレフト1200FAを3.3部から0.8部に減じ
た以外は、実施例13を繰り返し成形品を得た。成形品
の物性及び無電解メッキ性の評価を表−8に示す。
Comparative Example 16 A molded product was obtained by repeating Example 13, except that the amount of Tube Left 1200FA was reduced from 3.3 parts to 0.8 parts. Table 8 shows the evaluation of the physical properties and electroless plating properties of the molded product.

特許出願人  旭化戊工業株式会社 代 理 人  弁理士  足許 透Patent applicant: Asahi Kasho Kogyo Co., Ltd. Representative Patent Attorney Toru Ashimoto

Claims (1)

【特許請求の範囲】[Claims] (1)(A)ポリフェニレンエーテル系樹脂が成分(A
)、(B)及び(C)の総量当り10〜60重量%、(
B)ゴム変性樹脂組成物が成分(A)、(B)及び(C
)の総量当り10〜90重量%、 (C)ポリスチレン系樹脂が成分(A)、(B)及び(
C)の総量当り0〜80重量%、 (D)赤燐が成分(A)、(B)及び(C)100重量
部に対して1〜4重量部、及び (E)燐酸エステル成分が成分(A)、(B)及び(C
)100重量部に対して1〜12重量部、よりなり、成
分(B)のゴム変性樹脂組成物が、(α)ゴム状弾性体
にアクリロニトリル単位及びビニル芳香族化合物単位が
グラフト共重合したグラフトゴム相と(β)アクリロニ
トリル単位及びビニル芳香族化合物の重合体及び共重合
体よりなる樹脂相からなり、グラフトゴム相(α)のグ
ラフト率が40〜300%、ゴム状弾性体にグラフトし
たグラフト成分中及び樹脂相(β)中のアクリロニトリ
ル単位の量が夫々10〜30重量%及び3〜9重量%で
あり、かつ、成分(A)、(B)及び(C)の総量中に
占めるアクリロニトリル単位及びゴム状弾性体の量が夫
々1〜7重量%及び5〜20重量%であることを特徴と
する無電解メッキ用難燃樹脂組成物。
(1) (A) Polyphenylene ether resin is the component (A)
), 10 to 60% by weight based on the total amount of (B) and (C), (
B) The rubber modified resin composition contains components (A), (B) and (C).
10 to 90% by weight based on the total amount of (C) polystyrene resin as components (A), (B) and (
(D) red phosphorus in an amount of 1 to 4 parts by weight based on 100 parts by weight of components (A), (B) and (C); and (E) a phosphoric acid ester component as a component. (A), (B) and (C
) 1 to 12 parts by weight per 100 parts by weight, and the rubber-modified resin composition of component (B) is a graft copolymerized with acrylonitrile units and vinyl aromatic compound units on (α) a rubbery elastic body. A graft grafted onto a rubber-like elastic body, consisting of a rubber phase and a resin phase consisting of a polymer or copolymer of (β) acrylonitrile units and a vinyl aromatic compound, with a graft ratio of the graft rubber phase (α) of 40 to 300%. The amount of acrylonitrile units in the component and in the resin phase (β) is 10 to 30% by weight and 3 to 9% by weight, respectively, and the acrylonitrile accounts for the total amount of components (A), (B) and (C). A flame-retardant resin composition for electroless plating, characterized in that the amounts of units and rubber-like elastic body are 1 to 7% by weight and 5 to 20% by weight, respectively.
JP23043489A 1988-09-07 1989-09-07 Flame retardant resin composition for electroless plating Expired - Lifetime JP2727240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23043489A JP2727240B2 (en) 1988-09-07 1989-09-07 Flame retardant resin composition for electroless plating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-222518 1988-09-07
JP22251888 1988-09-07
JP23043489A JP2727240B2 (en) 1988-09-07 1989-09-07 Flame retardant resin composition for electroless plating

Publications (2)

Publication Number Publication Date
JPH02167359A true JPH02167359A (en) 1990-06-27
JP2727240B2 JP2727240B2 (en) 1998-03-11

Family

ID=26524930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23043489A Expired - Lifetime JP2727240B2 (en) 1988-09-07 1989-09-07 Flame retardant resin composition for electroless plating

Country Status (1)

Country Link
JP (1) JP2727240B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450111B1 (en) * 2001-12-24 2004-09-24 제일모직주식회사 Flameproof Rubber Modified Styrenic Resin Composition
KR100555983B1 (en) * 1999-12-23 2006-03-03 제일모직주식회사 Flameproof Styrenic Resin Composition
JP2014524495A (en) * 2011-08-18 2014-09-22 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods and articles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555983B1 (en) * 1999-12-23 2006-03-03 제일모직주식회사 Flameproof Styrenic Resin Composition
KR100450111B1 (en) * 2001-12-24 2004-09-24 제일모직주식회사 Flameproof Rubber Modified Styrenic Resin Composition
JP2014524495A (en) * 2011-08-18 2014-09-22 サビック・イノベーティブ・プラスチックス・アイピー・ベスローテン・フェンノートシャップ Poly (arylene ether) compositions, methods and articles

Also Published As

Publication number Publication date
JP2727240B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
US4966814A (en) Electroless plating-susceptive, fire retardant polyphenylene ether resin
JP3453106B2 (en) Thermoplastic resin composition having flame retardancy
KR100289941B1 (en) Thermoplastic composition with flame retardancy
EP0305764B1 (en) High molecular weight polystyrene blends with PPE and HIPS
KR20040094696A (en) Thermoplastic Flame Retardant Resin Compositions
JPH02167359A (en) Flame retardant resin composition for electroless plating
US20020137824A1 (en) Flameproof styrene-containing graft resin compositions having a particular nitrile content distribution
KR100364060B1 (en) Thermoplastic Flameproof Resin Composition
KR20150038968A (en) Thermoplastic resin composition and article comprising the same
KR100448163B1 (en) Flameproof Thermoplastic Resin Composition
KR100391014B1 (en) Flame retardant thermoplastic resin composition with improved weatherability
KR20050060260A (en) Flameproof thermoplastic resin composition
JP3638646B2 (en) Impact resistant resin composition
KR100496708B1 (en) Thermoplastic Flameproof Resin Composition
KR100348424B1 (en) Thermoplastic composition with flame retardancy
KR100396404B1 (en) Thermoplastic Flameproof Resin Composition
KR860001431B1 (en) A blended thermoplastic resin composition
KR20000018424A (en) Thermoplastic resin having fire retardancy
JP3923763B2 (en) Polyphenylene ether flame retardant resin composition
JP2902424B2 (en) Polyphenylene ether resin composition
JP3455715B2 (en) Thermoplastic flame-retardant resin composition
JPH11343381A (en) Thermoplastic resin composition
JPH0820717A (en) Flame-retardant resin composition with good flowability
JP3716496B2 (en) Flame retardant resin composition
EP0399474B1 (en) Molded and plated article molded from a polyphenylene ether resin composition