JP4018308B2 - Composite material for sliding member and sliding member - Google Patents

Composite material for sliding member and sliding member Download PDF

Info

Publication number
JP4018308B2
JP4018308B2 JP2000030496A JP2000030496A JP4018308B2 JP 4018308 B2 JP4018308 B2 JP 4018308B2 JP 2000030496 A JP2000030496 A JP 2000030496A JP 2000030496 A JP2000030496 A JP 2000030496A JP 4018308 B2 JP4018308 B2 JP 4018308B2
Authority
JP
Japan
Prior art keywords
less
composite material
particles
sliding member
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000030496A
Other languages
Japanese (ja)
Other versions
JP2001220606A (en
Inventor
宏昭 岡野
淳 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000030496A priority Critical patent/JP4018308B2/en
Publication of JP2001220606A publication Critical patent/JP2001220606A/en
Application granted granted Critical
Publication of JP4018308B2 publication Critical patent/JP4018308B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/043Sliding surface consisting mainly of ceramics, cermets or hard carbon, e.g. diamond like carbon [DLC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • F16C2206/80Cermets, i.e. composites of ceramics and metal

Description

【0001】
【発明の属する技術分野】
本発明は、各種産業用機械の軸受部材、特に排水・揚水用ポンプの軸受部材の摺動面を形成するための改良された耐摩耗性及び耐土砂摩耗侵食性を有する摺動部材用複合材料およびその複合材料で形成された摺動面を有する摺動部材に関する。
【0002】
【従来の技術】
軸受装置における軸および軸受部材等の摺動部材は、摺動面の耐摩耗性、負荷応力や環境温度変化等に耐え得る強度・靭性、耐熱衝撃性等が要求される。従来、摺動・摩擦条件の厳しい使用環境におかれる軸受装置では、軸受側にセラミックスを適用し、回転軸の所要表面領域に超硬合金からなる層を形成して耐摩耗性を持たせるようにした摺動部材が知られている(特公昭63-67048号公報)。
超硬合金は卓抜した耐摩耗性を有しているが、靭性に乏しく一部に亀裂を生じると全体の破損につながり易く安定性に欠ける。その改良として、図6に示す形態を有する摺動部材が提案されている。これは、比較的靭性の高い金属筒体(2)を母材とし、その周面に硬質層(1’)を積層形成してなるスリーブであり、これを軸に装着し硬質層(1’)を摺動面とするのである(特開平8-68420号公報)。
【0003】
上記硬質層は、金属マトリックスに強化材としてWC,TiC等の硬質粒子を分散混在させた組織を有し、金属と硬質粒子の複合効果として靭性と高耐摩耗性を兼備させるものである。このような硬質層は、マトリックスとなる金属粉末と強化材である硬質粒子粉末との混合物を原料とし、溶接肉盛法、熱間静水圧加圧法等を適用して形成される。
【0004】
【発明が解決しようとする課題】
上記硬質層に高度の耐摩耗性、特にセラミックスを相手材とする摺動部材として安定に機能し得る耐摩耗性を帯有させるには、多量の硬質粒子を含有する必要があり、そのため摺動部材の用途・使用態様により靭性,強度が問題となる。
硬質粒子として比較的大きな粒径(100μm程度)を有する粒子を使用する場合は、比較的少量の含有量(40体積%程度)で相手材セラミックスに対する耐摩耗性を得ることも可能である。しかし、その硬質層は、図2に示すように、マトリックス金属(M)が表面にむき出しになっており、このため排水ポンプの軸受部のように、珪砂等を含むスラリーと接触する使用環境では、珪砂等の粒子の接触・衝突によるマトリックス金属部分(M)の急速な摩耗減肉(図中、鎖線)とそれに付随する硬質粒子(P)の欠損・脱落による摺動面の損耗(土砂摩耗浸食)を生じ易く、耐用寿命の改善効果は少ない。
本発明は、このような問題を解決するための改良された摺動部材用複合材料および摺動部材を提供するものである。
【0005】
【課題を解決するための手段】
本発明に係る排水・揚水用ポンプの軸受部材に使用される摺動部材用複合材料は、
