JPH02164731A - Production of microlens array - Google Patents

Production of microlens array

Info

Publication number
JPH02164731A
JPH02164731A JP32022788A JP32022788A JPH02164731A JP H02164731 A JPH02164731 A JP H02164731A JP 32022788 A JP32022788 A JP 32022788A JP 32022788 A JP32022788 A JP 32022788A JP H02164731 A JPH02164731 A JP H02164731A
Authority
JP
Japan
Prior art keywords
sol
gel
microlens array
convex lens
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32022788A
Other languages
Japanese (ja)
Inventor
Motoyuki Toki
元幸 土岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP32022788A priority Critical patent/JPH02164731A/en
Publication of JPH02164731A publication Critical patent/JPH02164731A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To easily obtain a microlens array at a low cost by sticking drops of sol prepd. by hydrolyzing silicon alkoxide on a transparent substrate, converting the sol into gel while keeping the convex lens shape of the sol by the surface tension, drying the gel and vitrifying the resulting dry gel by heat treatment. CONSTITUTION:Silicon alkoxide such as ethyl silicate is hydrolyzed to prepare silica sol. This sol is filled into an injector and drops of the sol are stuck one by one to desired positions on a transparent substrate such as quartz glass to form sol having a convex lens shape by the surface tension of the sol. The formed sol is converted into gel while keeping the convex lens shape and the gel is dried with a dryer. The resulting dry gel is vitrified by heat treatment to obtain microlenses. A microlens array can be produced by arraying the microlenses.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微小な凸レンズを多数有するマイクロレンズ
アレイに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a microlens array having a large number of minute convex lenses.

[従来の技術] 従来のマイクロレンズアレイは[伊賀他、光学第1O巻
、6号(1981)414Jに記載されているように、
平板マイクロレンズアレイとして作製されている。つま
り、ガラス基板上に円形開口のパターンを用い、イオン
拡散を行うと、三次元的な屈折率分布を基板内に形成す
ることができ、中心から二乗分布近似で屈折率が減少す
るという屈折率分布形のマイクロレンズを作製している
ものである。また、分布屈折率レンズとしては、セルフ
ォックレンズという名称で市販されている。これは、ロ
ッド状ガラスの周辺からイオン交替を行い、中心軸から
二乗分布で屈折率を減少させたもので、そのロッド状レ
ンズを多数、周期的に束めることで、セルフォックレン
ズアレイとしたものである。
[Prior Art] A conventional microlens array [as described in Iga et al., Optics Vol. 1O, No. 6 (1981) 414J]
It is fabricated as a flat microlens array. In other words, by using a pattern of circular apertures on a glass substrate and performing ion diffusion, a three-dimensional refractive index distribution can be formed within the substrate, and the refractive index decreases from the center using a square distribution approximation. A distributed microlens is being manufactured. Furthermore, the distributed refractive index lens is commercially available under the name Selfoc lens. This is achieved by ion replacement from the periphery of the rod-shaped glass, reducing the refractive index with a square distribution from the central axis.By periodically bundling a large number of rod-shaped lenses, it is possible to create a Selfoc lens array. This is what I did.

[発明が解決しようとする課題] しかし、前述の従来技術では、平板マイクロレンズもセ
ルフォックレンズにしろ、イオン拡散(イオン交換)に
より屈折率分布を形成しているため、素子作製に要する
時間は数日から数週間必要であり、工業化するにはコス
ト高になり、生産性が低いという問題点を有する。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, whether it is a flat microlens or a selfoc lens, the refractive index distribution is formed by ion diffusion (ion exchange), so the time required to manufacture the element is short. It requires several days to several weeks, and has the problems of high cost and low productivity for industrialization.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、生産性が高く容易に低コストで
製造できるマイクロレンズアレイを提供するところにあ
る。
The present invention is intended to solve these problems, and its purpose is to provide a microlens array that has high productivity and can be easily manufactured at low cost.

