JPH02159921A - Digital protective relay - Google Patents

Digital protective relay

Info

Publication number
JPH02159921A
JPH02159921A JP63312665A JP31266588A JPH02159921A JP H02159921 A JPH02159921 A JP H02159921A JP 63312665 A JP63312665 A JP 63312665A JP 31266588 A JP31266588 A JP 31266588A JP H02159921 A JPH02159921 A JP H02159921A
Authority
JP
Japan
Prior art keywords
operation means
sampling
difference
value
alternating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63312665A
Other languages
Japanese (ja)
Other versions
JPH0767226B2 (en
Inventor
Makoto Suzuki
鈴木 愿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63312665A priority Critical patent/JPH0767226B2/en
Publication of JPH02159921A publication Critical patent/JPH02159921A/en
Publication of JPH0767226B2 publication Critical patent/JPH0767226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To acquire high reliability in reducing an operational error in an amplitude value when the frequency is changed by operating the amplitude value of quantity of AC electric state on a high speed by the use of five sampling values. CONSTITUTION:Let the sampling values of times t, t-T, t-2T, t-3T and t-4T be 1, 2, 3, 4 and 5. With a product operation means 6 the product of sampling values 2 and 4 is obtained. With a square operation means 7 the square of the sampling value 3 is obtained. With a difference operation means 8 the difference between both of them is found. Similarly, with a product operation means 9 and a difference operation means 10 the difference between the product of sampling values 1 and 5 and the output of the square operation means 7 is found. The output of the difference operation means 8 is squared and quadrupled by a square operation means 11 and a quadruple operation means 12 respectively and then quadrupled by a quadruple operation means 13. With a difference operation means 14 the difference between the outputs of the quadruple operation means 13 and the difference operation means 10. The ratio of it to the output of the quadruple operation means 12 is found with a division operation means 15. Then, if the square root is found with a square root operation means 16, an amplitude of operation result is obtained to a terminal 17. This value has nothing to do with the frequency of AC current whatever.

Description

【発明の詳細な説明】 C産業上の利用分野〕 この発明は、電力系統の交流電圧、交流電流等の電気量
の振幅値に応動するデジタル保護継電器、待にその周波
数特性の改善に関するものである。
[Detailed Description of the Invention] C. Industrial Application Field] This invention relates to a digital protective relay that responds to the amplitude value of electrical quantities such as alternating current voltage and alternating current in a power system, and is concerned with improving the frequency characteristics thereof. be.

C従来の技術〕 発電機等が停止状態から、ランチウェイ速度までの間で
運転された場合、電力系統の周波数は0から定格周波数
の2倍程度まで変化する。この様な電力系統の事故を検
出する従来のデジタル保護継電器の演算処理には、以下
に示す2種類の方式が捷案されている。
C. Prior Art] When a generator or the like is operated from a stopped state to a launchway speed, the frequency of the power system changes from 0 to about twice the rated frequency. The following two types of methods have been devised for the calculation processing of conventional digital protective relays for detecting such faults in the power system.

以下、従来の演算処理方式について説明するが、交流電
気量は、振Ii値I、位相角θ、瞬時値iとしてi w
 I 5in(θ)なる交流電流とし、サンプリング周
期をTとする。サンプリング時刻毎のサンプリング値を
区別するため、nT (n=0.2゜・・・・・・−・
・・−・とし、n=Qは当該時刻)を添字として、i 
(0)  = E 5in(θ) 、  i (T) 
 = l5in(θ−T)。
The conventional calculation processing method will be explained below.
The alternating current is I5in(θ), and the sampling period is T. In order to distinguish the sampling values for each sampling time, nT (n=0.2゜・・・・・・−・
...--, where n=Q is the relevant time) as the subscript, i
(0) = E5in(θ), i(T)
= l5in(θ-T).

1(2T)=Isin  (θ−27)、    と表
わすこととする。
1(2T)=Isin(θ-27), It is assumed that it is expressed as follows.

