JPH02165896A - Mixed powder welding material for build up weld - Google Patents

Mixed powder welding material for build up weld

Info

Publication number
JPH02165896A
JPH02165896A JP29347089A JP29347089A JPH02165896A JP H02165896 A JPH02165896 A JP H02165896A JP 29347089 A JP29347089 A JP 29347089A JP 29347089 A JP29347089 A JP 29347089A JP H02165896 A JPH02165896 A JP H02165896A
Authority
JP
Japan
Prior art keywords
powder
welding material
build
layer
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29347089A
Other languages
Japanese (ja)
Other versions
JPH0457437B2 (en
Inventor
Hisashi Hiraishi
平石 久志
Takeshi Shinozaki
斌 篠崎
Minoru Hineno
実 日根野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP29347089A priority Critical patent/JPH02165896A/en
Publication of JPH02165896A publication Critical patent/JPH02165896A/en
Publication of JPH0457437B2 publication Critical patent/JPH0457437B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form a build-up layer having excellent heat resistance, compression deformation resistance and wear resistance by forming metallic powder of a component compsn. contg. specific % of Co and the balance Cr, specifying the compounding ratio of carbide ceramics powder to specific %, and thereby forming a welding material having the grain size of the powder mixture specified to specific mesh. CONSTITUTION:This welding material has the metal powder contg. 20.0 to 60.0% Co and the balance substantially Cr, contains 30 to 70% carbide ceramics powder and has 50 to 250 mesh grain size of the powder mixture. The Co is the element to enhance the high-temp. compressive strength and has a marked effect at >=20.0%. The high-temp. strength is conversely degraded by a decrease in the m.p., etc., if the content thereof exceeds 60.0%. The Cr imparts oxidation resistance to the material. The sigma embrittlement and the degradation of weldability arise when the content is too high, but troubles are averted at 40.0 to 80.0%. The ceramics powder enhance the heat resistance, high-temp. compression strength, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鋼材加熱炉の炉床金物等の高温用部材の表面
に、耐熱・耐圧縮変形・耐摩耗性にすぐれた肉盛層を形
成するための金属粉末とセラミック粉末とからなる複合
粉末溶接材に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a built-up layer with excellent heat resistance, compression deformation resistance, and wear resistance on the surface of high-temperature members such as hearth metal fittings for steel heating furnaces. The present invention relates to a composite powder welding material made of metal powder and ceramic powder for forming.

〔従来の技術〕[Conventional technology]

耐熱・耐圧縮変形・耐摩耗用材料として、例えば、25
Cr −2ON i −F e、 25Cr −35N
 i −Fe、 28Cr−2ONi−20Co−4W
−Fe、または30Cr−2ONi−40Go−2Mo
−Fe等の耐熱鋼が賞月されている。これらの耐熱鋼製
部材は、約1100°C付近までの温度において優れた
耐久性を示す。
As a material for heat resistance, compression deformation resistance, and wear resistance, for example, 25
Cr-2ON i-Fe, 25Cr-35N
i-Fe, 28Cr-2ONi-20Co-4W
-Fe, or 30Cr-2ONi-40Go-2Mo
-Heat-resistant steels such as Fe are receiving awards. These heat-resistant steel members exhibit excellent durability at temperatures up to around 1100°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記耐熱鋼は、スラブ加熱炉の炉床金物
(スキッドレール、スキッドボタン等)のように、11
00°Cを越え、1200〜1300°Cの高温酸化雰
囲気に曝され、かつ重量物であるスラブの荷重と、スラ
ブによる摩耗とが加わる条件下に使用される部材として
は、必ずしも十分でなく、表面の損耗・劣化が進み易い
。このような部材の損耗・劣化は、これに当接する被加
熱鋼材の表面品質を損なう原因となり、またそれを防止
するには炉床部材の早期の取替・修復作業を必要とする
等、炉操業の安定・円滑性を阻害する。このため、上記
の高温用材料として、1200°Cを越える高温環境下
で、よりすぐれた耐圧縮強度、耐酸化性および耐摩耗性
等を保証し得る新たな材料の開発が強く要請されている
However, the above-mentioned heat-resistant steel is not suitable for use with 11
It is not necessarily sufficient for a member to be used under conditions where it is exposed to a high-temperature oxidizing atmosphere of 1,200 to 1,300 °C, and is subject to the load of a heavy slab and wear due to the slab. Surface wear and deterioration is likely to progress. Wear and deterioration of such parts causes damage to the surface quality of the heated steel materials that come into contact with them, and to prevent this, early replacement and repair of the hearth parts is necessary, etc. It impairs the stability and smoothness of operations. Therefore, there is a strong demand for the development of new materials that can guarantee superior compressive strength, oxidation resistance, and abrasion resistance in high-temperature environments exceeding 1200°C. .