金属マトリックスに粒径の小さい硬質粒子と粒径の大きい硬質粒子とが共存分散した複合組織を有し、
硬質粒子はセラミックス粒子であって、粒径10μm以下の微細粒子と、粒径75〜200μmの粗大粒子とからなり、微細粒子の含有量は5体積%以上、粗大粒子の含有量は30体積%以上、微細粒子の含有量 ( A ) と粗大粒子の含有量 ( B ) との比 ( B /V A ) は1〜7であり、微細粒子と粗大粒子の合計含有量は40〜80体積%である ( 請求項1 )
本発明の排水・揚水用ポンプに使用される摺動部材( 請求項9 )は上記複合材料からなる摺動面を有している。
【0006】
図1は、本発明の複合材料の複合組織を模式的に示している。Pは微細粒径の硬質粒子、Pは粗大粒径の硬質粒子である。本発明は、粒径を異にする2種の硬質粒子が共存分散した複合組織を形成することにより、強度・靭性等を保持しつつ、セラミックスを相手材とする摺動面に必要な耐摩耗性を確保すると共に、土砂摩耗浸食に対する抵抗性を具備せしめることを実現している。
【0007】
すなわち、粗大硬質粒子(粒径:75〜200μm)(P)は、セラミックスからなる相手材に対する耐摩耗性を付与し、微細硬質粒子(粒径:10μm以下)(P)は、その分散効果として金属マトリックスの土砂摩耗浸食に対する摩耗抵抗性を強化する。また粗大粒子と微細粒子の混合効果として、比較的低い含有量で高度の摩耗抵抗性を得ることができる。その含有率(微細粒子と粗大粒子の合計量)が80体積%という高い含有量においても、構造部材としての強度・靭性が保持されるのも、2種の粒子を複合したことよるものと推察される。
【0008】
なお、本発明における摺動部材とは、相対向する2つの部材が相対的摺動運動(回転又は往復走行動)を行う摺動装置における各部材(可動側部材と固定側部材)を包含している。例えば、軸受部における回転部材である軸又はその固定部材である軸受のそれぞれに適用される部材を意味している。
【0009】
【発明の実施の形態】
本発明の複合材料に含有される硬質粒子(微細粒子及び粗大粒子)は、炭化物系,硼化物系,窒化物系,珪化物系,酸化物系等の各種セラミックスである。特に、炭化物系,硼化物系,窒化物系セラミックスは、高硬度を有すると共に、摺動性に優れている点で好適である。その炭化物系の例として、WC,WC,TiC,NbC,VC,MoC,Cr,TaC,ZrC等、硼化物系の例としてMoB,TiB,CrB,VB2,NbB,TaB,WB等、窒化物系の例としてTiN,CrN等が挙げられる。
【0010】
粗大粒径の硬質粒子について、その粒径を75〜200μmとしたのは、粒径がこれより小さいと、セラミックスを相手材とする場合における耐摩耗性の付与効果が乏しいからであり、200μmを上限とするのは、これより粗大な粒径を使用すると、微細粒子の混合量の必要量が増大し、靭性・強度の面の不利を招くからである。
【0011】
他方、微細硬質粒子の粒径を10μm以下に制限したのは、粒径10μm程度の土砂粒に対する耐摩耗性を確保するためである。微細粒子の粒径の下限は特に限定されないが、約1μmを下回る極微細粒径である必要はない。
【0012】
硬質粒子の含有量(微細粒子と粗大粒子の合計量)を、40〜80体積%の範囲に制限しているのは、これより少ないとその配合効果が乏しく、他方これを越えると強度・靭性を確保し得なくなるからである。なお、微細粒子のみを配合する場合は、その配合量が約80体積%程度になると、強度・靭性の急激な低下をみるのに対し、本発明では80体積%の含有量でも、比較的良好な強度・靭性を保持する。このことも、微細粒径(10μm以下)と粗大粒径(75〜200μm)とを複合的に配合したことに基づく効果であると考えられる。
【0013】
微細粒径と粗大粒径の硬質粒子(合計含有量40〜75体積%)の共存効果は、微細粒子の含有量(V)を5体積%以上、粗大粒子の含有量(V)を30体積%以上とすることにより増強される。また、その共存効果を最大限に発揮させるために、微細粒子と粗大粒子の含有量比(V/V)を1〜7の範囲に調整することが望ましい。
【0014】
マトリックスの金属材種は、耐焼付き性、高温強度、耐食性(例えば海水に対する耐食性)等の点から、Co基合金、Ni基合金、Ti基合金が好適である。これらの合金は、機械強度や耐食性等の物性をより高めるための合金元素として、所望によりCr,Mo,B,Ni,Fe,W,Al,V等の1種ないし2種以上を適量含有する化学組成が与えられる。また、マトリックスが高硬度(好ましくはHRC20以上)を有している場合は、強化材である硬質粒子の配合量を少な目に調整できるので有利である。
【0015】
金属マトリックスの具体例として、下記の化学組成を有する合金が挙げられる(元素含有量は、すべて重量%である)。
[Co基合金]
Cr:15〜35%,Mo:5〜20%,B:1〜5%,Fe:3%以下、Ni:5%以下,C:3%以下,Si:2%以下,残部Co及び不可避不純物
Cr:20〜40%,Ni:3%以下,W:4〜20%,Fe:5%以下,C:2.5%以下,Si:2%以下,残部Co及び不可避不純物
【0016】
[Ni基合金]
Cr:5〜30%,B:5%以下,Fe:5%以下,C:2.0%以下,Si:10%以下,残部Ni及び不可避不純物
[Ti基合金]
Al:2〜10%,V:1〜10%,残部Ti及び不可避不純物
【0017】
