JPH02160511A - Production of fiber reinforced composite - Google Patents

Production of fiber reinforced composite

Info

Publication number
JPH02160511A
JPH02160511A JP63316707A JP31670788A JPH02160511A JP H02160511 A JPH02160511 A JP H02160511A JP 63316707 A JP63316707 A JP 63316707A JP 31670788 A JP31670788 A JP 31670788A JP H02160511 A JPH02160511 A JP H02160511A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
resin
filaments
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63316707A
Other languages
Japanese (ja)
Inventor
Kiyoyasu Fujii
藤井 清康
Kazuyoshi Yamamoto
山本 和芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP63316707A priority Critical patent/JPH02160511A/en
Publication of JPH02160511A publication Critical patent/JPH02160511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To enhance the strength of the title composite and also to enable stable operation by passing the strand-shaped reinforced fiber in a nontensile state through fluidized powdery thermoplastic resin and thereafter heating and melting powdery thermoplastic resin in a tensile state and integrating reinforced fiber and resin. CONSTITUTION:The end part of reinforced fiber 1 constituted of many continuous nonconductive filaments is taken off by the pinch rolls 11, 12 and successively rewound so that twist is not imparted from the outside of a roll 1a and thereafter introduced into a vessel 20 in a nontensile state. The powdery thermoplastic resin 2 is infiltrated and held between the filaments in the fluidized bed 26 of the resin 2. Reinforced fiber 1 is passed through the upper and lower faces of the slitters 50, 51 and excess resin 2 is removed and the holding amount is made constant. Reinforced fiber 1 is supplied to a far infrared heating oven 60 in a tensile state and resin is melted. The resin and reinforced fiber 1 are integrated by pressing it with the heating rolls 61.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強化繊維と熱可塑性樹脂とが一体化された繊
維強化複合材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a fiber reinforced composite material in which reinforcing fibers and a thermoplastic resin are integrated.

(従来の技術) ストランド状の連続する強化繊維を、流動化された粉体
状熱可塑性樹脂(流動床)の中を通過させて強化繊維に
粉体状熱可塑性樹脂を保持させた後、加熱炉を通過させ
ることにより、粉体状熱可塑性樹脂を溶融させて強化繊
維と熱可塑性樹脂とを一体化させる繊維強化複合材の製
造方法は広く知られている。
(Prior art) A continuous reinforcing fiber in the form of a strand is passed through a fluidized powder thermoplastic resin (fluidized bed) to retain the powder thermoplastic resin in the reinforcing fibers, and then heated. A method for producing a fiber-reinforced composite material in which a powdered thermoplastic resin is melted by passing through a furnace to integrate reinforcing fibers and the thermoplastic resin is widely known.

従来実施されている製造方法は、加熱炉の後方位置に引
き取り機を設置し、この引き取り機でストランド状強化
繊維を連続的に引き取り、粉体状熱可塑性樹脂の流動床
及び加熱炉を通過させるものである。
The conventional manufacturing method is to install a take-up machine at the rear of the heating furnace, and use this take-up machine to continuously take the strand-shaped reinforcing fibers through a fluidized bed of powdered thermoplastic resin and the heating furnace. It is something.

この方法によれば、強化繊維のフィラメントが一方向に
引き揃えられた繊維強化複合材を得ることができるため
、曲げ強度の比較的高い繊維強化複合材を得ることがで
きる。ところが、上記したように強化繊維は張力がかか
った状態で粉体状熱可塑性樹脂中の流動床を通過するた
め強化繊維は充分開繊されていす、従って強化繊維の内
部にまで粉体状熱可塑性樹脂が侵入せず、製造された繊
維強化複合材の強度が不十分であった。
According to this method, it is possible to obtain a fiber-reinforced composite material in which the reinforcing fiber filaments are aligned in one direction, so it is possible to obtain a fiber-reinforced composite material with relatively high bending strength. However, as mentioned above, since the reinforcing fibers pass through a fluidized bed of powdered thermoplastic resin under tension, the reinforcing fibers are sufficiently opened, so that the powdered heat reaches inside the reinforcing fibers. The plastic resin did not penetrate, and the strength of the manufactured fiber reinforced composite material was insufficient.

上記欠点を改善する方法として、特公昭52−3985
号公報には、流動床中に螺条を切ったバーを複数本平行
に架設し、強化繊維をこのバーに交互に通すことにより
強化繊維を開繊して強化繊維の内部にまで熱可塑性樹脂
を侵入させる方法が提案され、特開昭58−50194
3号公報には流動床中に配設された複数のローラーの周
面に強化繊維を押し付けながら通過させることによって
、強化繊維の内部にまで熱可塑性樹脂を侵入させる方法
が提案され、さらに特開昭63−2708号公報には流
動床中に架設された複数の湾曲バーの上下面に強化繊維
を交互に押し付けて強化繊維の幅を変化させながら通過
させることによって、強化繊維の内部にまで熱可塑性樹
脂を侵入させる方法が提案されている。
As a method to improve the above drawbacks,
In the publication, a plurality of threaded bars are installed in parallel in a fluidized bed, and reinforcing fibers are passed through the bars alternately to spread the reinforcing fibers and inject thermoplastic resin into the inside of the reinforcing fibers. A method of infiltrating the
Publication No. 3 proposes a method of infiltrating a thermoplastic resin into the interior of reinforcing fibers by forcing the reinforcing fibers through a plurality of rollers disposed in a fluidized bed, and further disclosed in JP-A No. 3. Publication No. 63-2708 discloses that reinforcing fibers are alternately pressed against the upper and lower surfaces of a plurality of curved bars installed in a fluidized bed, and the reinforcing fibers are passed through while changing their width, thereby heating the inside of the reinforcing fibers. A method of infiltrating plastic resin has been proposed.

(発明が解決しようとする課題) しかしながら、上記した方法はいずれも、強化繊維に張
力をかけた状態で機械的な開繊操作を行うものであり、
従って、開繊操作によってフィラメントと他の部材との
摩擦やフィラメント同志の摩擦等によるフィラメントの
切断が起こり易く、安定した操業が行えなかった。
(Problems to be Solved by the Invention) However, in all of the above-mentioned methods, a mechanical opening operation is performed while tension is applied to the reinforcing fibers.
Therefore, during the opening operation, the filament is likely to be cut due to friction between the filament and other members, friction between filaments, etc., and stable operation cannot be performed.