(課題を解決するための手段および作用)本発明は、上
記高温用部材の表面保護層として、高温域における改良
された耐圧縮強度、耐酸化性、および耐摩耗性等を有す
る肉盛層を形成するための溶接材を提供するものである
(Means and effects for solving the problems) The present invention provides a built-up layer having improved compressive strength, oxidation resistance, wear resistance, etc. in a high temperature range, as a surface protective layer of the above-mentioned high temperature member. It provides a welding material for forming.

本発明に係る溶接肉盛用複合粉末溶接材は、金属粉末と
、炭化物系セラミック粉末との混合粉末であって、 金属粉末は、Co  : 20.0〜60.0%、残部
は実質的にCrからなる成分組成を有し、 混合粉末に占める炭化物系セラミック粉末の配合量は3
0〜70%であり、 混合粉末の粒度は50〜250メツシュであること、を
特徴としている。
The composite powder welding material for weld overlay according to the present invention is a mixed powder of metal powder and carbide ceramic powder, and the metal powder contains Co: 20.0 to 60.0%, and the balance is substantially It has a component composition consisting of Cr, and the amount of carbide ceramic powder in the mixed powder is 3
0 to 70%, and the particle size of the mixed powder is 50 to 250 mesh.

なお、金属粉末の成分組成を示す%、およびセラミック
粉末の配合量を示す%は、いずれも重量%である。
Note that % indicating the component composition of the metal powder and % indicating the blending amount of the ceramic powder are both % by weight.

本発明の肉盛用溶接材は粉末体であるので、肉盛層の形
成には、プラズマ溶接法が適用される。
Since the welding material for build-up of the present invention is a powder, a plasma welding method is applied to form the build-up layer.

本発明の複合粉末溶接材を用いてプラズマ溶接により単
層または多層盛りを行って形成される肉盛層は、所定成
分組成の合金マトリックスと、そのマトリックス中に分
散相として混在するセラミック粒子とからなる複合組織
を有する。
The build-up layer formed by performing single-layer or multi-layer build-up by plasma welding using the composite powder welding material of the present invention is made of an alloy matrix of a predetermined composition and ceramic particles mixed as a dispersed phase in the matrix. It has a complex structure.

その肉盛層は、後記実施例にも示すように、従来の耐熱
鋼に比し、1200°C以上の高温域における耐圧縮強
度や耐酸化性にすぐれており、また硬度が高く、良好な
耐摩耗性を備えている。しかも、肉盛層と基材表面との
界面は、肉盛溶接時に供給される十分な量の溶接熱によ
り強固な融着結合関係を形成しており、1200°Cの
高温域においても、高い接着強度を失うことがない。
As shown in the examples below, the build-up layer has superior compressive strength and oxidation resistance in the high temperature range of 1200°C or higher, and has high hardness and good properties compared to conventional heat-resistant steel. Has wear resistance. Furthermore, the interface between the overlay layer and the base material surface forms a strong fusion bond due to the sufficient amount of welding heat supplied during overlay welding, and even in the high temperature range of 1200°C, No loss of adhesive strength.

本発明に係る複合粉末溶接材の金属粉末の成分組成限定
理由は次のとおりである。
The reason for limiting the composition of the metal powder of the composite powder welding material according to the present invention is as follows.

Co : 20.0〜60.0% Coは高温圧縮強度を高める元素であり、C。Co: 20.0-60.0% Co is an element that increases high-temperature compressive strength;

Cr系合金において、20.0%以上を占めることによ
り顕著な効果が奏せられる。含有量の増加に伴ってその
効果は強められるが、60.0%を越えると、マトリッ
クス金属の融点の低下等により却って高温強度の低下を
みる。よって、60.0%を上限とする。
In Cr-based alloys, significant effects can be achieved by having a content of 20.0% or more. This effect becomes stronger as the content increases, but if it exceeds 60.0%, the high-temperature strength actually decreases due to a decrease in the melting point of the matrix metal. Therefore, the upper limit is set at 60.0%.