なお、摺動部材を、母材金属と複合材料層との積層構造体として製作する場合の母材金属層は、摺動部材の使用環境に応じた構造材料を適宜選択すればよい。ステンレス鋼,Ti合金等は海水性等に対する耐食性にも優れ、海水中で使用される軸受装置の摺動部材の構成材料としても好ましく使用される。ステンレス鋼では、特にオーステナイト系ステンレス鋼(SUS304,SUS316等),二相ステンレス鋼(SUS329J1等)が好適である。
【0018】
本発明の複合材料は、マトリックスとなる金属粉末と強化材である硬質粒子(微細粒子及び粗大粒子)をボールミル等で均一に混合して原料粉末を調製し、溶接肉盛層(例えば、粉体プラズマ溶接肉盛法)として、または熱間静水圧加圧成形法(HIP法)等による焼結体として製造される。
【0019】
HIP処理は、原料粉末をカプセルに充填(脱気密封)し、加圧・加熱下に適当時間保持することにより行われる。処理温度は約900〜1200℃、加圧力は約70〜150MPaの範囲で適宜設定される。処理時間は約1〜10Hrである。処理後、カプセルを機械加工等で除去し摺動部材を得る。
また、摺動部材を、図3に示すように、金属からなる母材層(2)と複合材料層(1)との複層スリーブ(3)として製作する場合は、母材層(2)となる金属円筒体と原料粉末をカプセルに積層充填してHIP処理すればよい。層界面はHIP処理で生じる固相拡散により強固に結合一体化される。
【0020】
別法として、溶接肉盛法(粉体プラズマ溶接肉盛法等)を適用して摺動部材を製作する場合は、母材表面に原料粉末(金属粉末と硬質粒子粉末の混合物)を供給しながらプラズマアーク熱で金属粉末を溶融し、溶融プールに硬質粒子を懸濁させて凝固することにより、溶接ビードとして複合材料層を形成する。
【0021】
上記溶接肉盛法とHIP成形法とを比較すると、HIP成形法は、溶接肉盛法に比し処理温度が低く、従って硬質粒子の溶解・消失(硬質粒子の粒径変化・消失とそれに伴う複合組織における硬質粒子の体積%の変化、および硬質粒子の溶融に伴う金属マトリックスの組成変化)がなく、硬質粒子の分散強化作用を効果的に発現させることができる。また、図3の積層構造を有する摺動部材を製作する場合も、溶接肉盛法と異なって、母材層(2)の溶融・希釈(界面における成分変化)が少ない。このため、母材層や硬質粒子の材種の選択・組み合わせ等の自由度が大きくかつ、成分設計が容易である。
【0022】
図4,図5は、軸受装置における本発明摺動部材の適用態様の例を示している。図4は、前記図3のスリーブを軸(5)に装着固定した例である。図5は、軸(5)の所要位置に表面を一周する凹陥溝(7)を設け、該凹陥溝内に本発明の複合材料層(1)を形成した例である。凹陥溝(7)内の複合材料層(1)は、粉体プラズマ溶接等による肉盛層として、あるいはHIPを適用して焼結体として形成される。軸受側の部材に対しても、HIP又は溶接肉盛法等を適用して本発明の複合材料からなる摺動面を形成することができる。
【0024】
【実施例】
マトリックスとなる金属粉末と強化材である硬質粒子との混合粉末を原料とし、複合材料を製作する。
【0025】
(1)金属マトリックス(元素含有量:重量%)
(Co合金1)
Cr:15.50,Mo:5.20,B:0.72,Ni:1.03,Fe:0.94,C:1.14,Si:0.33,Co:Bal
HRC=53
(Co合金2)
Cr:31.35,W:8.39,Ni:1.98,Fe:2.06,C:1.71,Si:1.27,Co:Bal
HRC=43
(Ni合金)
Cr:15.77,B:2.70,Fe:3.68,C:0.64,Si:4.72,Ni:
Bal
HRC=51
(Ti合金)
Al:6.12,V:4.23,Ti: Bal
HRC=13
【0026】
(2)微細硬質粒子の材種および粒径(かっこ内は平均粒径)
WC …10μm以下(4.1μm)
TiC…10μm以下(1.51μm)
NbC…10μm以下(1.05μm)
MoB…10μm以下(5.22μm)
TiN…10μm以下(1.2-1.8μm)
【0027】
(3)粗大硬質粒子の材種および粒径
C …100-200μm
TiC… 75-150μm
NbC… 75-150μm
【0028】
(4)HIP処理
金属粉末および硬質粒子粉末を秤量して配合し、ボールミルで均一に混合した後、カプセル(軟鋼製)に減圧封入しHIP処理する。処理後、カプセルを機械加工により除去し、焼結体として形成された複合材料を採取した。
温度 :1100℃
加圧力 :110MPa
処理時間:2Hr
【0029】
供試複合材料から試験片を調製し下記の試験を行った。
[摩耗試験1]
セラミックスを相手材とする耐摩耗性の評価試験。
大越式迅速摩耗試験機による。試験片を相手材(回転円盤)に押し付け、試験片表面に生じた摩耗疵の深さ・幅等から、試験片表面の摩耗減肉量(mm/N)を算出する。
相手材:窒化珪素セラミックス
周速度:3.38m/s
摩擦距離:400m
荷重:61N
【0030】
[摩耗試験2]
耐土砂摩耗浸食性の評価試験。
回転軸の下端部に円筒形状の試験材(外径30×肉厚5(複合材料層厚2)×長さ50,mm)を取付け、該試験材を包囲する円筒状軸受部材(窒化珪素セラミックス)を配置した装置内において、スラリー(珪砂懸濁水)中で回転軸を所定時間回転駆動する。試験終了後、供試材と軸受部材の減肉量の合計(供試材の外径変化量+軸受部材の内径変化量)を測定する。
摺動径:30mm
周速度:5.7m/秒
懸濁粒子・濃度:8号珪砂・5000ppm
試験時間:100Hr
【0031】
[曲げ強度]
試験法:三点曲げ試験(JIS B1601)
試験片サイズ:3×4×40,mm
スパン距離:30mm
試験温度:室温
【0032】
【表1】