本発明は上記欠点を解決するものであり、その目的とす
るところは、強化繊維のフィラメントが一方向に揃えら
れていると共に、強化繊維の内部にまで熱可塑性樹脂が
含浸されて強度の高い繊維強化複合材を得ることができ
、しがも安定した操業が行える繊維強化複合材の製造方
法を提供することにある。
The present invention is intended to solve the above-mentioned drawbacks, and its purpose is to create high-strength fibers in which the filaments of reinforcing fibers are aligned in one direction, and the insides of the reinforcing fibers are impregnated with thermoplastic resin. It is an object of the present invention to provide a method for manufacturing a fiber reinforced composite material, which allows a reinforced composite material to be obtained and stable operation.

(課題を解決するための手段) 本発明の繊維強化複合材の製造方法は、多数の連続する
フィラメントより構成されるストランド状の強化繊維を
実質的に張力がかからない状態で流動化された粉体状熱
可塑性樹脂の中を通過させてフィラメント間に粉体状熱
可塑性樹脂を保持させ、次いで強化繊維に張力をかけた
状態で粉体状熱可塑性樹脂を加熱溶融させて強化繊維と
粉体状熱可塑性樹脂とを一体化することを特徴としてお
り、そのことにより上記目的が達成される。
(Means for Solving the Problems) The method for producing a fiber-reinforced composite material of the present invention is a method for producing a fiber-reinforced composite material in which reinforcing fibers in the form of a strand composed of a large number of continuous filaments are fluidized in a state where no tension is applied to the powder. The thermoplastic resin powder is held between the filaments by passing through the thermoplastic resin, and then the thermoplastic resin powder is heated and melted while applying tension to the reinforcing fibers to form the reinforcing fibers and the thermoplastic resin powder. It is characterized by being integrated with a thermoplastic resin, thereby achieving the above object.

本発明の繊維強化複合材の他の製造方法は、多数の連続
する非導電性フィラメントより構成されるストランド状
の強化繊維を実質的に張力がかからない状態で、非導電
性の容器内で流動化された粉体状熱可塑性樹脂の中を通
過させてフィラメント間に粉体状熱可塑性樹脂を保持さ
せ、次いで強化繊維に張力をかけた状態で粉体状熱可塑
性樹脂を加熱溶融させて強化繊維と粉体状熱可塑性樹脂
とを一体化することを特徴としており、そのことにより
上記目的が達成される。
Another method for producing the fiber-reinforced composite material of the present invention is to fluidize reinforcing fibers in the form of a strand consisting of a large number of continuous non-conductive filaments in a non-conductive container under substantially no tension. The powdered thermoplastic resin is passed through the filaments to hold the powdered thermoplastic resin between the filaments, and then the reinforcing fibers are heated and melted while tension is applied to the reinforcing fibers. It is characterized by integrating the thermoplastic resin and the powdered thermoplastic resin, thereby achieving the above object.

第1図は本発明に用いられる製造装置の一例を示したも
のである。
FIG. 1 shows an example of a manufacturing apparatus used in the present invention.

この製造装置は、ストランド状の強化繊維1が巻回され
たロール1aをセットする巻戻しロール1゜と、強化繊
維1を上下から挟持して図の矢印方向へ回転駆動するこ
とによりロール1aから強化繊維1を巻戻すピンチロー
ル11と、粉体状熱可塑性樹脂2が供給されている容器
20と、容器20を通過した強化繊維1を引き取るピン
チロール12と、強化繊維lを所定幅に広げる押圧ロー
ル40と、強化繊維1に保持された過剰の粉体状熱可塑
性樹脂2を除去してその保持量を一定とするスリッター
50.51と、強化繊維1に保持された上記粉体状熱可
塑性樹脂2を溶融させる遠赤外線加熱炉60と、溶融し
た熱可塑性樹脂を押圧して強化繊維1と一体化させる加
熱ロール61と、樹脂が保持された強化繊維1の端部を
引き取るピンチロール13とを備えている。
This manufacturing device consists of an unwinding roll 1° that sets a roll 1a on which a strand-shaped reinforcing fiber 1 is wound, and a rewinding roll 1° that holds the reinforcing fiber 1 from above and below and rotates it in the direction of the arrow in the figure. A pinch roll 11 that unwinds the reinforcing fiber 1, a container 20 in which powdered thermoplastic resin 2 is supplied, a pinch roll 12 that takes up the reinforcing fiber 1 that has passed through the container 20, and a pinch roll 12 that spreads the reinforcing fiber 1 to a predetermined width. A press roll 40, a slitter 50, 51 that removes the excess powder thermoplastic resin 2 retained on the reinforcing fibers 1 to maintain a constant amount of the retained thermoplastic resin 2, and A far-infrared heating furnace 60 that melts the plastic resin 2, a heating roll 61 that presses the molten thermoplastic resin to integrate it with the reinforcing fiber 1, and a pinch roll 13 that pulls off the end of the reinforcing fiber 1 holding the resin. It is equipped with

上記容器20の底部には多数の通気孔25.25・・・
が設けられ、気体供給路21から送られた気体がこの通
気孔25を通って容器20の内部へ送られるようになっ
ている。従って、容器20内に入れられた粉体状熱可塑
性樹脂2は、その気体の噴出によって流動化した状態と
なり流動床26が形成されている。
The bottom of the container 20 has a large number of ventilation holes 25, 25...
is provided, and the gas sent from the gas supply path 21 is sent into the interior of the container 20 through this vent hole 25. Therefore, the thermoplastic resin powder 2 placed in the container 20 is fluidized by the jetting of the gas, and a fluidized bed 26 is formed.

容器20の壁の上端部及び内部には、強化繊維1を案内
するガイドロール22.23.24が配設されている。
Guide rolls 22, 23, 24 for guiding the reinforcing fibers 1 are arranged at the upper end and inside the wall of the container 20.