[課題を解決するための手段1 本発明のマイクロレンズアレイは、少なくともシリコン
アルコキシドを厚相とし、ゾルをゲル化しガラス化する
ゾル−ゲル法において、ゾルを液滴にし、透明基板上の
マイクロレンズを形成したい場所に付け、ゾル液の表面
張力により、凸レンズ形状に保ち、ゲル化させ、乾燥し
ドライゲルとした後熱処理によりガラス化させることを
特徴とする。
[Means for Solving the Problems 1] The microlens array of the present invention uses at least silicon alkoxide as a thick phase, and in the sol-gel method in which the sol is gelled and vitrified, the sol is made into droplets and the microlenses on a transparent substrate are formed. It is characterized by applying it to the desired location, keeping it in a convex lens shape due to the surface tension of the sol solution, gelling it, drying it to form a dry gel, and then vitrifying it by heat treatment.

[作 用] 本発明の構成を詳しく説明する。シリコンアルコキシド
は水と反応し加水分解され、シリカゾルを形成する。こ
の溶媒は水でも有機溶剤でも可能であるがいずれにして
も低粘度の流動性を有する液体である。シリカゾルを一
滴にして、ガラス等の透明基板上に付着させるとその表
面張力により半円弧状に保たれレンズ形状になる。シリ
カゾルはこのまま放置するとゲル化し、レンズ形状のシ
リカゲルに変化する。これを乾燥すると透明基板上に付
着したままのドライゲルとすることができ焼結すること
により透明基板上に透明にガラス化した半円弧状のレン
ズ形状のマイクロレンズを形成することができる。レン
ズの焦点距離を調整するためには、シリカゾルにグリセ
リンや、エチレングリコール、ポリエチレングリコール
等の増粘剤を添加することや、表面張力を変えるアルコ
ール類や水を添加することで接触角θを変えることが有
効である。また、ゾルの無機成分がシリコンのみである
と、ガラス化させる焼結温度が高いため使用できる透明
基板は、石英ガラスのみになるであろう、そこで、安価
で人手しやすい透明基板として、青板ガラスや白板ガラ
ス、あるいは透明プラスチック基板を使用するためには
、焼結温度を600℃以下にする必要がある。その方法
としては、ホウ素、リン、ナトリウム、カリウム、等の
元素をゾルに、酸や塩の形で添加することが有効である
[Function] The configuration of the present invention will be explained in detail. Silicon alkoxide reacts with water and is hydrolyzed to form silica sol. This solvent can be water or an organic solvent, but in either case it is a liquid with low viscosity and fluidity. When a drop of silica sol is deposited on a transparent substrate such as glass, its surface tension keeps it in a semicircular arc shape, forming a lens shape. If left as is, silica sol will gel and change into lens-shaped silica gel. When this is dried, it becomes a dry gel that remains attached to the transparent substrate, and by sintering, it is possible to form transparent vitrified semicircular arc lens-shaped microlenses on the transparent substrate. In order to adjust the focal length of the lens, the contact angle θ can be changed by adding thickeners such as glycerin, ethylene glycol, or polyethylene glycol to the silica sol, or by adding alcohol or water that changes the surface tension. This is effective. In addition, if the inorganic component of the sol is silicon only, the only transparent substrate that can be used is quartz glass because the sintering temperature for vitrification is high. In order to use glass, white glass, or transparent plastic substrates, the sintering temperature must be 600° C. or lower. An effective method for this is to add elements such as boron, phosphorus, sodium, potassium, etc. to the sol in the form of acids or salts.

以上のようにして、透明基板上に半円弧状のマイクロレ
ンズを形成することができる。
In the manner described above, semicircular arc-shaped microlenses can be formed on the transparent substrate.

[実 施 例1 以下に実施例によって本発明の詳細な説明する。[Implementation Example 1] The present invention will be explained in detail below by way of examples.