Figure 0004018308
【0033】
表1は、各供試材の成分組成と物性の測定結果を示している。
比較例No.101およびNo.102は、発明例と同様に硬質粒子として微細粒径と粗大粒径の2種の粒子が複合されているが、No.101はその複合量が不足し、No.102は複合量が過剰の例である。またNo.103は硬質粒子として粗大粒子を含有する例(微細粒子の複合なし)、No.104は微細粒子を含有する例(粗大粒子の配合なし)である。
【0034】
比較例No.101(硬質粒子の配合量不足)は、微細粒子と粗大粒子を複合的に含有してはいるが、耐摩耗性が乏しく、相手材(セラミックス)との摺動による摩耗減肉、およびスラリーの接触による土砂摩耗浸食が顕著である。No.102(硬質粒子の配合量過剰)は、耐摩耗性に問題はないものの、強度が極端に低い(試験片の曲げ強度測定不能)。比較例No.103(粗大粒径の硬質粒子のみ含有)は、セラミックス相手材に対する耐摩耗性は良好であるが、土砂摩耗による摩耗浸食が顕著である。No.104(微細粒子のみ複合)は、セラミックス相手材に対する耐摩耗性に乏しい。耐土砂摩耗浸食性が低く、強度も劣る。
【0035】
他方、発明例は、微細粒径と粗大粒径の硬質粒子を適量複合含有している効果として、セラミックス相手材に対する摩耗抵抗性および土砂摩耗浸食に対する抵抗性に優れ、かつ良好な曲げ強度を具備している。
【0036】
【発明の効果】
本発明の摺動部材用複合材料は、微細粒径と粗大粒径の2種の粒子を金属マトリックスに共存分散させた複合組織を有する効果として、セラミックスを相手材とする卓抜した摩耗抵抗性を有すると共に、土砂摩耗侵食に対する良好な摩耗抵抗性を具備し、かつ摺動部材に必要な強度・靭性等を帯有している。本発明の複合材料は、このような苛酷な摺動・摩擦環境供される摺動部材料として、その摺動機能の安定性を高め、耐久性の向上、メンテナンスの軽減等に多大の効果をもたらすものである。
【図面の簡単な説明】
【図1】本発明の複合材料の硬質粒子の分散形態を模式的に示す断面説明図である。
【図2】従来の複合材料の硬質粒子の分散形態を模式的に示す断面説明図である。
【図3】本発明の複合材料を適用した摺動部材の例を示す正面断面図である。
【図4】摺動装置部材に対する複合材料の適用例を示す一部切欠正面図である。
【図5】摺動装置部材に対する複合材料の適用例を示す一部切欠正面図である。
【図6】摺動部材の例を示す正面図である。
【符号の説明】
1:複合材料層
2:母材金属層
3:複層スリーブ
5:軸
7:凹陥溝
P:硬質粒子
:微細硬質粒子
:粗大硬質粒子
M:金属マトリックス [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material for a sliding member having improved wear resistance and earth and sand wear erosion resistance for forming a sliding surface of a bearing member of various industrial machines, particularly a bearing member of a drainage / pumping pump. And a sliding member having a sliding surface formed of the composite material .
[0002]
[Prior art]
A sliding member such as a shaft and a bearing member in a bearing device is required to have wear resistance of a sliding surface, strength / toughness that can withstand changes in load stress, environmental temperature, and the like, thermal shock resistance, and the like. Conventionally, in bearing devices that are subjected to severe sliding and friction conditions, ceramics are applied to the bearing side, and a layer made of cemented carbide is formed on the required surface area of the rotating shaft to provide wear resistance. A sliding member is known (Japanese Patent Publication No. 63-67048).
Cemented carbide has outstanding wear resistance, but it is poor in toughness, and if a crack occurs in a part, it tends to lead to total damage and lacks stability. As an improvement, a sliding member having the form shown in FIG. 6 has been proposed. This relatively toughness high metallic cylindrical member (2) as a base material, a hard layer (1 ') on its circumferential surface a sleeve formed by a laminated form, which was mounted on a shaft rigid layer (1' ) As a sliding surface (Japanese Patent Laid-Open No. 8-68420).
[0003]
The hard layer has a structure in which hard particles such as WC and TiC are dispersed and mixed as a reinforcing material in a metal matrix, and combines toughness and high wear resistance as a combined effect of the metal and hard particles. Such a hard layer is formed by using a mixture of a metal powder as a matrix and a hard particle powder as a reinforcing material as a raw material, and applying a welding overlay method, a hot isostatic pressing method, or the like.
[0004]
[Problems to be solved by the invention]
In order for the hard layer to have a high degree of wear resistance, particularly wear resistance that can function stably as a sliding member made of ceramics as a counterpart material, it is necessary to contain a large amount of hard particles. Toughness and strength will be a problem depending on the application and usage of the member.
When particles having a relatively large particle size (about 100 μm) are used as the hard particles, it is possible to obtain wear resistance against the counterpart ceramic material with a relatively small content (about 40% by volume). However, as shown in FIG. 2, the hard layer has a matrix metal (M) exposed on the surface, and therefore, in a use environment where it contacts a slurry containing silica sand or the like, such as a bearing portion of a drainage pump. Rapid wear thinning of the matrix metal part (M) due to contact / collision of particles such as silica sand (chain line in the figure) and wear and tear of the sliding surface due to loss and dropout of the hard particles (P) accompanying it Erosion) is likely to occur, and the service life improvement effect is small.
The present invention provides an improved composite material for a sliding member and a sliding member for solving such problems.
[0005]
[Means for Solving the Problems]
The composite material for sliding member used for the bearing member of the drainage / pumping pump according to the present invention is:
Have a composite structure and small grain size hard particles and larger hard particles having a particle diameter coexist dispersed in the metal matrix,
The hard particles are ceramic particles, and are composed of fine particles having a particle size of 10 μm or less and coarse particles having a particle size of 75 to 200 μm. The content of the fine particles is 5% by volume or more, and the content of the coarse particles is 30% by volume. above, the content of fine particles (V a) and the ratio (V B / V a) and the content of coarse particles (V B) is 1 to 7, the total content of fine particles and coarse particles 40 80% by volume ( Claim 1 ) .
The sliding member used in the drainage / pumping pump of the present invention ( claim 9 ) has a sliding surface made of the composite material.
[0006]
FIG. 1 schematically shows a composite structure of the composite material of the present invention. P 1 is a hard particle having a fine particle size, and P 2 is a hard particle having a coarse particle size. The present invention forms a composite structure in which two types of hard particles having different particle sizes are co-dispersed, thereby maintaining the strength, toughness and the like, and the wear resistance required for the sliding surface using ceramic as a counterpart. It is possible to ensure the property and to provide resistance to earth and sand wear erosion.
[0007]
That is, coarse hard particles (particle size: 75 to 200 μm) (P 2 ) impart wear resistance to the counterpart material made of ceramics, and fine hard particles (particle size: 10 μm or less) (P 1 ) are dispersed. As an effect, the wear resistance of the metal matrix against earth and sand wear erosion is enhanced. Further, as a mixing effect of coarse particles and fine particles, high wear resistance can be obtained with a relatively low content. It is presumed that the strength and toughness of the structural member are maintained even when the content (total amount of fine particles and coarse particles) is as high as 80% by volume because of the combination of two types of particles. Is done.
[0008]