上記ロール1aとガイドロール22との間に配設された
ピンチロール11と、容器20の強化繊維1の移動方向
側に配設されたピンチロール12とは、はぼ同速度で回
転駆動するように構成されていて、両ピンチロール11
.12の間では強化繊維1に張力がかからないようにな
っている。また、両ピンチロール11.12の間には、
強化繊維1の張力を検出する張力検出機31が配設され
、この張力検出機31からの検出信号をピンチロール1
1及び/又は12の駆動部に伝えてピンチロール11及
び/又は12の駆動速度を変更することで強化繊維lに
かかる張力を調節できるように構成されている。また、
ピンチロール12と強化繊維lの端部を引き取るピンチ
ロール13との間にも張力検出機32が配設され、この
張力検出機32からの検出信号をピンチロール13に伝
えてピンチロール13の駆動速度を変えることにより、
強化繊維1に作用する張力を調節できるように構成され
ている。
The pinch roll 11 disposed between the roll 1a and the guide roll 22 and the pinch roll 12 disposed on the moving direction side of the reinforcing fibers 1 of the container 20 are driven to rotate at approximately the same speed. , both pinch rolls 11
.. 12, no tension is applied to the reinforcing fibers 1. Also, between both pinch rolls 11 and 12,
A tension detector 31 is provided to detect the tension of the reinforcing fiber 1, and a detection signal from the tension detector 31 is sent to the pinch roll 1.
1 and/or 12 to change the driving speed of the pinch rolls 11 and/or 12, the tension applied to the reinforcing fibers 1 can be adjusted. Also,
A tension detector 32 is also disposed between the pinch roll 12 and the pinch roll 13 that takes off the end of the reinforcing fiber l, and a detection signal from the tension detector 32 is transmitted to the pinch roll 13 to drive the pinch roll 13. By changing the speed,
It is configured so that the tension acting on the reinforcing fibers 1 can be adjusted.

次に、上記製造装置を用いて本発明の製造方法を説明す
る。
Next, the manufacturing method of the present invention will be explained using the above manufacturing apparatus.

強化繊維lの端部は流動床26の前後に配設されたピチ
ロール11.12で引き取られ、ロール1aの外側より
撚りがかからないように順次巻戻される。
The ends of the reinforcing fibers 1 are taken up by piti rolls 11 and 12 disposed before and after the fluidized bed 26, and are sequentially rewound from the outside of the roll 1a so as not to be twisted.

そして、強化繊維1は張力がかからない状態で容器20
内へ導かれる。容器20内では通気孔25から気体が噴
出されていて粉体状熱可塑性樹脂2の流動床26が形成
され、また強化繊維1は開繊され易い状態であるので、
その気体の勢いによって強化繊維1はフィラメント状に
開繊され、その開繊されたフィラメント間に粉体状熱可
塑性樹脂2は侵入して保持される。
Then, the reinforcing fiber 1 is placed in the container 20 in a state where no tension is applied.
guided inward. Inside the container 20, gas is ejected from the vent holes 25, forming a fluidized bed 26 of the powdered thermoplastic resin 2, and the reinforcing fibers 1 are in a state where they are easily opened.
The reinforcing fibers 1 are opened into filaments by the force of the gas, and the powdered thermoplastic resin 2 enters and is held between the opened filaments.

流動床26を通過し、ピンチロール12により送り出さ
れた粉体状熱可塑性樹脂2を有する強化繊維1は、次に
押圧ロール40で押え付けられながら通過することで一
定幅の帯状に広げられ、引き続いて強化繊維1がスリッ
ター50.51の上下面を通過する際に過剰の粉体状熱
可”塑性樹脂2が除去されてその保持量が一定とされる
。上記押圧ロール4゜の強化繊維1に対する押圧力及び
角度を変更することにより、薄帯状に広げる強化繊維1
の幅を変化させて最終製品における繊維強化複合材の強
化繊維1と熱可塑性樹脂との比率を調整することができ
る。引き続いて、上記粉体状熱可塑性樹脂2が所定量保
持された強化繊維1を張力でかけた状態で遠赤外線加熱
炉60に供給して、ここで加熱することにより粉体状熱
可塑性樹脂を溶融し、加熱ロール61を通過させ、溶融
した樹脂を上下両面から押圧することによって樹脂同志
及び溶融した樹脂と強化繊維1とを一体化して薄帯状プ
リプレグの形態で繊維強化複合材が得られる。
The reinforcing fibers 1 having the powdered thermoplastic resin 2 passed through the fluidized bed 26 and sent out by the pinch rolls 12 are then spread out into a belt shape of a constant width by passing through the press rolls 40 while being pressed. Subsequently, when the reinforcing fibers 1 pass through the upper and lower surfaces of the slitters 50 and 51, excess powdery thermoplastic resin 2 is removed and the retained amount thereof is kept constant. By changing the pressing force and angle with respect to 1, the reinforcing fiber 1 is spread into a thin strip shape.
The ratio of the reinforcing fibers 1 of the fiber-reinforced composite material to the thermoplastic resin in the final product can be adjusted by changing the width of the fiber-reinforced composite material. Subsequently, the reinforcing fiber 1 holding a predetermined amount of the thermoplastic resin powder 2 is supplied under tension to the far-infrared heating furnace 60 and heated there to melt the thermoplastic resin powder. Then, by passing the heated roll 61 and pressing the molten resin from both upper and lower surfaces, the resins and the molten resin are integrated with the reinforcing fibers 1 to obtain a fiber-reinforced composite material in the form of a ribbon-like prepreg.

上記張力は熱可塑性樹脂の種類、量等により適宜決定さ
れればよいが、一般に2〜50kg テアリ、好ましく
は5〜30kgである。
The tension may be appropriately determined depending on the type, amount, etc. of the thermoplastic resin, but is generally 2 to 50 kg, preferably 5 to 30 kg.

本発明で用いられるストランド状の連続した強化繊維1
としては、ガラス繊維、炭素繊維、金属繊維等の無機繊
維、アラミド繊維、ポリエステル繊維、ポリアミド繊維
等の有機繊維であって、通常繊維径2〜40μ国のフィ
ラメントを数百〜数十力木同方向に束ねて構成されるス
トランド状の連続する繊維が用いられる。ヤーン状のも
のを多数用いることもできる。また、強化繊維1は樹脂
との接着強度を向上させるために通常行われるサイジン
グ処理が施されていても良い。また、使用する粉体状熱
可塑性樹脂の溶融温度において熱的に安定な繊維が選ば
れる。
Strand-shaped continuous reinforcing fiber 1 used in the present invention
Examples include inorganic fibers such as glass fibers, carbon fibers, and metal fibers, and organic fibers such as aramid fibers, polyester fibers, and polyamide fibers, and the filaments are usually 2 to 40 μm in diameter and are made of several hundred to several dozen fibers. Continuous fibers in the form of strands that are bundled in different directions are used. A large number of yarn-like materials can also be used. Further, the reinforcing fiber 1 may be subjected to a commonly performed sizing treatment in order to improve the adhesive strength with the resin. In addition, fibers are selected that are thermally stable at the melting temperature of the powdered thermoplastic resin used.