Cr:残部 Crは耐酸化性を付与する元素であり、Co−Cr系合
金の基本成分として、40.0〜80.0%を占める。
Cr: The remainder Cr is an element that imparts oxidation resistance, and accounts for 40.0 to 80.0% as a basic component of the Co-Cr alloy.

なお、Cr含有量が多くなると、マトリックス金、属の
σ脆化とそれに伴う溶接性の悪化、特に割れ発生傾向が
大きくなるが、80.0%を越えない範囲内であればそ
のような不都合は実質的に回避される。
It should be noted that as the Cr content increases, the matrix metal becomes σ-embrittled and the associated deterioration of weldability, especially the tendency for cracking to occur. However, if the Cr content does not exceed 80.0%, such disadvantages can be avoided. is virtually avoided.

上記金属粉末に配合されるセラミック粉末は、金属マト
リックスに分散相粒子として混在し肉盛層の耐熱性、高
温圧縮強度等を高める。セラミック粒子は、それ自身、
硬度’(Hv):約1500以上と極めて硬質であるの
で、マトリックス中に分散することにより、肉盛層に卓
抜した摩耗抵抗性をもたらす。セラミック粉末を炭化物
系(炭化クロムCrffC2,炭化珪素SiC,炭化チ
タ7T i C。
The ceramic powder blended with the metal powder is mixed in the metal matrix as dispersed phase particles and increases the heat resistance, high-temperature compressive strength, etc. of the built-up layer. Ceramic particles themselves
Hardness '(Hv): Since it is extremely hard with approximately 1500 or more, by dispersing it in the matrix, it provides the build-up layer with outstanding wear resistance. Ceramic powder is carbide-based (chromium carbide CrffC2, silicon carbide SiC, titanium carbide 7T i C).

炭化タングステンwc、w、c等)としたのは、耐熱性
や耐摩耗性等の点で分散相粒子として好ましいからであ
る。
The reason why tungsten carbide (wc, w, c, etc.) is used is because it is preferable as a dispersed phase particle in terms of heat resistance, wear resistance, etc.

複合粉末混合物におけるセラミック粉末の配合量を30
%以上とするのは、セラミック粒子の上記分散効果を十
分ならしめるためである。但し、その配合量が70%を
越えると、溶接性の悪化、肉盛層の靭性および基材との
接着強度の低下等を招くので、70%を上限とする。
The amount of ceramic powder in the composite powder mixture is 30
% or more in order to make the above-mentioned dispersion effect of the ceramic particles sufficient. However, if the blending amount exceeds 70%, the weldability deteriorates, the toughness of the built-up layer and the adhesive strength with the base material decrease, etc., so the upper limit is set at 70%.

更に、粉末の粒度を50メツシュ以上とするのは、粒径
がそれより粗大になると、溶接性が悪くなり、また肉盛
層の高温圧縮強度や基材表面に対する接着強度等の低下
傾向を招くからであり、一方250メツシュを上限とす
るのは、それより微細な粒子では、プラズマ肉盛溶接施
工時の粉末のキャリヤー性が悪く、複合粉末溶接材の送
給が不安定となり、健全な肉盛層の形成が困難ないし不
可能となるからである。
Furthermore, the particle size of the powder is set to be 50 mesh or more because if the particle size becomes coarser than this, weldability deteriorates, and the high temperature compressive strength of the overlay layer and the adhesive strength to the base material surface tend to decrease. On the other hand, the reason why the upper limit is set at 250 mesh is that if the particles are finer than that, the carrier properties of the powder during plasma overlay welding will be poor, and the feeding of the composite powder welding material will become unstable, resulting in poor quality of the weld metal. This is because it becomes difficult or impossible to form a raised layer.

本発明の複合粉末溶接材による肉盛層を形成する基材の
材質に制限はないが、スラブ加熱炉の炉床金物等のよう
な場合には、従来より使用されている前記の各種耐熱鋼
が好ましく用いられる。
There are no restrictions on the material of the base material forming the overlay layer using the composite powder welding material of the present invention, but in cases such as hearth metal fittings for slab heating furnaces, various heat-resistant steels as described above, which have been conventionally used, may be used. is preferably used.