第5図は、例えば特開昭58−051315号公報に示
された第1の従来の交流電流のデジタル処理装置に使用
している原理を示す図であり、この場合のサーブリング
周期Tは、前記交流電流の基本周波数foに対して、電
気角で90゛相当に選ばれていて、8個のサンプリング
値i (0) 、  i (T) 、  i (2T)
−・・−・・ + (7T)を用いて処理され、Fn 
= (−(i (0)”+ i (T)”+ i (2
T)富 士十1(7T)” ) )  ” 上 (θ −27)  +−−−−−−+sln”  (θ
−77)))”−1(1−cos(τ)・cos(2T
)   ・ cos(4T)土 cos  (2θ −77)  l   ”   ・−
−−−(11で表わされる。
FIG. 5 is a diagram showing the principle used in the first conventional alternating current digital processing device disclosed in, for example, Japanese Unexamined Patent Publication No. 58-051315, and the servicing period T in this case is The fundamental frequency fo of the alternating current is selected to be equivalent to 90 degrees in electrical angle, and eight sampling values i (0), i (T), i (2T) are selected.
−・・−・・+ (7T) and processed using Fn
= (-(i (0)"+ i (T)"+ i (2
T) Fuji 11 (7T)" ) " Upper (θ -27) +−−−−−−+sln” (θ
−77)))”−1(1−cos(τ)・cos(2T
) ・ cos (4T) cos (2θ −77) l ” ・−
---(Represented by 11.

また、第6図は例えば特公昭63−11847号公報に
示された第2の従来の保護継電器に使用している原理を
示す図であり、この場合のサンプリング周期Tは規定し
ないが、5個のサンプリング値1(0) 、 i (T
) 、 l (27) 、 ! (3T) 、 + (
4T)を用いて処理され、2i(2T)−i(0)−+
i(4丁)−!                  
               (2)で表わされる。
Furthermore, Fig. 6 is a diagram showing the principle used in the second conventional protective relay disclosed in, for example, Japanese Patent Publication No. 63-11847. Although the sampling period T in this case is not specified, five The sampling value of 1(0), i (T
), l (27), ! (3T) , + (
4T) and 2i(2T)-i(0)-+
i (4 guns) -!
It is expressed as (2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開昭58−05135号公報に示された演算処理につ
いては、サンプリング周期Tは、交流の基本周波数to
に対し、90゛相当時間々隔に固定するが、周波数がf
であれば、第3式のように見えてくる。
Regarding the arithmetic processing disclosed in Japanese Patent Application Laid-Open No. 58-05135, the sampling period T is the fundamental frequency of alternating current to
, the frequency is fixed at a time interval equivalent to 90゜, but the frequency is f
If so, it will look like the third equation.

T−X360”           +31aX4 例えば、交流電流の周波数がf = fo −5011
zであれば、サンプリング周期はT190’ となる。
T-X360" +31aX4 For example, if the frequency of alternating current is f = fo -5011
z, the sampling period is T190'.

ここで、周波数を変化させた場合の振幅値演算結果Fn
を第1式で求めるため、fとfo比をmwa−【O で表わすと、 Fn=1  (1−cos(90° ll)・ Co5
(180° s+)  ・cos(360° m)−c
os(2θ−630° m))”          
    (41となり、m=0〜2まで変化させた時の
Fnの値を示すと、第2図の点線の如くになり、斜線部
分がサンプリングの時刻によって変化する。
Here, the amplitude value calculation result Fn when changing the frequency
In order to find it using the first equation, if f and fo ratio are expressed as mwa-[O, then Fn=1 (1-cos(90° ll)・Co5
(180° s+) ・cos (360° m) - c
os(2θ-630° m))”
(The value of Fn when m is changed from 0 to 2 is shown as the dotted line in FIG. 2, and the shaded portion changes depending on the sampling time.

従って、周波数が変化した事によって、交流電流の振幅
値演算結果に誤差が含まれる事になり、正確な判定が出
来ない、また、サンプリング周期Tを、基本周波数の9
0゛相当時間に選ぶ必要があり、サンプリング値も8個
を使用しているため、結果が出力されるまでの時間が、
90°X 8−720゜相当時間必要であり、さらに多
量のデーターを使用しているため、計算処理に要するメ
モリー量も多量になるなどの問題点があった。
Therefore, due to the change in frequency, an error will be included in the calculation result of the amplitude value of the alternating current, making it impossible to make accurate judgments.
Since it is necessary to select the time equivalent to 0゛ and 8 sampling values are used, the time it takes to output the results is
It takes time equivalent to 90° x 8-720°, and since a large amount of data is used, there are problems such as a large amount of memory required for calculation processing.