本発明で用いられる粉体状熱可塑性樹脂2は、ポリエチ
レン、ポリプロピレン、ポリ塩化ビニル、ポリスルホン
、ポリアミド、ポリフッ化ビニリデン、ポリフェニレン
サルファイド、ポリエーテルエーテルケトン等の熱によ
り軟化溶融する樹脂が総て使用可能である。また、これ
らの熱可塑性樹脂の混合物も使用し得る。安定剤、潤滑
剤、加工助剤、可塑剤、染料、顔料のような添加剤を、
熱可塑性樹脂に混合して用いても良い。この粉体状熱可
塑性樹脂の平均粒子径は、1〜1000μmが好ましい
。粉体状熱可塑性樹脂の平均粒子径がioo。
The powdered thermoplastic resin 2 used in the present invention can be any resin that softens and melts with heat, such as polyethylene, polypropylene, polyvinyl chloride, polysulfone, polyamide, polyvinylidene fluoride, polyphenylene sulfide, polyether ether ketone, etc. It is. Mixtures of these thermoplastics may also be used. additives such as stabilizers, lubricants, processing aids, plasticizers, dyes and pigments,
It may be used by mixing it with a thermoplastic resin. The average particle diameter of this powdery thermoplastic resin is preferably 1 to 1000 μm. The average particle size of the powdered thermoplastic resin is ioo.

μmを上回ると流動床中での粉体の流動が好適に起こら
ず、ストランド状の連続強化繊維のフィラメント間への
熱可塑性樹脂の保持量が低下する傾向にある。
When it exceeds μm, the powder does not flow properly in the fluidized bed, and the amount of thermoplastic resin retained between the filaments of the strand-shaped continuous reinforcing fibers tends to decrease.

さらに、上記容器20に繊維状微小充填材を供給して強
化繊維1のフィラメント間に粉体状熱可塑性樹脂2とと
もに微小充填材を侵Δ保持させても良い、この微小充填
材としては、ガラス繊維、炭素繊維等の無機繊維のミル
ドファイバー、あるいは窒化ケイ素、炭化ケイ素、チタ
ン酸カリウム等のウィスカーが好適に用いられる。この
ように、微小充填材を強化繊維1のフィラメント間に保
持させることにより、ランダムに配向する微小充填材に
よって製造される繊維強化複合材の繊維間の強度を上げ
ることができ、強化繊維1の長手方向に沿った割れ等を
防止することができる。
Further, a fibrous fine filler may be supplied to the container 20 to hold the fine filler in contact with the powdered thermoplastic resin 2 between the filaments of the reinforcing fibers 1. As this fine filler, glass may be used. Fibers, milled fibers of inorganic fibers such as carbon fibers, or whiskers of silicon nitride, silicon carbide, potassium titanate, etc. are preferably used. In this way, by holding the microfiller between the filaments of the reinforcing fibers 1, it is possible to increase the strength between the fibers of the fiber-reinforced composite material manufactured by the randomly oriented microfillers. Cracks along the longitudinal direction can be prevented.

この繊維状微小充填材の平均アスペクト比(L/D)は
5以上であるのが好ましい、平均アスペクト比が5を下
回ると、繊維状としての機能がなくなり、強化繊維lの
幅及び厚み方向に対する強度が充分得られない、また、
繊維状微小充填材の繊維長は10〜1000μmの範囲
が好ましい、繊維長が1000μmを上回ると、流動床
26中での粉体の流動が好適に起こらず、ストランド状
の強化繊維1のフィラメント間に繊維状微小充填材が充
分保持されない。
It is preferable that the average aspect ratio (L/D) of this fibrous microfiller is 5 or more. If the average aspect ratio is less than 5, the fibrous function will be lost, and the Insufficient strength, or
The fiber length of the fibrous microfiller is preferably in the range of 10 to 1000 μm. If the fiber length exceeds 1000 μm, the powder will not flow properly in the fluidized bed 26, and the fibers between the filaments of the strand-shaped reinforcing fibers 1 will not flow properly. The fibrous microfiller is not retained sufficiently.

10μmを下回ると繊維状としての機能がなくなり、繊
維強化複合材の幅及び厚み方向に対する強度が充分得ら
れない。繊維状微小充填材は、粉体状熱可塑性樹脂と繊
維状微小充填材の混合組成物2中において、1〜30容
量%の範囲で含有されるのが良い、1容量%を下回ると
、繊維状微小充填材の添加効果が小さいため繊維強化複
合材の幅及び厚み方向に対する強度が充分得られず、 30容量%を上回ると、熱可塑性樹脂の結合力が低下し
、強化繊維1への熱可塑性樹脂の含浸性が損なわれる傾
向にある。
If it is less than 10 μm, it loses its fibrous function, and the fiber-reinforced composite material cannot have sufficient strength in the width and thickness directions. The fibrous microfiller is preferably contained in the range of 1 to 30% by volume in the mixed composition 2 of powdered thermoplastic resin and fibrous microfiller.If it is less than 1% by volume, the fiber Because the effect of adding microfillers is small, sufficient strength in the width and thickness directions of the fiber-reinforced composite material cannot be obtained, and if it exceeds 30% by volume, the bonding strength of the thermoplastic resin decreases and The impregnating properties of the plastic resin tend to be impaired.

上記流動床26を形成するための気体としては、通常空
気が用いられ、コンプレッサーやブロアー等から供給さ
れるのが良い。必要に応じて窒素、二酸化炭素、ヘリウ
ム、アルゴン等の不活性気体が用いられる。
Air is usually used as the gas for forming the fluidized bed 26, and is preferably supplied from a compressor, blower, or the like. An inert gas such as nitrogen, carbon dioxide, helium, or argon is used as necessary.