The sliding member in the present invention includes each member (movable side member and fixed side member) in a sliding device in which two opposing members perform relative sliding motion (rotation or reciprocating movement). ing. For example, it means a member that is applied to each of a shaft that is a rotating member in a bearing portion or a bearing that is a fixed member thereof.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The hard particles (fine particles and coarse particles) contained in the composite material of the present invention are various ceramics such as carbide, boride, nitride, silicide, and oxide. In particular, carbide-based, boride-based, and nitride-based ceramics are preferable in that they have high hardness and excellent slidability. Examples of the carbide system include WC, W 2 C, TiC, NbC, VC, Mo 2 C, Cr 3 C 2 , TaC, and ZrC, and examples of the boride system include MoB, TiB 2 , CrB, VB 2 , and NbB. Examples of nitrides such as 2 , TaB 2 , WB, etc. include TiN, CrN and the like.
[0010]
The reason why the coarse particle size of the hard particles is 75 to 200 μm is that if the particle size is smaller than this, the effect of imparting wear resistance in the case of using ceramic as the counterpart material is poor, and 200 μm is used. The upper limit is that if a coarser particle size is used, the required amount of fine particles is increased, which causes disadvantages in toughness and strength.
[0011]
On the other hand, the reason why the particle diameter of the fine hard particles is limited to 10 μm or less is to ensure the wear resistance against earth and sand particles having a particle diameter of about 10 μm. Although the minimum of the particle size of a fine particle is not specifically limited, It does not need to be a very fine particle size less than about 1 micrometer.
[0012]
The content of hard particles (total amount of fine particles and coarse particles) is limited to the range of 40 to 80% by volume. If it is less than this, the blending effect is poor, and if it exceeds this, the strength and toughness are exceeded. It is because it becomes impossible to secure. In addition, when blending only fine particles, when the blending amount is about 80% by volume, a sharp decrease in strength and toughness is seen, whereas in the present invention, even a content of 80% by volume is relatively good. Maintains strong strength and toughness. This is also considered to be an effect based on the compounding of a fine particle size (10 μm or less) and a coarse particle size (75 to 200 μm).
[0013]
The coexistence effect of hard particles (total content 40-75% by volume) of fine and coarse particles is that the content of fine particles (V A ) is 5% by volume or more and the content of coarse particles (V B ) It is enhanced by setting it to 30% by volume or more. In order to maximize the coexistence effect, it is desirable to adjust the content ratio (V B / V A ) of fine particles and coarse particles to a range of 1 to 7.
[0014]
The metal material of the matrix is preferably a Co-base alloy, a Ni-base alloy, or a Ti-base alloy from the viewpoints of seizure resistance, high-temperature strength, corrosion resistance (for example, corrosion resistance against seawater), and the like. These alloys contain an appropriate amount of one or more of Cr, Mo, B, Ni, Fe, W, Al, V and the like as desired as alloy elements for further improving physical properties such as mechanical strength and corrosion resistance. Chemical composition is given. Moreover, when the matrix has high hardness (preferably HRC20 or more), it is advantageous because the amount of hard particles as a reinforcing material can be adjusted with a small amount.
[0015]
Specific examples of the metal matrix include an alloy having the following chemical composition (element content is all by weight).
[Co-based alloy]
Cr: 15 to 35%, Mo: 5 to 20%, B: 1 to 5%, Fe: 3% or less, Ni: 5% or less, C: 3% or less, Si: 2% or less, balance Co and inevitable impurities .
Cr: 20 to 40%, Ni: 3% or less, W: 4 to 20%, Fe: 5% or less, C: 2.5% or less, Si: 2% or less, remaining Co and inevitable impurities .
[0016]
[Ni-based alloy]
Cr: 5 to 30%, B: 5% or less, Fe: 5% or less, C: 2.0% or less, Si: 10% or less, balance Ni and inevitable impurities .
[Ti-based alloy]
Al: 2 to 10%, V: 1 to 10%, remaining Ti and inevitable impurities .
[0017]
In addition, what is necessary is just to select the structural material according to the use environment of a sliding member suitably for the base metal layer in the case of manufacturing a sliding member as a laminated structure of a base metal and a composite material layer. Stainless steel, Ti alloy and the like are excellent in corrosion resistance against seawater and the like, and are preferably used as a constituent material of a sliding member of a bearing device used in seawater. Among stainless steels, austenitic stainless steel (SUS304, SUS316, etc.) and duplex stainless steel (SUS329J1, etc.) are particularly suitable.
[0018]
In the composite material of the present invention, a metal powder as a matrix and hard particles (fine particles and coarse particles) as a reinforcing material are uniformly mixed with a ball mill or the like to prepare a raw material powder. It is manufactured as a sintered body by a plasma welding build-up method) or a hot isostatic pressing method (HIP method).
[0019]
The HIP process is performed by filling the raw material powder into a capsule (degassed and sealed) and holding it under pressure and heating for an appropriate time. The processing temperature is appropriately set in the range of about 900 to 1200 ° C., and the applied pressure is in the range of about 70 to 150 MPa. The processing time is about 1 to 10 Hr. After the treatment, the capsule is removed by machining or the like to obtain a sliding member.
When the sliding member is manufactured as a multilayer sleeve (3) of a base material layer (2) made of metal and a composite material layer (1) as shown in FIG. 3, the base material layer (2) What is necessary is just to carry out the HIP process by laminating and filling the metal cylindrical body and raw material powder to become capsules. The layer interface is firmly bonded and integrated by solid phase diffusion generated by the HIP process.
[0020]
Alternatively, when manufacturing sliding members by applying welding overlay (powder plasma welding overlay, etc.), supply raw material powder (mixture of metal powder and hard particle powder) to the base material surface. The metal powder is melted with plasma arc heat, and hard particles are suspended in the molten pool and solidified to form a composite material layer as a weld bead.
[0021]
Comparing the above welding overlay method with the HIP molding method, the HIP molding method has a lower processing temperature than the welding overlay method. Therefore, the dissolution / disappearance of hard particles (change in the particle size / disappearance of the hard particles and accompanying them) There is no change in volume% of hard particles in the composite structure and change in the composition of the metal matrix accompanying melting of the hard particles, and the dispersion strengthening action of the hard particles can be effectively expressed. Also, when the sliding member having the laminated structure of FIG. 3 is manufactured, unlike the welding overlay method, the base material layer (2) is less melted / diluted (component change at the interface). Therefore, the degree of freedom in selecting and combining the base material layer and the hard particle material type is large, and the component design is easy.