〔実施例〕〔Example〕

第1表に示す粉末を溶接材として、粉末プラズマアーク
溶接(移行アーク溶接)により、耐熱鋼基材(2ON 
i −25Cr−F e、 S US310相当)の表
面に肉盛層を形成した。いずれも、肉盛層数は3層であ
り、層厚は10noである。
Using the powder shown in Table 1 as a welding material, heat-resistant steel base material (2ON
A build-up layer was formed on the surface of i-25Cr-Fe, SUS310 equivalent). In both cases, the number of built-up layers is 3, and the layer thickness is 10no.

表中、No、 1〜8は発明例、N(1101〜107
は比較例である。各側におけるセラミック粉末は炭化ク
ロム(Cr:+Cz)である。比較例Na101〜10
7のうち、Nα101は高CO系耐熱合金鋼粉未使用(
セラミツ粉末なし)の例、Na102〜Na107はC
o−Cr合金粉末とセラミック粉末の組合せであるが、
No、102とNα103はCo−Cr合金粉末の組成
が本発明の規定からはずれている例(klo’2 : 
Co量過剰、Cr量不足、 k103 s Co量不足
、Cr量過剰) 、No、104とNo、 105はセ
ラミック粉未配合量が本発明の規定からはずれている例
(Nα104:セラミック粉末量過剰、Nα105:同
不足)、Nα106とNa107は粉末粒径が本発明の
規定からはずれている例(No、106 :粒径粗大、
No、107:粒径微小)である。
In the table, No. 1 to 8 are invention examples, N (1101 to 107
is a comparative example. The ceramic powder on each side is chromium carbide (Cr:+Cz). Comparative example Na101-10
7, Nα101 does not use high CO2 heat-resistant alloy steel powder (
(without ceramic powder), Na102 to Na107 are C
Although it is a combination of o-Cr alloy powder and ceramic powder,
No. 102 and Nα103 are examples in which the composition of the Co-Cr alloy powder deviates from the specifications of the present invention (klo'2:
Excessive amount of Co, insufficient amount of Cr, k103 s Insufficient amount of Co, excessive amount of Cr), No. 104 and No. 105 are examples in which the amount of ceramic powder not mixed is outside the regulations of the present invention (Nα104: excessive amount of ceramic powder, Nα105: same deficiency), Nα106 and Na107 are examples in which the powder particle size deviates from the regulations of the present invention (No, 106: coarse particle size,
No. 107: particle size micro).

(I)溶接条件 (1)電圧:35■、電流:12OA (2)作動ガス:Arガス プラズマガス・・・・2.5 ffi/minシールド
ガス−・−・20.51 /minキャリアーガス・・
25.5j2/m1n(II)肉盛層の緒特性 各溶接材を用いて形成された肉盛層の圧縮強度(kg 
/ mm2. at1250’c ) 、硬度(Hv 
、 atlooo”c )、基材表面との接着強度(k
g/mm”、室温)、耐酸化性、溶接性および溶接施工
性を第2表に示す。なお、耐酸化性は、酸化試験(12
00’C,大気雰囲気)における保持時間1000時間
での酸化スケール生成による重t′$i少量から求めた
肉盛層表面の酸化損耗層厚([1111/年)で評価し
、溶接性は肉盛層を切断し、切断面を液体浸透探傷試験
に付し、割れの有無(O:割れなし、×:割れ有り)に
より評価した。また、溶接施工性欄の「○」は、粉末溶
接材の安定な給送により円滑に肉盛層の形成が行われた
こと、「×」はその給送が不安定で所定の肉盛層を形成
し得なかったことを表している。
(I) Welding conditions (1) Voltage: 35■, current: 12OA (2) Working gas: Ar gas plasma gas...2.5 ffi/min Shield gas...20.51/min Carrier gas...・
25.5j2/m1n (II) Compressive strength (kg) of the built-up layer formed using each welding material
/ mm2. at1250'c), hardness (Hv
, atloooo”c), adhesive strength with the base material surface (k
Table 2 shows the oxidation resistance, weldability, and weldability (g/mm", room temperature).
The weldability is evaluated by the oxidation loss layer thickness ([1111/year) on the surface of the built-up layer obtained from the small amount of weight t'$i due to the formation of oxidized scale after a holding time of 1000 hours at 00'C, atmospheric atmosphere). The layer was cut, and the cut surface was subjected to a liquid penetrant test to evaluate the presence or absence of cracks (O: no cracks, ×: cracks). In addition, "○" in the welding workability column indicates that the build-up layer was formed smoothly due to stable feeding of powder welding material, and "x" indicates that the feeding was unstable and the specified build-up layer was not formed. This means that it could not be formed.