本発明の他の製造方法においては、強化繊維工として、
非導電性フィラメントより構成されるストランド状の強
化繊維を使用し、非導電性の容器20内で非導電性の粉
体状熱可塑性樹脂を流動化させて、この流動床26中を
上記強化繊維1を通過させることにより、粉体状熱可塑
性樹脂2の強化繊維1への保持量を増大させたものであ
る。すなわち、非導電性の容器20内に粉体状熱可塑性
樹脂を投入して流動床26を形成することにより、静電
気が発生して粉体状熱可塑性樹脂2及び強化繊維1が帯
電し、強化繊維1のフィラメントはその静電気によって
互いに反発して開繊されることとなり、フィラメント間
に流動する粉体状熱可塑性樹脂が容易に侵入し易くなる
のである。
In another manufacturing method of the present invention, as a reinforcing fiber process,
Using strand-shaped reinforcing fibers made of non-conductive filaments, a non-conductive powder thermoplastic resin is fluidized in a non-conductive container 20, and the reinforcing fibers are passed through the fluidized bed 26. 1, the amount of the powdered thermoplastic resin 2 retained in the reinforcing fibers 1 is increased. That is, by charging powdered thermoplastic resin into a non-conductive container 20 to form a fluidized bed 26, static electricity is generated and the powdered thermoplastic resin 2 and reinforcing fibers 1 are charged and reinforced. The filaments of the fiber 1 repel each other due to the static electricity and are opened, allowing the powdered thermoplastic resin flowing between the filaments to easily enter.

従って、使用される強化繊維1としては上記で挙げたも
ののうち、ガラス繊維、アラミド繊維、ポリエステル繊
維、ポリアミド繊維等の非導電性繊維が用いられる。ま
た、容器2o内に直流高電圧を付与した電極を配置して
、積極的に粉体状熱可塑性樹脂2を帯電させるようにし
ても良い。
Therefore, the reinforcing fibers 1 used include non-conductive fibers such as glass fibers, aramid fibers, polyester fibers, and polyamide fibers among those listed above. Alternatively, an electrode to which a DC high voltage is applied may be placed inside the container 2o to actively charge the powdered thermoplastic resin 2.

さらに、粉体状熱可塑性樹脂2の保持量を調整した後、
強化繊維1を粉体状熱可塑性樹脂2の溶融温度以上の温
度に加熱された所望形状のスリットを有する金型中を通
過させることにより、粉体状熱可塑性樹脂2と強化繊維
1とを一体化させつつ所望の横断面形状を有する長尺の
繊維強化複合材を得ても良い。
Furthermore, after adjusting the amount of retained thermoplastic resin powder 2,
By passing the reinforcing fiber 1 through a mold having a slit of a desired shape and heated to a temperature higher than the melting temperature of the powdered thermoplastic resin 2, the powdered thermoplastic resin 2 and the reinforcing fiber 1 are integrated. It is also possible to obtain a long fiber-reinforced composite material having a desired cross-sectional shape.

本発明によれば、フィラメントが一方向に配向している
ため、特に曲げ強度の高い繊維強化複合材が得られる。
According to the present invention, since the filaments are oriented in one direction, a fiber-reinforced composite material with particularly high bending strength can be obtained.

また、強化繊維1は充分開繊された状態でそのフィラメ
ント間に粉体状熱可塑性樹脂が侵入保持されるので、強
化繊維1の周囲だけでなく内部にまで樹脂が含浸した強
度の高い繊維強化複合材が得られると共に、従来のよう
に強化繊維1を張力がかかった状態で機械的に開繊する
こともなく、フィラメントの切断の少ない強度の高い繊
維強化複合材が得られる。
In addition, since the powdered thermoplastic resin enters and is retained between the filaments of the reinforcing fibers 1 in a sufficiently opened state, the reinforcing fibers 1 are reinforced with high-strength fibers impregnated with resin not only around the periphery but also inside the reinforcing fibers 1. A composite material is obtained, and a fiber-reinforced composite material with high strength and less filament breakage can be obtained without mechanically opening the reinforcing fibers 1 under tension as in the conventional method.

このようにして得られた熱成形性複合材料は、種々の形
状に成形することができ、単独であるいは複数枚を積層
し、又は他の部材と積層して板材、管等に用いることが
できる。
The thermoformable composite material obtained in this way can be molded into various shapes, and can be used alone, in layers, or in layers with other members to make plates, pipes, etc. .

(実施例) 以下に本発明を実施例に基づいて詳細に説明する。(Example) The present invention will be explained in detail below based on examples.

1覇」ロー く使用材料〉 ストランド状の強化繊維としてガラス繊維ロービング(
フィラメント径22μm 、4400g/km)を用い
、粉体状熱可塑性樹脂としてナイロン−6(平均粒子径
80urR)を用いた。
1st place” Materials used: Glass fiber roving (as a strand-like reinforcing fiber)
Nylon-6 (average particle size: 80 urR) was used as the powdered thermoplastic resin.

〈製造条件〉 第1図に示した装置を用いて以下の条件で薄帯状の繊維
強化複合材(プリプレグとも称される)を製造した。容
器20は硬質ポリ塩化ビニル製のものを用い、容器20
内に上記粉体状熱可塑性樹脂2を投入し、コンプレッサ
ーにより容器20底部の通気孔25から容器20内へ空
気を噴出させて流動床26を形成した。
<Manufacturing Conditions> A ribbon-shaped fiber-reinforced composite material (also referred to as prepreg) was manufactured using the apparatus shown in FIG. 1 under the following conditions. The container 20 is made of hard polyvinyl chloride.
The thermoplastic resin powder 2 was put into the container, and air was blown into the container 20 from the vent hole 25 at the bottom of the container 20 using a compressor to form a fluidized bed 26.

ピンチロール11の駆動により予め40cmのストラン
ド1を流動床26に送り込んだ後、ピンチロール12.
13を駆動させた。ピンチロール11.12は150c
m/winの一定速度でストランド1を引き取るように
設定した。また、ピンチロール13は張力検出機32と
連動してストランド1に約10kgの張力が常にかかる
ようにその引き取り速度を調節した。
After feeding the 40 cm strand 1 into the fluidized bed 26 in advance by driving the pinch roll 11, the pinch roll 12.
13 was driven. Pinch roll 11.12 is 150c
The strand 1 was set to be taken at a constant speed of m/win. Further, the pinch roll 13 was operated in conjunction with the tension detector 32 to adjust its take-up speed so that a tension of about 10 kg was always applied to the strand 1.