また、特公昭63−11847号公報に示された演算処
理については、演算結果が第2式で示された様に、サン
プリング周期Tに無関係であるため、振幅値は、第2図
の実線の如くなり、交流電流の周波数変化に全く影響さ
れない、しかし、第2式の演算処理を実現するためには
、分子項を分母項で除算演算する手段が含まれている為
、分母項がOの近辺で演算不能の恐れがあり、演算をパ
スさせる等の特別な処理が必要になり、演算の信顛性が
十分と言えない場合が発生し、信顛性を要求されるデジ
タル保護継電器にとって問題があった。
Furthermore, regarding the calculation process shown in Japanese Patent Publication No. 63-11847, the calculation result is independent of the sampling period T as shown in the second equation, so the amplitude value is the solid line in Figure 2. Therefore, it is completely unaffected by changes in the frequency of the alternating current.However, in order to realize the calculation processing of the second equation, a means for dividing the numerator term by the denominator term is included, so the denominator term is There is a risk that calculations may not be possible in the vicinity, and special processing such as passing calculations is required, and the reliability of calculations may not be sufficient, which is a problem for digital protective relays that require reliability. was there.

ちなみに、第2式の分母項が0となる条件を求めると D −2i(2T)−i(0)−+(4T)−21si
n(θ−27)−rsin(θ)−Isin(θ−4T
)= 21 (1−cos (2↑)) 5in(θ−
27)=41sin諺(T)sin(θ−2T)   
     +5)となり、この第5式は、41sin”
(T)を振幅とした周期関数であることが明らかであり
、第7図に示す如(i = l5in(θ)の交流電流
に対して、2Tの位相遅れの関係で、D=0となること
が判る。これは、当該時刻のサンプリング値1(0)が
、D=0の時に得られるようなサンプリングが行なわれ
た第7図の様な関係にあるときであり、 +(0)=−+(4T)  、  1(2T)  = 
 0となり、確かに第5式のDは、D−0が成立する。
By the way, finding the condition for the denominator term of the second equation to be 0 is D -2i(2T)-i(0)-+(4T)-21si
n(θ-27)-rsin(θ)-Isin(θ-4T
)=21 (1-cos (2↑)) 5in(θ-
27) = 41 sin proverb (T) sin (θ-2T)
+5), and this fifth equation is 41sin”
It is clear that it is a periodic function with an amplitude of This is when the sampling value 1(0) at the relevant time has the relationship as shown in Fig. 7, where sampling is performed such that it is obtained when D=0, and +(0)= −+(4T), 1(2T) =
0, and D-0 certainly holds true for D in the fifth equation.

この発明は上記のような問題点を解消するためになされ
たもので、少ないサンプリング値を使用して高速度に計
算処理できるとともに、周波数が変化した場合の振幅値
演算誤差を小さくできる高信軽度のデジタル保護継電器
を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is a high-reliability system that can process calculations at high speed using a small number of sampling values, and can reduce amplitude value calculation errors when the frequency changes. The purpose is to obtain a digital protective relay.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るデジタル保護継電器は、5個のサンプリ
ング値y(0)〜y (4T)を用い、4 ・ (i(
2T)”−1(T)  ・ 1(3T))  −(i(
2T)”−1(0)  ・ +(4T))の演算処理を
実行して、交流電気量の振幅値を演算するようにしたも
のである。
The digital protective relay according to the present invention uses five sampling values y(0) to y(4T), and uses 4.(i(
2T)”-1(T) ・ 1(3T)) −(i(
2T)"-1(0).+(4T)) is executed to calculate the amplitude value of the alternating current quantity of electricity.

〔作用〕[Effect]

この発明におけるデジタル保護継電器の振幅値演算は、
5個のサンプリング値を使用して、高速度で演算結果が
得られると共に、周波数変化があっても、高精度で演算
ができるものであり、デジタル保護継電器の性能及び借
問性を大幅に向上させることになる。
The amplitude value calculation of the digital protective relay in this invention is as follows:
Using 5 sampling values, calculation results can be obtained at high speed, and calculations can be performed with high precision even when there are frequency changes, greatly improving the performance and interrogation properties of digital protective relays. It turns out.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図において、当該時刻tのサンプリング値(1)を1(
0)、前記当該時刻tより、サンプリング時刻t−T、
  t −2T、  t −3T、  t −4T前の
サンプリング値(2)、 (31,(41,(5)をそ
れぞれi (T) 、 + (2T) 。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, the sampling value (1) at the time t is set to 1(
0), from said time t, sampling time t-T,
The sampling values (2), (31, (41, (5)) before t −2T, t −3T, and t −4T are i (T) and + (2T), respectively.