第2表に示したように、発明例Nα1〜8の肉盛層は、
高Co耐熱合金鋼(セラミック粒子を含まない)からな
る肉盛層(No、101)に比し、格段にすぐれた高温
圧縮強度、硬度(耐摩耗性)および耐酸化性を有し、ま
た溶接性が良好であると共に、基材表面との接着強度も
十分である。比較例No、102゜No、103のよう
にCoCr合金粉末とセラミック粉末の組合せであって
も、その合金粉末の組成が本発明の規定からはずれてい
ると、十分な高温圧縮強度や溶接性等の各特性を兼備さ
せることができず、またCoCr合粉末組成が適正であ
っても、Nα104のようにセラミック粉末の配合量が
多すぎると、溶接性が悪く、かつ基材との接着強度も低
く逆にNo、105のように少なすぎると、高温圧縮強
度や硬さ、耐酸化性の改善効果に乏しい。更に配合割合
が適正であっても、粉末粒径の粗大なNα106では高
温圧縮強度や基材表面に対する接着強度が低下し、逆に
Nα107のように粒径が細かすぎると、粉末溶接材の
安定な給送をなし得ず、肉盛層の形成が不可能となる。
As shown in Table 2, the overlay layers of invention examples Nα1 to Nα8 are:
Compared to the build-up layer (No. 101) made of high Co heat-resistant alloy steel (not containing ceramic particles), it has significantly superior high-temperature compressive strength, hardness (wear resistance), and oxidation resistance, and it also has superior weldability. In addition to having good properties, the adhesive strength with the surface of the base material is also sufficient. Even if it is a combination of CoCr alloy powder and ceramic powder like Comparative Examples No. 102° No. 103, if the composition of the alloy powder deviates from the specifications of the present invention, sufficient high-temperature compressive strength, weldability, etc. Furthermore, even if the CoCr composite powder composition is appropriate, if the amount of ceramic powder blended is too large, such as Nα104, weldability will be poor and the adhesive strength with the base material will be poor. On the other hand, if the content is too low, such as No. 105, the effect of improving high-temperature compressive strength, hardness, and oxidation resistance will be poor. Furthermore, even if the blending ratio is appropriate, Nα106 with a coarse powder particle size will reduce the high temperature compressive strength and adhesive strength to the base material surface, and conversely, if the particle size is too small like Nα107, the stability of the powder welding material will deteriorate. Therefore, it becomes impossible to form a built-up layer.

〔発明の効果〕〔Effect of the invention〕

本発明の複合粉末を肉盛溶接材としてプラズマ粉体溶接
により形成される肉盛層は、マトリ・ンクス金属とセラ
ミック粒子との複合効果により、従来の耐熱・耐圧縮強
度・耐摩耗用材をはるかに凌ぐ高温特性を備えており、
かつ基材表面に対する接着強度にもすぐれ、特にスラブ
加熱炉の炉床金物等のように、1200°Cを越える高
温酸化雰囲気中、スラブ等の重量物の負荷と摩耗をうけ
る苛酷な条件下に使用される部材の保護層として好適で
あり、これらの部材の耐久性の改善、炉操業の安定・円
滑化に大きく貢献する。その用途は、これに限られず、
例えば圧延用ワークロール、カイ’Fシー’Jング部材
等の表面保護層としても有用である。
The build-up layer formed by plasma powder welding using the composite powder of the present invention as a build-up welding material has far superior heat resistance, compressive strength, and wear resistance due to the combined effect of matrix metal and ceramic particles. It has high-temperature properties that surpass
It also has excellent adhesive strength to the surface of the base material, and can be used under severe conditions such as hearth metal fittings in slab heating furnaces, which are exposed to the load and wear of heavy objects such as slabs in high-temperature oxidizing atmospheres exceeding 1200°C. It is suitable as a protective layer for the members used, and greatly contributes to improving the durability of these members and stabilizing and smoothing furnace operation. Its uses are not limited to this,
For example, it is useful as a surface protective layer for rolling work rolls, Kai'F Sea'Jing members, etc.