[0022]
4 and 5 show examples of application modes of the sliding member of the present invention in the bearing device. FIG. 4 shows an example in which the sleeve of FIG. 3 is attached and fixed to the shaft (5) . FIG. 5 shows an example in which a recessed groove (7) that goes around the surface is provided at a required position of the shaft (5) , and the composite material layer (1) of the present invention is formed in the recessed groove. The composite material layer (1) in the recessed groove (7) is formed as a build-up layer by powder plasma welding or the like, or as a sintered body by applying HIP. A sliding surface made of the composite material of the present invention can also be formed by applying HIP or a welding overlay method to the bearing member.
[0024]
【Example】
A composite material is manufactured from a mixed powder of metal powder as a matrix and hard particles as a reinforcing material.
[0025]
(1) Metal matrix (element content: wt%)
(Co alloy 1)
Cr: 15.50, Mo: 5.20, B: 0.72, Ni: 1.03, Fe: 0.94, C: 1.14, Si: 0.33, Co: Bal
HRC = 53
(Co alloy 2)
Cr: 31.35, W: 8.39, Ni: 1.98, Fe: 2.06, C: 1.71, Si: 1.27, Co: Bal
HRC = 43
(Ni alloy)
Cr: 15.77, B: 2.70, Fe: 3.68, C: 0.64, Si: 4.72, Ni:
Bal
HRC = 51
(Ti alloy)
Al: 6.12, V: 4.23, Ti: Bal
HRC = 13
[0026]
(2) Grade and particle size of fine hard particles (average particle size in parentheses)
WC: 10 μm or less (4.1 μm)
TiC: 10 μm or less (1.51 μm)
NbC: 10 μm or less (1.05 μm)
MoB ... 10μm or less (5.22μm)
TiN: 10 μm or less (1.2-1.8 μm)
[0027]
(3) Grade of coarse hard particles and particle size W 2 C: 100-200 μm
TiC ... 75-150μm
NbC ... 75-150μm
[0028]
(4) HIP-treated metal powder and hard particle powder are weighed and mixed, mixed uniformly with a ball mill, and then sealed in a capsule (made of mild steel) under reduced pressure. After the treatment, the capsule was removed by machining, and a composite material formed as a sintered body was collected.
Temperature: 1100 ° C
Applied pressure: 110 MPa
Processing time: 2Hr
[0029]
Test pieces were prepared from the test composite materials, and the following tests were conducted.
[Abrasion test 1]
Abrasion resistance evaluation test using ceramics as the counterpart material.
Based on the Ogoshi rapid wear tester. The test piece is pressed against the mating material (rotating disk), and the amount of wear reduction (mm 2 / N) on the surface of the test piece is calculated from the depth, width, etc. of the wear defect generated on the surface of the test piece.
Counterpart material: silicon nitride ceramics peripheral speed: 3.38 m / s
Friction distance: 400m
Load: 61N
[0030]
[Abrasion test 2]
Evaluation test of soil and sand wear erosion resistance.
A cylindrical test material (silicon nitride ceramics) that surrounds the test material is attached to the lower end of the rotating shaft with a cylindrical test material (outer diameter 30 × thickness 5 (composite material layer thickness 2) × length 50, mm) ) Is rotated in a slurry (silica sand suspension) for a predetermined time. After completion of the test, the total thickness reduction amount of the test material and the bearing member (outer diameter change amount of the test material + inner diameter change amount of the bearing member) is measured.
Slide diameter: 30mm
Peripheral speed: 5.7 m / second suspended particles, concentration: No. 8 silica sand, 5000 ppm
Test time: 100Hr
[0031]
[Bending strength]
Test method: Three-point bending test (JIS B1601)
Specimen size: 3 × 4 × 40, mm
Span distance: 30mm
Test temperature: Room temperature [0032]
[Table 1]
Figure 0004018308
[0033]
Table 1 shows the measurement results of the component composition and physical properties of each test material.
In Comparative Examples No. 101 and No. 102, two types of particles having a fine particle size and a coarse particle size are combined as hard particles in the same manner as in the inventive example, but No. 101 is insufficient in the combined amount. .102 is an example of excessive compound amount. No. 103 is an example containing coarse particles as hard particles (no fine particle composite), and No. 104 is an example containing fine particles (no coarse particles blended).
[0034]
Comparative Example No. 101 (insufficient amount of hard particles) contains fine particles and coarse particles in combination, but has poor wear resistance and wear reduction due to sliding with the mating material (ceramics). And sand wear erosion due to contact with the slurry is remarkable. No.102 (excessive amount of hard particles) has no problem in wear resistance but is extremely low in strength (unable to measure the bending strength of the test piece). Comparative Example No. 103 (containing only hard particles having a coarse particle size) has good wear resistance against the ceramic counterpart, but wear erosion due to earth and sand wear is significant. No.104 (compound only fine particles) has poor wear resistance against ceramic counterparts. Sediment wear erosion resistance is low and strength is poor.
[0035]
On the other hand, the invention example has excellent wear resistance against the ceramic counterpart and resistance to earth and sand wear erosion, and has good bending strength as an effect of containing a proper amount of hard particles with fine and coarse particle sizes. is doing.
[0036]
【The invention's effect】
The composite material for a sliding member of the present invention has an excellent wear resistance with ceramic as a counterpart material as an effect of having a composite structure in which two types of particles having a fine particle size and a coarse particle size are co-dispersed in a metal matrix. In addition, it has good wear resistance against earth and sand wear and erosion, and has the necessary strength and toughness for the sliding member. The composite material of the present invention is a sliding part material that is subjected to such a severe sliding / friction environment, and has a great effect in improving the stability of its sliding function, improving durability, reducing maintenance, etc. Is what it brings.
[Brief description of the drawings]
FIG. 1 is an explanatory cross-sectional view schematically showing a dispersion form of hard particles of a composite material of the present invention.
FIG. 2 is a cross-sectional explanatory view schematically showing a dispersion form of hard particles of a conventional composite material.
FIG. 3 is a front sectional view showing an example of a sliding member to which the composite material of the present invention is applied.
FIG. 4 is a partially cutaway front view showing an application example of a composite material to a sliding device member.
FIG. 5 is a partially cutaway front view showing an application example of a composite material to a sliding device member.
FIG. 6 is a front view showing an example of a sliding member.
[Explanation of symbols]
1: Composite material layer 2: Base metal layer 3: Multi-layer sleeve 5: Shaft
7: recessed groove P: hard particle P 1 : fine hard particle P 2 : coarse hard particle
M: Metal matrix