i (3T) 、 i (4T)  とし、積演算手段
(6)で前記サンプリング値(2)と(4)の積(i(
T)・1(3T) lを得ると共に、2乗演算手段(7
)で前記サンプリング値(3)の2乗1(2T戸を得て
、差演算手段(8)により、(i(2T)”−i CT
)・1(3T) )を求める。
i (3T) and i (4T), and the product calculation means (6) calculates the product (i(
T)・1(3T) In addition to obtaining l, the square calculation means (7
) to obtain the square of the sampling value (3) (1(2T)), and the difference calculation means (8) calculates (i(2T)"-i CT
)・1(3T) ).

同様に積演算手段(9)及び差演算手段顛で、前記サン
プリング値+11 トT5+を用イテ、(i(2T)”
−+(0) ・1(4T) )を求める。前記差演算手
段(8)の出力は、2乗演算手段0υと4倍演算手段(
2)とで2乗して4倍され、4・ (+(27)” −
1(T)・1(3T) ) ” となり、また、4倍演
算手段(至)で4倍され4・ (i(2T)”−1(丁
)・1(3T) )となる。
Similarly, the product calculation means (9) and the difference calculation means use the sampling value +11 to T5+, (i(2T)''
−+(0) ・1(4T) ). The output of the difference calculation means (8) is divided into the square calculation means 0υ and the quadruple calculation means (
2) and multiplied by 4, 4・(+(27)” −
1(T)・1(3T))'', and is multiplied by 4 by the quadrupling calculation means (to) to become 4.(i(2T)''-1(di)・1(3T)).

差演算手段a船で前記4倍演算手段餞と前記差演算手段
α・の差を求めると、4  (i(2T)”−1(T)
・i(3丁))−口(2T) ” −+ (0)・1(
4T) 1 となり、前記4倍演算手段亜の出力との比
を除算演算手段09で求めると、 4 ・ (i(27)”−1(T)  ・ 1(3T)
  l  ’4  (i(2T)”−1(T)  ・ 
1(3T))  −(i(2T)”−1(0)  ・i
(4丁))・−・−・・ (6) が得られる。
Difference calculation means When calculating the difference between the quadrupling calculation means and the difference calculation means α on the ship A, 4 (i(2T)''-1(T)
・i (3 pieces)) - mouth (2T) ” -+ (0)・1(
4T) 1, and when the ratio with the output of the quadruple calculation means 09 is calculated by the division calculation means 09, we get 4・(i(27)”−1(T)・1(3T)
l '4 (i(2T)"-1(T) ・
1(3T)) −(i(2T)”−1(0) ・i
(4 pieces))・−・−・・(6) is obtained.

これを、平方根演算手段a1で平方根を求めれば、端子
0ηに振幅値演算結果Fnが求められる。
If the square root of this is calculated by the square root calculation means a1, the amplitude value calculation result Fn is obtained at the terminal 0η.

これを、演算式を用いて、以下に説明する。This will be explained below using an arithmetic expression.

■ となり、第7式でFnO値は、サンプリング周期Tには
関係なく、交流電流の振幅値■のみで表わされているが
、これは換言すれば、サンプリング周期Tを一定にして
おいて、交流電流の周波数fが変イたとしても同様と蒙
えることが出来る。従って、交流電流の5個のサンプリ
ング値+(0)〜i (4T)を、前述の第7式の様に
して演算処理することにより交流電流の周波数には全く
関係なく、第2図の実線で示した直線が得られる。
(■), and in the seventh equation, the FnO value is expressed only by the amplitude value (■) of the alternating current, regardless of the sampling period T. In other words, if the sampling period T is kept constant, The same problem can occur even if the frequency f of the alternating current changes. Therefore, by processing the five sampling values of the alternating current +(0) to i (4T) as in the above-mentioned formula 7, the solid line in Figure 2 is completely independent of the frequency of the alternating current. The straight line shown is obtained.