Claims (1)

【特許請求の範囲】[Claims] (1)金属粉末と炭化物系セラミック粉末との混合粉末
からなり、 金属粉末は、Co:20.0〜60.0%、残部は実質
的にCrからなる成分組成を有し、 炭化物系セラミック粉末の配合量は30〜70%であり
、 混合粉末の粒度は50〜250メッシュであることを特
徴とするプラズマ溶接肉盛用複合粉末溶接材。
(1) Consisting of a mixed powder of metal powder and carbide-based ceramic powder, the metal powder has a component composition consisting of Co: 20.0 to 60.0%, the balance substantially consisting of Cr, and the carbide-based ceramic powder A composite powder welding material for plasma welding overlay, characterized in that the blending amount is 30 to 70%, and the particle size of the mixed powder is 50 to 250 mesh.
JP29347089A 1989-11-10 1989-11-10 Mixed powder welding material for build up weld Granted JPH02165896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29347089A JPH02165896A (en) 1989-11-10 1989-11-10 Mixed powder welding material for build up weld

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29347089A JPH02165896A (en) 1989-11-10 1989-11-10 Mixed powder welding material for build up weld

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP27560685A Division JPH0238076B2 (en) 1985-12-06 1985-12-06 YOSETSUNIKUMORYOFUKUGOFUNMATSUYOSETSUZAI

Publications (2)

Publication Number Publication Date
JPH02165896A true JPH02165896A (en) 1990-06-26
JPH0457437B2 JPH0457437B2 (en) 1992-09-11

Family

ID=17795166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29347089A Granted JPH02165896A (en) 1989-11-10 1989-11-10 Mixed powder welding material for build up weld

Country Status (1)

Country Link
JP (1) JPH02165896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001859A1 (en) * 2008-07-02 2010-01-07 住友金属工業株式会社 Member for conveying high-temperature material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001859A1 (en) * 2008-07-02 2010-01-07 住友金属工業株式会社 Member for conveying high-temperature material

Also Published As

Publication number Publication date
JPH0457437B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
Kim et al. Assessment of wear performance of flame sprayed and fused Ni-based coatings
EP0223202B1 (en) Iron alloy containing molybdenum, copper and boron
US20160193660A1 (en) Cladded articles and methods of making the same
US4507151A (en) Coating material for the formation of abrasion-resistant and impact-resistant coatings on workpieces
US7288132B2 (en) Advanced erosion resistant carbide cermets with superior high temperature corrosion resistance
JPH01119641A (en) Alloy for composite pipes in fluidized bed coal combustion device
JP2012139696A (en) Rotating tool
AU2021201789B2 (en) Friction Stir Welding Tool
WO2004090288A2 (en) Controller thermal expansion of welds to enhance toughness
EP0759500A1 (en) Internal combustion engine valve
EP0336612B1 (en) Oxidation resistant alloy
JPH089115B2 (en) Plasma powder overlay welding material for rolled steel guide member in hot rolling line
US11000921B2 (en) Composite welding rods and associated cladded articles
JPS62134193A (en) Composite powder welding material for building up by welding
JPH02165896A (en) Mixed powder welding material for build up weld
JP2002173758A (en) Powder for flame spraying and parts with flame sprayed coating by using the powder
JPS6054295A (en) Build-up method by welding
JP4018308B2 (en) Composite material for sliding member and sliding member
JPH0230800B2 (en) PURAZUMAFUNTAIYOSETSUNIKUMORYOFUKUGOYOSETSUZAI
JPH0195896A (en) Composite welding material for welded overlay
JPS61186190A (en) Composite filter rod for building up by welding
JPS63256275A (en) Sliding member with excellent seizure resistance and wear resistance
RU2014193C1 (en) Fusing composition
JPH02205294A (en) Overplaying alloy having excellent high-temperature tensile creep characteristic
JPH03118992A (en) Powdery plasma arc welding material