Claims (10)

金属マトリックスと硬質粒子とからなる複合組織を有し、硬質粒子はセラミックス粒子であって、粒径10μm以下の微細粒子と、粒径75〜200μmの粗大粒子とからなり、微細粒子の含有量は5体積%以上、粗大粒子の含有量は30体積%以上、微細粒子の含有量(VA)と粗大粒子の含有量(VB)との比(VB/VA)は1〜7であり、微細粒子と粗大粒子の合計含有量は40〜80体積%である排水・揚水用ポンプの軸受部材に使用される摺動部材用複合材料。It has a composite structure composed of a metal matrix and hard particles, and the hard particles are ceramic particles, and are composed of fine particles having a particle size of 10 μm or less and coarse particles having a particle size of 75 to 200 μm. 5% by volume or more, the content of coarse particles 30% by volume or more, the content of content (V a) and coarse particles fine particles (V B) and the ratio of (V B / V a) is 1 to 7 A composite material for a sliding member used for a bearing member of a drainage / pumping pump having a total content of fine particles and coarse particles of 40 to 80% by volume. 微細粒子の粒径が、1〜10μmである請求項1に記載の摺動部材用複合材料。The composite material for a sliding member according to claim 1 , wherein the particle diameter of the fine particles is 1 to 10 μm. セラミックス粒子が、炭化物系,硼化物系,窒化物系,珪化物系,酸化物系セラミックスから選ばれる1種ないし2種以上の粒子である請求項1又は2に記載の摺動部材用複合材料。The composite material for a sliding member according to claim 1 or 2 , wherein the ceramic particles are one or more particles selected from carbide, boride, nitride, silicide, and oxide ceramics. . 金属マトリックスが、重量%で、Cr:15〜35%,Mo:5〜20%,B:1〜5%,Fe:3%以下、Ni:5%以下,C:3%以下,Si:2%以下,残部はCo及び不可避不純物からなるCo基合金、またはCr:20〜40%,Ni:3%以下,W:4〜20%,Fe:5%以下,C:2.5%以下,Si:2%以下,残部はCo及び不可避不純物からなるCo基合金、である請求項1ないし3のいずれか1項に記載の摺動部材用複合材料。The metal matrix is, by weight, Cr: 15 to 35%, Mo: 5 to 20%, B: 1 to 5%, Fe: 3% or less, Ni: 5% or less, C: 3% or less, Si: 2 % Or less, the balance being a Co-based alloy composed of Co and inevitable impurities, or Cr: 20 to 40%, Ni: 3% or less, W: 4 to 20%, Fe: 5% or less, C: 2.5% or less, The composite material for a sliding member according to any one of claims 1 to 3 , wherein Si is 2% or less, and the balance is a Co-based alloy composed of Co and inevitable impurities. 金属マトリックスが、重量%で、Cr:5〜30%,B:5%以下,Fe:5%以下,C:2.0%以下,Si:10%以下,残部はNi及び不可避不純物からなるNi基合金である請求項1ないし3のいずれか1項に記載の摺動部材用複合材料。The metal matrix is, by weight percent, Cr: 5-30%, B: 5% or less, Fe: 5% or less, C: 2.0% or less, Si: 10% or less, and the balance is Ni consisting of Ni and inevitable impurities The composite material for a sliding member according to any one of claims 1 to 3 , which is a base alloy. 金属マトリックスが、重量%で、Al:2〜10%,V:1〜10%,残部はTi及び不可避不純物からなるTi基合金である請求項1ないし3のいずれか1項に記載の摺動部材用複合材料。。The sliding according to any one of claims 1 to 3 , wherein the metal matrix is a Ti-based alloy consisting of Al: 2 to 10%, V: 1 to 10%, and the balance being Ti and inevitable impurities, by weight%. Composite material for parts. . マトリックス金属は、HRC20以上の硬度を有するものである請求項1ないし6のいずれか1項に記載の摺動部材用複合材料。The composite material for a sliding member according to any one of claims 1 to 6 , wherein the matrix metal has a hardness of HRC20 or higher. 熱間静水圧加圧焼結体である請求項1ないし7のいずれか1項に記載の摺動部材用複合材料。The composite material for a sliding member according to any one of claims 1 to 7 , which is a hot isostatic pressing sintered body. 排水・揚水用ポンプの軸受部材に使用される、請求項1ないし8のいずれか1項に記載の複合材料からなる摺動面を有する摺動部材。 The sliding member which has a sliding surface which consists of a composite material of any one of Claim 1 thru | or 8 used for the bearing member of the drainage / pumping pump . 中空円筒形状の母材金属層と、該母材金属層の摺動面となる側に積層形成された複合材料からなる層を有する複層スリーブである請求項9に記載の摺動部材。The sliding member according to claim 9 , which is a multilayer sleeve having a hollow cylindrical base metal layer and a layer made of a composite material laminated on the side of the base metal layer that becomes a sliding surface.
JP2000030496A 2000-02-08 2000-02-08 Composite material for sliding member and sliding member Expired - Lifetime JP4018308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030496A JP4018308B2 (en) 2000-02-08 2000-02-08 Composite material for sliding member and sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030496A JP4018308B2 (en) 2000-02-08 2000-02-08 Composite material for sliding member and sliding member