第7式の分母項については、これをDとして、D = 
4  (i(2T)”−1(T)・+(3↑N −(i
(2T)”−4(0)・i (4T) ) −4T” [sin”(θ−2T)−sin(θ−T)
 s in (θ−3T))1” (sin”(θ−2
T)−sjn(θ) ・5in(θ−4T))= 41
’sin”(T) (1−cos”(T) )=41”
sin’(T)−−−−−−−−−−・−・−−f81
となるが、サンプリング周期Tが第3式で示すようにT
=−X90’mでm−2の場合にのみ、D−f。
Regarding the denominator term of the seventh equation, let this be D, and D =
4 (i(2T)”-1(T)・+(3↑N −(i
(2T)”-4(0)・i (4T) ) −4T” [sin”(θ-2T)-sin(θ-T)
s in (θ-3T))1” (sin”(θ-2
T)-sjn(θ) ・5in(θ-4T))=41
'sin'(T) (1-cos'(T))=41"
sin'(T)---------------f81
However, as shown in the third equation, the sampling period T is T
D−f only if =−X90′m and m−2.

41”sin’  (90° x m )  =  4
1”stn’  (90° × 2 ) =0となる。
41"sin' (90° x m) = 4
1"stn' (90° x 2) = 0.

一般に、デジタル保護継電器では、サンプリング周期T
は、30°サンプリングと称して、fo     12 のDは、m−2の場合でも、D = 41”sin’ 
(30゜x m ) = 4 I”sjn’ (30°
 X2)−−1”となり、0には成り得ない。従って、
第7式の演算処理においては、m<2の範囲において分
母項が0となる条件が存在しないため、不能解が発生す
ることは無い、サンプリング周期Tを、30°m、60
°m。
Generally, in digital protective relays, sampling period T
is called 30° sampling, and D of fo 12 is D = 41"sin' even in the case of m-2.
(30°x m) = 4 I"sjn' (30°
X2)--1" and cannot be 0. Therefore,
In the calculation process of the seventh equation, since there is no condition for the denominator term to be 0 in the range m < 2, an impossible solution will not occur.
°m.

90°mとした場合の第8式のDの値を、第3図に示す
The value of D in Equation 8 when the distance is 90°m is shown in FIG.

次に、振幅値演算結果が出力されるまでの時間は、サン
プリング値5個を使用するため、サンプリング周期が3
0’の場合は、30° X5=150°相当時間であり
、これは交流電流の基本周波数foにル以内であり高速
度の演算処理が実現できる。
Next, since 5 sampling values are used, the time it takes to output the amplitude value calculation result is 3 sampling cycles.
In the case of 0', the time is equivalent to 30° x 5 = 150°, which is within the fundamental frequency fo of the alternating current, and high-speed arithmetic processing can be realized.

ここで得られた振幅値演算結果Fnを、図示はしないが
、比較演算手段によって所定値(整定価とも言う)と比
較して、その大きさを比較し、電力系統の事故を検出す
るのが、デジタル保護継電器である。
Although not shown, the amplitude value calculation result Fn obtained here is compared with a predetermined value (also called a set value) by a comparison calculation means, and the magnitude thereof is compared to detect an accident in the power system. , a digital protective relay.

第4図は前記振幅値演算を実施するデジタル保護継電器
(32)のハードウェア構成図である0図において、(
18)は電圧変成器、(19)は電流変成器、(20)
 (21)は入力変換器で、電力系統の電圧及び電流を
処理容易な値に変換するものであり、(22)(23)
はフィルタで、周知の如く、電圧及び電流に含まれる高
調波のうち、サンプリング周波数の’/を以上の周波数
を除去するものである。 (24)(25)はサンプル
ホールドで、サンプリング値を次のサンプリング周期ま
で保持するものである。 (26)はマルチプレクサで
サンプルホールド(24) (25)の出力を順次切り
替えて、アナログ・デジタル変換器(27)に伝達する
ものである。 (2B)はマイクロプロセッサで、メモ
リー(29)にあらかじめ収納されているプログラムを
利用して演算を実施し、その結果を、出力回路(30)
により端子(31)に出力させるものである。
FIG. 4 is a hardware configuration diagram of the digital protective relay (32) that performs the amplitude value calculation.
18) is a voltage transformer, (19) is a current transformer, (20)
(21) is an input converter that converts the voltage and current of the power system into values that are easy to process; (22) and (23)
is a filter, which, as is well known, removes frequencies above the sampling frequency from among harmonics contained in voltage and current. (24) and (25) are sample holds, which hold the sampled values until the next sampling period. (26) is a multiplexer that sequentially switches the outputs of the sample and hold (24) and (25) and transmits them to the analog-to-digital converter (27). (2B) is a microprocessor that performs calculations using a program stored in advance in the memory (29) and sends the results to the output circuit (30).
This outputs the signal to the terminal (31).