ストランド1を張力がほとんどかからない状態で流動床
26を通過させてフィラメント間に粉体状熱可塑性樹脂
2を保持させた後、ロール40上で幅約4CIに広げ、
スリッター50.51で上下面に保持された過剰の粉体
状熱可塑性樹脂2を除去した。
The strand 1 is passed through the fluidized bed 26 with almost no tension applied to hold the powdered thermoplastic resin 2 between the filaments, and then spread on a roll 40 to a width of about 4 CI.
Excess powdered thermoplastic resin 2 held on the upper and lower surfaces was removed using slitters 50 and 51.

引き続いて、表面温度約380°Cに設定された遠赤外
線ヒーターを有する加熱炉60中を通過させ粉体状熱可
塑性樹脂2を溶融させた後、表面温度225゛Cに設定
された加熱ロール61を通過させ、ストランド1と樹脂
とを一体化させつつ引き取り、幅約40園、厚み約0.
2 !Inの薄帯状の繊維強化複合材を得た。
Subsequently, the thermoplastic resin powder 2 is melted by passing through a heating furnace 60 having a far-infrared heater whose surface temperature is set to about 380°C, and then heated to a heating roll 61 whose surface temperature is set to 225°C. The strand 1 and the resin are integrated with each other and taken out, and the width is about 40 mm and the thickness is about 0.0 mm.
2! A thin strip-shaped fiber-reinforced composite material of In was obtained.

得られた繊維強化複合材は、ガラス繊維含有量が35重
景%でフィラメントが一方向に良く配向し、かつフィラ
メント間に樹脂が良く含浸したものであった。また、上
記製造操作を5時間連続して実施したが、フィラメント
の切断によるトラブルは発生せず安定した操業が行えた
The obtained fiber-reinforced composite material had a glass fiber content of 35%, the filaments were well oriented in one direction, and the resin was well impregnated between the filaments. Further, although the above manufacturing operation was carried out continuously for 5 hours, stable operation was possible without any trouble due to filament cutting.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み3.2 amの一方向強化板を得、この強化板の
曲げ試験を行ったところ、曲げ強度は60kg/mm”
であった・ 大施皿主 く使用材料〉 ストランド状の強化繊維としてガラス繊維ロービング(
フィラメント径22μm 、 4400g/km)を用
い、粉体状熱可塑性樹脂として下記組成の配合物から生
成した平均粒子径300μmの粉末を用いた。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectionally reinforced plate with a thickness of 3.2 am, and when a bending test was performed on this reinforced plate, the bending strength was 60 kg/mm.
The main material used in the large construction plate was glass fiber roving (as a strand-shaped reinforcing fiber).
A filament with a diameter of 22 μm and a weight of 4,400 g/km was used, and a powder with an average particle size of 300 μm produced from a compound having the following composition was used as the powdered thermoplastic resin.

塩化ビニル樹脂(重合度800)・・・100重量部ブ
チル錫含硫黄系安定剤  ・・・ 3重量部ステアリル
アルコール   ・・・ 1重量部ポリオレフィンワッ
クス  ・・・ 1重量部〈製造条件〉 実施例1と同様に、容器20内に流動床26を形成した
装置を用い、以下の条件で薄帯状の繊維強化複合材を製
造した。
Vinyl chloride resin (degree of polymerization 800)...100 parts by weight Butyltin sulfur-containing stabilizer...3 parts by weight Stearyl alcohol...1 part by weight Polyolefin wax...1 part by weight <Manufacturing conditions> Example 1 Similarly, using an apparatus in which a fluidized bed 26 was formed in a container 20, a ribbon-shaped fiber-reinforced composite material was manufactured under the following conditions.

ピンチロール1工により予め40cmのストランド1を
流動床26に送り込んだ後、ピンチロール12、】3を
駆動させた。ピンチロール11.12は150 cm/
minの一定速度でストランド1を引き取るように設定
した。また、ピンチロール13は張力検出機32と連動
してストランドlに約15kgの張力が常にかかるよう
に引き取り速度を調節した。
After feeding the 40 cm strand 1 into the fluidized bed 26 using the pinch roll 1, the pinch rolls 12 and 3 were driven. Pinch roll 11.12 is 150 cm/
Strand 1 was set to be taken at a constant speed of min. Further, the pinch roll 13 was linked to the tension detector 32 to adjust the take-up speed so that a tension of about 15 kg was always applied to the strand l.

ストランド1に張力がほとんどかからない状態で、この
ストランド1を流動床26を通過させてフィラメント間
に粉体状熱可塑性樹脂2を保持させた後、ロール40上
で幅約3cII+に広げ、スリッター50.51で上下
面に保持された過剰の粉体状熱可塑性樹脂2を除去した
。引き続いて、表面温度約340°Cに設定された遠赤
外線ヒーターを有する加熱炉60中を通過させ粉体状熱
可塑性樹脂2を溶融させた後、表面温度190″Cに設
定された加熱ロール61を通過させ、ストランド1と粉
体状熱可塑性樹脂2とを一体化させつつ引き取り、幅約
30鵬、厚み約0.3 mmOm帯薄の繊維強化複合材
を得た。
With almost no tension being applied to the strand 1, the strand 1 is passed through a fluidized bed 26 to hold the powdered thermoplastic resin 2 between the filaments, and then spread on a roll 40 to a width of approximately 3 cII+, and passed through a slitter 50. At step 51, the excess powdered thermoplastic resin 2 retained on the upper and lower surfaces was removed. Subsequently, the powdered thermoplastic resin 2 is melted by passing through a heating furnace 60 having a far-infrared heater whose surface temperature is set to about 340°C, and then heated to a heating roll 61 whose surface temperature is set to 190″C. The strand 1 and the powdered thermoplastic resin 2 were passed through and taken off while being integrated, to obtain a thin fiber-reinforced composite material with a width of about 30mm and a thickness of about 0.3mmOm.

得られた繊維強化複合材はガラス繊維含有量が30重量
%でフィラメントが一方向に良(配向し、かつフィラメ
ント間に樹脂が良く含浸したものであった。また、上記
製造操作を5時間連続して実施したが、フィラメントの
切断によるトラブルは発生せず、安定した操業が行えた
The obtained fiber-reinforced composite material had a glass fiber content of 30% by weight, the filaments were well oriented in one direction, and the resin was well impregnated between the filaments.The above manufacturing operation was continued for 5 hours. However, there were no troubles due to filament breakage, and stable operation was achieved.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み3.0 mmの一方向強化板を得、この強化板の
曲げ試験を行ったところ、曲げ強度は40kg/am”
であった。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectionally reinforced plate with a thickness of 3.0 mm. When a bending test was performed on this reinforced plate, the bending strength was 40 kg/am.
Met.

裏旌五主 〈使用材料〉 ストランド状の強化繊維としてPAN系炭素炭素繊維ス
トランドィラメント径8 u 1m 、フィラメント数
6000本)を用い、粉体状熱可塑性樹脂としてポリフ
ッ化ぐニリデン樹脂(重合度1100、平均粒子径20
0μm)を用いた。
Urajo Goshu <Materials used> PAN-based carbon fiber strand filament diameter 8 u 1 m, number of filaments 6000) is used as the strand-shaped reinforcing fiber, and polyfluorinated nylidene resin (polymerization degree 1100) is used as the powdered thermoplastic resin. , average particle size 20
0 μm) was used.

く製造条件〉 実施例1と同様に、容器20内に流動床26を形成した
装置を用い、以下の条件で薄帯状の繊維強化複合材を製
造した。
Manufacturing Conditions> As in Example 1, a ribbon-shaped fiber reinforced composite material was manufactured under the following conditions using an apparatus in which a fluidized bed 26 was formed in a container 20.

ピンチロール11により予め30ca+のストランド1
を流動床26に送り込んだ後、ピンチロール12.13
を駆動させた。ピンチロール11.12は120 cm
/Ifiinの一定速度でストランド1を引き取るよう
に設定した。また、ピンチロール13は張力検出機32
と連動してストランドlに約8kgの張力が常にかかる
ように引き取り速度を調節した。
Strand 1 of 30ca+ in advance by pinch roll 11
After feeding into the fluidized bed 26, pinch rolls 12.13
was driven. Pinch roll 11.12 is 120 cm
Strand 1 was set to be taken at a constant speed of /Ifin. In addition, the pinch roll 13 is connected to a tension detector 32.
In conjunction with this, the take-up speed was adjusted so that a tension of approximately 8 kg was constantly applied to the strand L.

ストランド1に張力がほとんどかからない状態で、この
ストランドlを流動床26を通過させてフィラメント間
に粉体状熱可塑性樹脂2を保持させた後、ロール40上
で幅約2c+aに広げ、スリッター50.51で上下面
に保持された過剰の粉体状熱可塑性樹脂2を除去した。
With almost no tension being applied to the strand 1, the strand 1 is passed through a fluidized bed 26 to hold the powdered thermoplastic resin 2 between the filaments, then spread on a roll 40 to a width of about 2c+a, and passed through a slitter 50. At step 51, the excess powdered thermoplastic resin 2 retained on the upper and lower surfaces was removed.

引き続いて、表面温度約350°Cに設定された遠赤外
線ヒーターを有する加熱炉60中を通過させ粉体状熱可
塑性樹脂2を溶融させた後、表面温度210°Cに設定
された加熱ロール61を通過させ、ストランド1と粉体
状熱可塑性樹脂2とを一体化させつつ引き取り、幅約2
0mm、厚み約0.3mの薄帯状の繊維強化複合材を得
た。
Subsequently, the thermoplastic resin powder 2 is melted by passing through a heating furnace 60 having a far-infrared heater whose surface temperature is set to about 350°C, and then heated to a heating roll 61 whose surface temperature is set to 210°C. The strand 1 and the powdered thermoplastic resin 2 are integrated and taken off, and the width is about 2.
A fiber-reinforced composite material in the form of a thin ribbon having a diameter of 0 mm and a thickness of approximately 0.3 m was obtained.

得られた繊維強化複合材は炭素繊維含有量が20重量%
でフィラメントが一方向に良く配向し、かつフィラメン
ト間に樹脂が良く含浸したものであった。また、上記製
造操作を5時間連続して実施したが、フィラメントの切
断によるトラブルは発生せず、安定した操業が行えた。
The resulting fiber-reinforced composite material has a carbon fiber content of 20% by weight.
The filaments were well oriented in one direction, and the resin was well impregnated between the filaments. Furthermore, although the above manufacturing operation was carried out continuously for 5 hours, no troubles due to filament cutting occurred, and stable operation was possible.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み2.0Mの一方同強化板を得、この強化板の曲げ
試験を行ったところ、曲げ強度は80kg/mm”であ
った。
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a reinforcing plate having a thickness of 2.0 M. When a bending test was performed on this reinforcing plate, the bending strength was 80 kg/mm''.

北較■ く使用材料〉 実施例2と同様の強化繊維と粉体状熱可塑性樹脂を用い
た。
Materials used> The same reinforcing fibers and powdered thermoplastic resin as in Example 2 were used.

〈製造条件〉 第1図に示した製造装置において、ピンチロール12を
取り外し、流動床26を通過するストランド1に約3k
gの張力がかかるようにした以外は、実施例2と同様の
条件で薄帯状の繊維強化複合材を製造した。
<Manufacturing conditions> In the manufacturing apparatus shown in FIG.
A ribbon-shaped fiber-reinforced composite material was produced under the same conditions as in Example 2, except that a tension of g was applied.

得られた繊維強化複合材はガラス繊維含有量が60重量
%でフィラメントは一方向に良く配向したものであった
が、フィラメント間に樹脂が充分含浸していないもので
あった。
Although the resulting fiber-reinforced composite material had a glass fiber content of 60% by weight and the filaments were well oriented in one direction, the resin was not sufficiently impregnated between the filaments.

得られた繊維強化複合材を数枚積層してプレス成形によ
り厚み3飾の一方向強化板を得、この強化板の曲げ試験
を行ったところ、曲げ強度は14kg/mm”であった
Several sheets of the obtained fiber-reinforced composite material were laminated and press-molded to obtain a unidirectional reinforced plate with a thickness of 3 decorations, and when a bending test was performed on this reinforced plate, the bending strength was 14 kg/mm''.