実施例1 エチルシリケート208g (1モル)に0. 1規定
に塩酸180mε加えよく撹拌し加水分解した。次に、
シリカ粒子Aerosil  OX50 (Degus
sa社)を90g添加しよく撹拌し均一にした0次に、
0.2規定のアンモニア水を加え、ゾルのpH値を4.
5にした。得られたゾルを注射器に取り、1滴づつ、石
英ガラス基板上に一列に等間隔で付は半円弧上に表面張
力より保ち、−列のゾルによるマイクロレンズ状ゾルを
形成した。2時間後ゾルはゲル化し、密閉容器中に1時
間放置した。次に60°Cの乾燥機に投入し容器のツク
にピンホールを開け、ガラス基板上に付着したドライゲ
ルを作製した。室温から1300℃まで徐々に温度を上
げ1300℃で境結しガラス化した6以上により、石英
ガラス基板上にマイクロレンズアレイを作製できた。
Example 1 208g (1 mol) of ethyl silicate was mixed with 0. Hydrochloric acid (180 mε) was added to 1N, and the mixture was thoroughly stirred for hydrolysis. next,
Silica particles Aerosil OX50 (Degus
Next, add 90g of sa company) and stir well to make it homogeneous.
Add 0.2N ammonia water and adjust the pH value of the sol to 4.
I gave it a 5. The obtained sol was taken into a syringe and drop by drop was applied in a row on a quartz glass substrate at equal intervals, keeping it on a semicircular arc due to surface tension to form a microlens-shaped sol with a row of sol. After 2 hours, the sol turned into a gel and was left in a closed container for 1 hour. Next, the container was placed in a dryer at 60° C., a pinhole was made in the container, and a dry gel was produced that adhered to the glass substrate. By gradually raising the temperature from room temperature to 1300° C. and bonding and vitrifying at 1300° C., a microlens array could be fabricated on a quartz glass substrate.

実施例2 エチルシリケートをアンモニア水で加水分解して作製し
たコロイダルシリカを、a縮することにより、シリカ濃
度30wt%、pH9,0で粒径0.25μmのコロイ
ダルシリカとした。このコロイダルシリカ300gに2
規定の塩酸を添加しpHを1.5にした。これに、エチ
ルシリケート208gを加え、よく撹拌し、加水分解を
終了させた。この溶液に0.2規定のアンモニア水を添
加し、pHを4.5に調整した。このゾルを注射器に取
り、−滴づつ、石英ガラス板上に、縦横に等間に付け、
マトリックス状にゾル滴をつけた。
Example 2 Colloidal silica prepared by hydrolyzing ethyl silicate with aqueous ammonia was subjected to a-condensation to obtain colloidal silica with a silica concentration of 30 wt%, pH 9.0, and a particle size of 0.25 μm. 2 for 300g of this colloidal silica
Specified hydrochloric acid was added to adjust the pH to 1.5. To this, 208 g of ethyl silicate was added and stirred well to complete the hydrolysis. 0.2N aqueous ammonia was added to this solution to adjust the pH to 4.5. Take this sol in a syringe and apply it drop by drop at equal intervals vertically and horizontally on a quartz glass plate.
Sol droplets were applied in a matrix.

それぞれの液滴は表面張力により、接触角θで半円弧を
形成し、レンズ形状にさせた。2時間放置することで、
ゲル化し、適当な乾燥スピードにコントロールすること
で、クラックのないマイクロレンズ状のドライゲルとし
た。1300’Cで焼結することで透明なマイクロレン
ズとすることができた。
Each droplet formed a semicircular arc at a contact angle θ due to surface tension, giving it a lens shape. By leaving it for 2 hours,
By gelatinizing and controlling the drying speed to an appropriate level, a crack-free microlens-shaped dry gel was created. By sintering at 1300'C, a transparent microlens could be obtained.

[発明の効果] 以上述べたように、本発明によれば、ゾル−ゲル法のゾ
ルを小滴にし、透明基板上に付着するとゾルの表面張力
により半円弧状になり、レンズ形状を保つことができる
。この状態を維持しながらゲル化し乾燥、焼結すると、
ガラスのマイクロレンズが作製できる。このマイクロレ
ンズをアレイ状にならべるとマイクロレンズアレイにす
ることができる。
[Effects of the Invention] As described above, according to the present invention, when the sol of the sol-gel method is made into small droplets and adhered to a transparent substrate, the surface tension of the sol causes the droplets to form a semicircular arc shape and maintain the lens shape. Can be done. While maintaining this state, it gels, dries, and sinters.
Glass microlenses can be made. A microlens array can be obtained by arranging these microlenses in an array.

このようにして得られるマイクロレンズアレイはファク
シミリや複写機に使用でき、その低コスト化に貢献する
であろう、また液晶プロジェクタ−に用い、その画素に
対応するようにマイクロレンズを配置すると高輝度化に
役立つものと考えなマイクロレンズアレイは、種々の光
学製品の高機能化、低コスト化に大きく貢献することに
なるであろう。
The microlens array obtained in this way can be used in facsimile machines and copying machines, contributing to cost reduction.It can also be used in liquid crystal projectors, and if the microlenses are arranged to correspond to the pixels, high brightness can be achieved. Microlens arrays, which are considered to be useful for the advancement of optical technology, will greatly contribute to increasing the functionality and lowering costs of various optical products.

Claims (1)

【特許請求の範囲】[Claims] 少なくともシリコンアルコキシドを原料とし、ゾルをゲ
ル化しガラス化するゾル−ゲル法において、ゾルを液滴
にし、透明基板上のマイクロレンズを形成したい場所に
付け、ゾル液の表面張力により、凸レンズ形状に保ち、
ゲル化させ、乾燥しドライゲルとした後熱処理によりガ
ラス化させることを特徴とするマイクロレンズアレイの
製造方法。
In the sol-gel method, which uses at least silicon alkoxide as a raw material and gels and vitrifies the sol, the sol is made into droplets and applied to the desired location on a transparent substrate to form a microlens, and the surface tension of the sol liquid keeps it in the shape of a convex lens. ,
A method for producing a microlens array, which comprises gelling it, drying it to form a dry gel, and then vitrifying it by heat treatment.
JP32022788A 1988-12-19 1988-12-19 Production of microlens array Pending JPH02164731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32022788A JPH02164731A (en) 1988-12-19 1988-12-19 Production of microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32022788A JPH02164731A (en) 1988-12-19 1988-12-19 Production of microlens array

Publications (1)

Publication Number Publication Date
JPH02164731A true JPH02164731A (en) 1990-06-25

Family

ID=18119145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32022788A Pending JPH02164731A (en) 1988-12-19 1988-12-19 Production of microlens array

Country Status (1)

Country Link
JP (1) JPH02164731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364917A1 (en) * 2001-03-01 2003-11-26 Nippon Sheet Glass Co., Ltd. Method for fabricating optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1364917A1 (en) * 2001-03-01 2003-11-26 Nippon Sheet Glass Co., Ltd. Method for fabricating optical element
EP1364917A4 (en) * 2001-03-01 2006-03-15 Nippon Sheet Glass Co Ltd Method for fabricating optical element

Similar Documents

Publication Publication Date Title
CN100396826C (en) Process for preparing patterning titanium dioxide inverse opal photonic crystal
CN101587297A (en) Preparation for titanium dioxide based organic-inorganic composite film and method for preparing micro-optic device by adopting film
CN1362910A (en) Article having predetermined surface shape and method for production thereof
KR910010203A (en) Improved optical device and manufacturing method thereof
CN106950618B (en) A method of optical lens fogging is prevented using bionic super-hydrophobic structure
EP1258456A1 (en) Silica glass formation process
JPH02164731A (en) Production of microlens array
JPH06157069A (en) Refractive index distribution type silicate glass
JPS64331B2 (en)
JP2000216417A (en) Substrate with fine uneven pattern
JPH02165933A (en) Manufacture of microlens array
JPH0114177B2 (en)
JPS63151623A (en) Production of organic substance-containing silica bulk material
JPH02165932A (en) Manufacture of microlens array
JPS59102832A (en) Preparation of borosilicate glass
JPH0755835B2 (en) Method for producing silica glass
Smith Some recent advances in glasses and glass-ceramics
KR20020017667A (en) Method for preparing high refractive index glass bead by coating
JPS59102833A (en) Preparation of quartz glass
JPS63151624A (en) Production of organic substance-containing silica bulk material
EP1258457A1 (en) Silica glass formation process
JP2675139B2 (en) Method for producing amorphous material having nonlinear optical effect
JPS61236617A (en) Production of quartz glass
JPH02120246A (en) Method for producing glass for fine pattern transfer
JPS6096533A (en) Preparation of quartz glass tube