(32)はデジタル保護継電器である。(32) is a digital protection relay.

なお、上記実施例では、交流電流の振幅値を求めるとし
て説明したが、交流電流は電力系統の相電流、線間電流
又は、前記相電流、線間電流から得られる対称分、すな
わち、正相電流、逆相電流又は零相電流であっても同様
である。
In the above embodiment, the amplitude value of the alternating current is determined, but the alternating current is determined by the phase current or line current of the power system, or the symmetrical component obtained from the phase current or line current, that is, the positive phase. The same applies to electric current, negative sequence current, or zero sequence current.

さらに同様に、交流電圧であっても、全く同様に適用し
て同様の効果を奏する。
Furthermore, even if an alternating current voltage is used, the same effect can be obtained by applying the voltage in exactly the same manner.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、任意の周期Tでサン
プリングした5個のサンプリング値y(0)〜y(4T
)を用い、 4・ (y (2T) ” −y (T)・V(3T)
 l !4 ・(y(2T)”−y(T) ・y(3T
)) −(y(2T)”−y(0) ・y(4T)の演
算処理を実行するようにしたので、周波数の変化に影響
されなく、かつ高速度で結果が得られ、また、除算演算
の不能解が無い高倍軽度のデジタル保護継電器が得られ
る効果がある。
As described above, according to the present invention, five sampling values y(0) to y(4T
), 4. (y (2T) ” −y (T)・V(3T)
l! 4 ・(y(2T)"-y(T) ・y(3T
)) −(y(2T)”−y(0) ・y(4T) calculation processing is executed, so results can be obtained at high speed without being affected by changes in frequency. This has the effect of providing a digital protective relay with high multiplicity and light weight without any calculation impossible solutions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による振幅値演算手段の原
理を示すブロック図、第2図は振幅値演算結果の周波数
特性図、第3図はこの発明の振幅値′演算式の分母項の
周波数特性図、第4図はこの発明の演算手段を実現する
デジタル保護継電器のハードウェア構成の一例を示す接
続図、第5図。 第6図は従来の振幅値演算手段の原理図、第7図は従来
の振幅値演算式の分母項の演算結果を示す図である。 図において、(1)〜(5)は交流JR流のサンプリン
グ値、(8)、Ql 、α船は差演算手段、(7)、0
υは2乗演算手段、(2)、0は4倍演算手段、f6)
、 +91は積演算手段、a9は除算演算手段、Qlは
平方根演算手段、節は端子、Olは電圧変成器、a9は
電流変成器、(至)。 (21)は入力変換器、(22)、 (23)はフィル
タ、(24) 。 (25)はサンプルホールド、(26)はマルチプレク
サ、(27)はアナログ、デジタル変換器、(28)は
マイクロプロセッサ、(29)はメモリー、(30)は
出力回路、(31)は端子、(32)はデジタル保護継
電器である。 なお、 示す。 図中、 同一符号は同一、
Fig. 1 is a block diagram showing the principle of the amplitude value calculation means according to an embodiment of the present invention, Fig. 2 is a frequency characteristic diagram of the amplitude value calculation result, and Fig. 3 is the denominator term of the amplitude value calculation formula of the present invention. FIG. 4 is a frequency characteristic diagram of FIG. 4, and FIG. 5 is a connection diagram showing an example of the hardware configuration of a digital protective relay that implements the calculating means of the present invention. FIG. 6 is a principle diagram of the conventional amplitude value calculation means, and FIG. 7 is a diagram showing the calculation results of the denominator term of the conventional amplitude value calculation formula. In the figure, (1) to (5) are sampling values of AC JR flow, (8), Ql, α ship is the difference calculation means, (7), 0
υ is the square calculation means, (2), 0 is the quadruple calculation means, f6)
, +91 is a product calculation means, a9 is a division calculation means, Ql is a square root calculation means, a node is a terminal, Ol is a voltage transformer, and a9 is a current transformer. (21) is an input converter, (22) and (23) are filters, and (24). (25) is a sample hold, (26) is a multiplexer, (27) is an analog/digital converter, (28) is a microprocessor, (29) is a memory, (30) is an output circuit, (31) is a terminal, ( 32) is a digital protection relay. In addition, it is shown. In the figure, the same symbols are the same.