Publications (2)

Publication Number Publication Date
JP2001220606A JP2001220606A (en) 2001-08-14
JP4018308B2 true JP4018308B2 (en) 2007-12-05

Family

ID=18555497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030496A Expired - Lifetime JP4018308B2 (en) 2000-02-08 2000-02-08 Composite material for sliding member and sliding member

Country Status (1)

Country Link
JP (1) JP4018308B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3886394B2 (en) * 2002-02-25 2007-02-28 株式会社荏原製作所 Covering material with corrosion resistance and wear resistance
WO2009122985A1 (en) * 2008-03-31 2009-10-08 日本ピストンリング株式会社 Iron-base sintered alloy for valve sheet and valve sheet for internal combustion engine
DE102014205164B4 (en) * 2014-03-20 2018-01-04 Schaeffler Technologies AG & Co. KG Bearing element for a rolling bearing
JP6653841B2 (en) * 2015-03-31 2020-02-26 株式会社クボタ Manufacturing method of sliding member

Also Published As

Publication number Publication date
JP2001220606A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
CN108950342B (en) Ti (C, N) -based cermet and preparation method thereof
JP6124877B2 (en) FeNi binder with versatility
TW201026858A (en) Metal powder
EP2591874B1 (en) Friction stir welding tool made of cemented tungsten carbid with Nickel and with a Al2O3 surface coating
KR100648070B1 (en) Tool for hot working
TWI804570B (en) Composite rolls made of superhard alloy and superhard alloy for rolling
US10960490B2 (en) Friction stir welding tool
JP4018308B2 (en) Composite material for sliding member and sliding member
JP4538794B2 (en) Cemented carbide roll for rolling
JP3690617B2 (en) Cemented carbide composite roll
JP3852902B2 (en) Sliding member with excellent wear resistance
JP4179740B2 (en) Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance
JP2005262321A (en) Composite roll made of cemented carbide
JP4680684B2 (en) Cemented carbide
JP4279935B2 (en) Hard grain dispersed sintered steel and method for producing the same
JP4330157B2 (en) Screw for injection molding machine and its assembly parts
JP6178689B2 (en) Tungsten heat resistant alloy, friction stir welding tool, and manufacturing method
JP2001179507A (en) Cutting tool
JP6578532B2 (en) Heat-resistant alloy tool having a coating layer and processing apparatus
JP3511740B2 (en) Method for producing high toughness cemented carbide and composite cemented carbide roll
JP4540791B2 (en) Cermet for cutting tools
Huang et al. NbC-based cermets: influence of secondary carbide addition and metal binder
WO2023248318A1 (en) Wear-resistant member
JPH105824A (en) Composite roll made of sintered hard alloy
JP2004315950A (en) Heat resistant and wear resistant member, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4018308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 7

EXPY Cancellation because of completion of term