(発明の効果) このように本発明の製造方法によれば、強化繊維のフィ
ラメントが一方向に揃えられており、また粉体状熱可塑
性樹脂の含浸性を高めることができて強度の高い繊維強
化複合材を得ることができると共に、従来のように強化
繊維に粉体状熱可塑性樹脂を保持させるための機械的な
開繊操作を必要とせず、フィラメントの切断がほとんど
起こらない安定した操業が行える。特に、非導電性の強
化繊維及び容器を使用して容器内で静電気を発生させる
ようにすると、強化繊維を充分開繊させることができ、
樹脂の含浸性を一層高めることができる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, the filaments of the reinforcing fibers are aligned in one direction, and the impregnating property of the powdered thermoplastic resin can be improved, resulting in high-strength fibers. In addition to being able to obtain reinforced composite materials, there is no need for conventional mechanical opening operations to retain the powdered thermoplastic resin in the reinforcing fibers, and stable operation with almost no filament breakage is possible. I can do it. In particular, by using non-conductive reinforcing fibers and a container to generate static electricity within the container, the reinforcing fibers can be opened sufficiently.
The impregnating properties of the resin can be further improved.

゛の   なi′ ■ 第1図は本発明に用いる製造装置の一実施例を示す概略
図である。
Figure 1 is a schematic diagram showing one embodiment of the manufacturing apparatus used in the present invention.

1・・・強化繊維、2・・・粉体状熱可塑性樹脂、11
.12.13・・・ピンチロール、20・・・容器、2
6・・・流動床。
1... Reinforcing fiber, 2... Powdered thermoplastic resin, 11
.. 12.13...pinch roll, 20...container, 2
6... Fluidized bed.

以上that's all

Claims (1)

【特許請求の範囲】 1、多数の連続するフィラメントより構成されるストラ
ンド状の強化繊維を実質的に張力がかからない状態で流
動化された粉体状熱可塑性樹脂の中を通過させてフィラ
メント間に粉体状熱可塑性樹脂を保持させ、次いで強化
繊維に張力をかけた状態で粉体状熱可塑性樹脂を加熱溶
融させて強化繊維と粉体状熱可塑性樹脂とを一体化する
ことを特徴とする繊維強化複合材の製造方法。 2、多数の連続する非導電性フィラメントより構成され
るストランド状の強化繊維を実質的に張力がかからない
状態で、非導電性の容器内で流動化された粉体状熱可塑
性樹脂の中を通過させてフィラメント間に粉体状熱可塑
性樹脂を保持させ、次いで強化繊維に張力をかけた状態
で粉体状熱可塑性樹脂を加熱溶融させて強化繊維と粉体
状熱可塑性樹脂とを一体化することを特徴とする繊維強
化複合材の製造方法。
[Claims] 1. A reinforcing fiber in the form of a strand consisting of a large number of continuous filaments is passed through a fluidized powder thermoplastic resin under substantially no tension between the filaments. The method is characterized by holding the thermoplastic resin powder, and then heating and melting the thermoplastic resin powder while applying tension to the reinforcing fibers to integrate the reinforcing fibers and the thermoplastic resin powder. Method for manufacturing fiber reinforced composite material. 2. A reinforcing fiber in the form of a strand consisting of a large number of continuous non-conductive filaments is passed through a fluidized powdered thermoplastic resin in a non-conductive container under virtually no tension. The thermoplastic resin powder is held between the filaments by heating, and then the thermoplastic resin powder is heated and melted while applying tension to the reinforcing fibers to integrate the reinforcing fibers and the thermoplastic resin powder. A method for producing a fiber-reinforced composite material.
JP63316707A 1988-12-15 1988-12-15 Production of fiber reinforced composite Pending JPH02160511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63316707A JPH02160511A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63316707A JPH02160511A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Publications (1)

Publication Number Publication Date
JPH02160511A true JPH02160511A (en) 1990-06-20

Family

ID=18080006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63316707A Pending JPH02160511A (en) 1988-12-15 1988-12-15 Production of fiber reinforced composite

Country Status (1)

Country Link
JP (1) JPH02160511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255786A1 (en) * 2019-06-18 2020-12-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020255786A1 (en) * 2019-06-18 2020-12-24
WO2020255786A1 (en) * 2019-06-18 2020-12-24 三井化学株式会社 Unidirectional fiber-reinforced resin sheet, and layered body and automobile member including same

Similar Documents

Publication Publication Date Title
US6517654B1 (en) Process for the production of fiber-reinforced semi-finished articles made of thermoplastics of medium to high viscosity
US5206085A (en) Preformed yarn useful for forming composite articles and process for producing same
SK5092000A3 (en) Method and apparatus for manufacturing a composite tape
JPS6036156A (en) Flexible composite material and manufacture thereof
JPS61229535A (en) Method and device for manufacturing fiber reinforced resin sheet
EP0303499A1 (en) Preformed yarn useful for forming composite articles and process of producing same
JPH07314444A (en) Long fiber-reinforced thermoplastic resin structure and its production
JPH02160511A (en) Production of fiber reinforced composite
JPS61229534A (en) Method and device for manufacturing fiber reinforced resin sheet
JPH02160508A (en) Production of fiber reinforced composite
US5700556A (en) Granules of fiber-reinforced thermoplastic
JPH02173125A (en) Production of fiber-reinforced resin composite prepreg
JPH02160509A (en) Production of fiber reinforced composite
JPH0550434A (en) Continuous preparation of rod-shaped fiber-reinforced resin material and apparatus thereof
JP2971967B2 (en) Method and apparatus for producing fiber reinforced resin sheet
JPH05318472A (en) Fiber-reinforced thermoplastic resin sheet
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
JPH03158211A (en) Production of fiber-reinforced polyvinyle chloride series resin composite material
JPH02160512A (en) Prepreg sheet and production thereof
JPH0985744A (en) Manufacture of fiber composite sheet
JPH04138219A (en) Manufacture of long fiber-contained resin composition
JPH04366627A (en) Fiber-reinforced sheet
JPH06278218A (en) Production of fiber composite sheet
JP3027043B2 (en) Method for producing fiber composite sheet
JP3667932B2 (en) Manufacturing method and manufacturing apparatus for fiber reinforced sheet