Claims (1)

【特許請求の範囲】 電力系統の交流電気量を、一定の周期Tでサンプリング
するサンプリング手段と、前記サンプリングされたアナ
ログ値をデジタル値に変換するアナログ/デジタル変換
手段と、デジタル変換されたサンプリング値に基づき演
算処理して前記交流電気量の振幅値を検出する演算処理
手段とを有するデジタル保護継電器において、当該サン
プリングの時刻tより所定サンプリング数nだけ離れた
時刻t−nT(n=0、1、2、3、4)における前記
交流電気量のサンプリング値y(t−nT)をy(nT
)としたとき、下式 ▲数式、化学式、表等があります▼ を前記演算処理手段により演算して前記交流電気量の振
幅値を検出することを特徴とするデジタル保護継電器。
[Scope of Claims] Sampling means for sampling an alternating current amount of electricity in a power system at a constant period T, analog/digital conversion means for converting the sampled analog value into a digital value, and a digitally converted sampling value. In a digital protective relay having arithmetic processing means for detecting the amplitude value of the alternating current quantity by performing arithmetic processing based on , 2, 3, 4), the sampling value y(t-nT) of the alternating current quantity of electricity is expressed as y(nT
), the following formula ▲ may be a mathematical formula, a chemical formula, a table, etc. ▼ is calculated by the calculation processing means to detect the amplitude value of the alternating current quantity.
JP63312665A 1988-12-09 1988-12-09 Digital protection relay Expired - Fee Related JPH0767226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312665A JPH0767226B2 (en) 1988-12-09 1988-12-09 Digital protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63312665A JPH0767226B2 (en) 1988-12-09 1988-12-09 Digital protection relay

Publications (2)

Publication Number Publication Date
JPH02159921A true JPH02159921A (en) 1990-06-20
JPH0767226B2 JPH0767226B2 (en) 1995-07-19

Family

ID=18031952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312665A Expired - Fee Related JPH0767226B2 (en) 1988-12-09 1988-12-09 Digital protection relay

Country Status (1)

Country Link
JP (1) JPH0767226B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292227A (en) * 2007-05-23 2008-12-04 Takaoka Electric Mfg Co Ltd Amplitude value computation system
JP2012093137A (en) * 2010-10-25 2012-05-17 Mitsubishi Electric Corp Method and apparatus for measuring ac electrical quantity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292227A (en) * 2007-05-23 2008-12-04 Takaoka Electric Mfg Co Ltd Amplitude value computation system
JP2012093137A (en) * 2010-10-25 2012-05-17 Mitsubishi Electric Corp Method and apparatus for measuring ac electrical quantity

Also Published As

Publication number Publication date
JPH0767226B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
Kusljevic A simple recursive algorithm for frequency estimation
CN114509598A (en) Automatic detection method and system for zero crossing point of fundamental voltage
JPH01173877A (en) Digital protection relay
CN111458558B (en) Parameter acquisition method and device, electronic equipment and storage medium
EP0371192B1 (en) Electric quantity detecting method
JPH02159921A (en) Digital protective relay
KR20080037136A (en) The method of power frequency estimation using the difference between the gain and cosine and sine filter
EP0214483B1 (en) Method for measuring distance in digital distance relays
EP0367563B1 (en) Detector of quantity of electricity
JP3814834B2 (en) Harmonic detection method by fixed sampling
JP3182777B2 (en) Electric energy measurement method
JPH0635502A (en) Alarm processor for sampling system sensor
JPH02184768A (en) Detector for electric quantity
CN118091247A (en) Frequency measurement method and device for single-phase alternating current power grid
JPH02188119A (en) Digital protective relay
JPS61116669A (en) Derivation of frequency function value for power system
JPS6124900B2 (en)
JPH04109812A (en) Amplitude operating unit for ac electrical amount
JPS582613A (en) Abnormality detecting circuit for photoelectric type encoder
JPH08126186A (en) Protection of digital ratio differential relay
RU1829011C (en) Method for measuring mean-root-square of complex shape voltage
CN115117898A (en) PMU power oscillation data filtering method and system based on tracking differentiator
SU1411970A2 (en) Device for determining characteristics of a-d converter
JPH02187668A (en) Frequency detecting device
JPH08154335A (en) Phase angle difference, frequency difference and frequency calculation method in digital protection relay

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees