JPH02156051A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH02156051A
JPH02156051A JP63308720A JP30872088A JPH02156051A JP H02156051 A JPH02156051 A JP H02156051A JP 63308720 A JP63308720 A JP 63308720A JP 30872088 A JP30872088 A JP 30872088A JP H02156051 A JPH02156051 A JP H02156051A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet material
energy product
coercive force
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63308720A
Other languages
Japanese (ja)
Other versions
JPH0524219B2 (en
Inventor
Takaaki Yasumura
隆明 安村
Teruo Kiyomiya
照夫 清宮
Yasutoshi Mizuno
水野 保敏
Kazuo Matsui
一雄 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP63308720A priority Critical patent/JPH02156051A/en
Priority to DE1989616522 priority patent/DE68916522T2/en
Priority to EP19890312748 priority patent/EP0372948B1/en
Publication of JPH02156051A publication Critical patent/JPH02156051A/en
Priority to US07/759,130 priority patent/US5183517A/en
Publication of JPH0524219B2 publication Critical patent/JPH0524219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To maintain coercive force as usual, to increase residual magnetic flux density alone, and to improve energy product by reducing Cu content and also using inexpensive Zn, Al, etc., at the time of manufacturing a permanent magnet material composed principally of rare earth elements and transition metals. CONSTITUTION:A powder of an alloy having a composition consisting of, by weight, 22-28% R (one or more kinds among rare earth elements including Y), 5-16% Fe, 0.2-6.5% Cu, 0.1-6% Mn, 0.5-6% Zn, 0.1-3% Al, and the balance Co is compacted in a magnetic field. The resulting green compact is sintered and then subjected to solution heat treatment and further to first-stage and second-stage aging treatments, by which the permanent magnet material in which coercive force is maintained as usual and which is excellent in energy product due to the improvement of residual magnetic flux density can be manufactured at a low cost. At this time, a part or the whole of Zn can be substituted by Zr, and also a part or the whole of Al can be substituted by Bi and Tl.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、希土類元素と遷移金属を主成分とするR2M
17系(R: Yを含む希土類元素、M:種として遷移
金属)永久磁石材料に関し、特に保磁力は従来と同等と
し残留磁束密度のみを高めることによりエネルギー積を
高めた上記R2M+7系永久磁石材料に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides R2M containing rare earth elements and transition metals as main components.
17 series (R: a rare earth element containing Y, M: a transition metal as a species) permanent magnet materials, especially the above R2M+7 series permanent magnet materials whose coercive force is the same as conventional ones and the energy product is increased by increasing only the residual magnetic flux density. Regarding.

(従来の技術) 従来、希土類元素RがSm、遷移金属MがC。(Conventional technology) Conventionally, the rare earth element R is Sm and the transition metal M is C.

のR2Co17系永久磁石においては、保磁力(iHC
)を高めるべくCuを10%(wt%、以下同じ)以上
と高目にし、高Cu量の場合に生じる残留磁束密度(B
r)の低下をFeの添加により抑制していた。但し、F
eは多量に添加するとBrの低下を招くため、8%程度
以下とされていた。
In the R2Co17 permanent magnet, coercive force (iHC
) to increase the residual magnetic flux density (B
The decrease in r) was suppressed by the addition of Fe. However, F
Since adding a large amount of e causes a decrease in Br, it has been limited to about 8% or less.

しかし、このような組成の永久磁石では、高々22.1
MG・Oe程度のエネルギー積(BH)しか得ることが
できなかった。
However, in a permanent magnet with such a composition, at most 22.1
It was possible to obtain only an energy product (BH) of the order of MG.Oe.

そこで、このエネルギーm(BH)を高めるべく、これ
まで各種の提案がなされた。
Therefore, various proposals have been made to increase this energy m(BH).

なかでも1)Rが22〜28%で、Cu、iを5〜12
%に抑え、X (Nb、Zr、V、Ta、Cr、Hf)
を0.2〜5%と、Mnを0.2〜8%加え、残部が3
5%以下をFeで置換えたC。
Among them, 1) R is 22 to 28%, Cu, i is 5 to 12
%, X (Nb, Zr, V, Ta, Cr, Hf)
Add 0.2 to 5% of Mn, 0.2 to 8% of Mn, and the balance is 3%.
C with less than 5% replaced with Fe.

からなるもの(特公昭56−11378号)、2)Rが
22〜28%で、Cu1lを2〜10%に抑え、T (
Fe、Mn、Cr)を6〜35%、M(Zr、Hf)を
0.5〜6%加え、残部がC。
(Japanese Patent Publication No. 56-11378), 2) R is 22 to 28%, Cu1l is suppressed to 2 to 10%, and T (
6 to 35% of Fe, Mn, Cr), 0.5 to 6% of M (Zr, Hf), and the balance is C.

からなるもの(特公昭62−61665号)、3)一般
式がR(Co1−u v−w  Cu  FeM)  
で表わされるもの(特公昭6l−1v    W   
 z 7881号)、 (但し、0<u≦2.0.01<v≦0.6゜0.00
5≦W≦0. 05. 6. 5≦2≦8. 8   
M:Ta、  Zr、  Nb。
(Special Publication No. 62-61665), 3) whose general formula is R (Co1-u v-w Cu FeM)
(Tokuko Showa 6l-1v W
z 7881), (However, 0<u≦2.0.01<v≦0.6゜0.00
5≦W≦0. 05. 6. 5≦2≦8. 8
M: Ta, Zr, Nb.

Ti、  Hf) 等が、保磁力、残留磁束密度とも高く、この結果、エネ
ルギー積の高いものとして挙げることができる。
Ti, Hf), etc. have high coercive force and high residual magnetic flux density, and as a result, can be cited as having a high energy product.

(発明が解決しようとする課題) しかし、上記1)〜3)のいずれも、Cuiを低目にす
る代りに、Ta、Nb、Hf等の高コストで、入手し難
い元素を必須としており、材料コストひいては製品コス
トの上昇を招いている。
(Problems to be Solved by the Invention) However, in all of the above 1) to 3), in exchange for lowering Cu, elements such as Ta, Nb, and Hf, which are expensive and difficult to obtain, are required. This leads to an increase in material costs and ultimately product costs.

また、これらは、いずれもiHcとBrの両者を高める
ことによりエネルギー積を向上させることを指向してお
り、前述の通り元素によってはiHcは高まるがB「が
低下したり、逆にBrは高まるがiHcは低下する等の
問題があり、iHc。
In addition, all of these aim to improve the energy product by increasing both iHc and Br, and as mentioned above, depending on the element, iHc may increase but B' may decrease, or conversely, Br may increase. However, there are problems such as a decrease in iHc.

Brの両者を高めることのできる組成を決定することは
極めて困難であった。
It was extremely difficult to determine a composition that could increase both Br.

本発明は、以上の諸点に鑑みてなされたもので、その目
的とするところは、Cuiを低目にする代りに添加する
元素を低コストで入手し易いものとし、かつiHcは従
来のものと同程度とじB「のみを高めてエネルギー積を
向上させ得るR 2 M l T系の永久磁石材料を提
供することにある。
The present invention has been made in view of the above points, and its purpose is to make the added elements easy to obtain at low cost in exchange for lower Cui, and to make iHc lower than conventional ones. The object of the present invention is to provide an R 2 M l T-based permanent magnet material that can improve the energy product by increasing the energy product to the same extent.

(課題を解決するための手段) 上記目的を達成するため、本発明は、22〜281/1
%のR(R:Yを含む希土類元素の1種以上)5〜16
wt%のF e s O−2〜6 、 5 wt%のC
u s O−1〜6 wt%のM n s 0 、 5
〜6 wt%のA(A:Zn、Zrの1種以上) 、0
. 1〜3wt%のB (B:Al7.Bi、Tlの1
種以上)、残部Coからなることを特徴とするものであ
る。
(Means for Solving the Problem) In order to achieve the above object, the present invention provides
% R (R: one or more rare earth elements including Y) 5 to 16
wt% Fe s O-2~6, 5 wt% C
u s O-1-6 wt% M n s 0, 5
~6 wt% of A (A: one or more of Zn and Zr), 0
.. 1 to 3 wt% of B (B: Al7.Bi, 1 of Tl
species), with the remainder being Co.

(作 用) 本発明では、R2M17系で必須とされているR1Cu
、Fe、CoのうちのCuを0.2〜6.5wt%と低
目に抑え、代りにMn、AグループとしてZn、Zrの
1種以上、Bグループとしてl。
(Function) In the present invention, R1Cu, which is essential in the R2M17 system,
, Fe, and Co, Cu is kept to a low level of 0.2 to 6.5 wt%, and instead of Mn, one or more of Zn and Zr as the A group, and l as the B group.

Bi、Ti7の1種以上を加える。Add one or more of Bi and Ti7.

AグループのZn、BグループのAl7は周知の通り、
コストが安価で、かつ入手容易で、しかも取扱が極めて
容易なものである。
As is well known, Zn in group A and Al7 in group B are
It is inexpensive, easily available, and extremely easy to handle.

このZnとAlを、前述の先願のHf、Nb。This Zn and Al were replaced with Hf and Nb of the earlier application.

Ta等の高コスト、入手困難、かつ取扱いも慎重を要す
るものに代替する本発明では、後述の実施例から明らか
なように、保磁力(iHc)はこれらHf、Nb、Ta
等を用いる先願と同程であるが、残留磁束密度(B r
)が高まり、結果としてエネルギー積が高まる。
In the present invention, which replaces Ta, which is expensive, difficult to obtain, and requires careful handling, the coercive force (iHc) is
The residual magnetic flux density (B r
) increases, resulting in an increase in the energy product.

なお、Znの一部又は全部をZrに代え、Agの一部又
は全部をBi及び/又はTIに代えても、後述の実施例
から明らかなように、上記と同等の作用を得ることがで
きる。
Note that even if part or all of Zn is replaced with Zr, and part or all of Ag is replaced with Bi and/or TI, the same effect as above can be obtained, as is clear from the examples described below. .

Aグループを0.5〜6wt%とするのは、0゜5wt
96未満では保磁力が小さく、6.5wt%を超えると
残留磁化の低下が著しく、かつ、保磁力が低下するため
である。
Setting the A group to 0.5-6wt% is 0°5wt.
This is because if it is less than 96, the coercive force is small, and if it exceeds 6.5 wt%, the residual magnetization decreases significantly and the coercive force decreases.

Bグループを0.1〜2wt%とするのは、2νt%を
超えるとB「の向上作用がなくなり、またiHcも従来
より低目になってしまい、逆に0,1wt%未満であれ
ば添加効果が得られなくなるからである。
The reason for setting B group to 0.1 to 2 wt% is that if it exceeds 2 νt%, the improvement effect of B will disappear and the iHc will be lower than before, and conversely, if it is less than 0.1 wt%, addition This is because the effect will no longer be obtained.

また、Rを22〜28wt%とするのは、28wt%を
超えるとBrが低下し、本発明の目的であるBrの向上
が達成できず、22νt%未満であるとiHcが従来程
度にならないからである。
In addition, the reason why R is set to 22 to 28 wt% is because if it exceeds 28 wt%, Br decreases and the improvement in Br, which is the objective of the present invention, cannot be achieved, and if it is less than 22 νt%, iHc will not reach the conventional level. It is.

Mnを0.1〜6wt%とするのは、0.1wt%未満
では添加効果がなくなり、6シt%を超えるとiHc、
Brとも低下してしまうからである。
The reason for setting Mn to 0.1 to 6 wt% is that if it is less than 0.1 wt%, the addition effect disappears, and if it exceeds 6 wt%, iHc,
This is because Br also decreases.

Cuを0.2〜6.5wt%とするのは、6,5wt%
を超えると前述の通りBrが低下し、本発明の目的であ
るB「の向上が達成できず、逆に0゜2wt%未満であ
るとLHcが従来程度とならないからである。
Setting Cu to 0.2 to 6.5 wt% is 6.5 wt%.
If it exceeds 0.2 wt%, Br decreases as described above, and the objective of the present invention, which is to improve B', cannot be achieved.On the other hand, if it is less than 0.2 wt%, LHc will not reach the conventional level.

Feを5〜16wt%とするのは、16wt%を超える
とiHcが従来程度とならず、5wt%未満であるとB
rも低下してしまうからである。
The reason why Fe is set at 5 to 16 wt% is that if it exceeds 16 wt%, the iHc will not be at the conventional level, and if it is less than 5 wt%, B
This is because r also decreases.

本発明では、以上の成分を溶製して塊とし、これを微粉
砕後、8〜14kOeの磁場中で0.5〜2ton/c
dの成形圧を加え、所望形状に圧縮成形し、次の熱処理
を行う。
In the present invention, the above components are melted into a lump, which is finely pulverized and then 0.5 to 2 ton/c in a magnetic field of 8 to 14 kOe.
A molding pressure of d is applied, compression molding is performed into a desired shape, and the following heat treatment is performed.

すなわち、1180〜b rで焼結し、1100〜1240℃×3〜10h「で溶
体化処理した後、400〜800℃XQ。
That is, after sintering at 1180-br, solution treatment at 1100-1240°C for 3-10 hours, and then at 400-800°C.

5〜4hrでの第1段時効処理、750〜950’CX
0.5〜5hrでの第2段時効処理を行い、0.1〜b する。
First stage aging treatment for 5-4 hours, 750-950'CX
A second stage aging treatment is performed for 0.5 to 5 hr, and the temperature is 0.1 to b.

上記の工程を経ることにより、本発明では、iHeは従
来程度であるが、エネルギー積の高い永久磁石が調整さ
れる。
By going through the above steps, in the present invention, a permanent magnet having a high energy product is prepared although the iHe is at a conventional level.

(実 施 例) 実施例1 Sm:24.1wt%     Fe:12.9wt%
Cu:3.9wt%       Mn:2wt%Zn
:2.3wt%    Al :表1の量CO:残部 の組成の合金を高周波溶解炉で溶製し、ショークラッシ
ャで粗粉砕後、ジェットミルで微粉砕した。4この微粉
砕体を15kOeの磁場中で成形圧3ton/cシを加
え、圧縮成形した。
(Example) Example 1 Sm: 24.1wt% Fe: 12.9wt%
Cu: 3.9 wt% Mn: 2 wt% Zn
: 2.3 wt% Al : Amount shown in Table 1 CO: An alloy having the remaining composition was melted in a high frequency melting furnace, coarsely crushed in a show crusher, and then finely crushed in a jet mill. 4 This finely pulverized material was compression molded in a magnetic field of 15 kOe by applying a molding pressure of 3 ton/c.

、次いで、1180〜b を行い、1100〜1240℃X5hrの溶体化処理を
行った後、700℃X2h rで第1段時効処理、90
0℃X3h rで第2段時効処理を行い、0.5℃/ 
m1nの速度で400℃まで冷却した。
, followed by solution treatment at 1100-1240°C for 5 hours, followed by a first stage aging treatment at 700°C for 2 hours, followed by 90°C.
A second stage aging treatment was performed at 0°C x 3 hours, and the
It was cooled to 400° C. at a rate of m1n.

このようにして得られた永久磁石の特性を表1に示す。Table 1 shows the characteristics of the permanent magnet thus obtained.

表  1 実施例2 実施例1のA、Qの代りにBiを表2の量とする以外は
実施例1と全く同様にして永久磁石を調整した。
Table 1 Example 2 A permanent magnet was prepared in exactly the same manner as in Example 1 except that Bi was used in the amounts shown in Table 2 instead of A and Q in Example 1.

この永久磁石の特性は表2に示す通りであった。The properties of this permanent magnet were as shown in Table 2.

表  2 実施例3 実施例1のAlの代りにT、9を表3の量とする以外は
実施例1と全く同様にして永久磁石を調整した。
Table 2 Example 3 A permanent magnet was prepared in exactly the same manner as in Example 1 except that T and 9 were used in the amounts shown in Table 3 instead of Al in Example 1.

この永久磁石の特性は表3に示す通りであった。The characteristics of this permanent magnet were as shown in Table 3.

表  3 なお、表1〜表3から明らかなように、Tfiの場合は
、Bグループの上限値2wt%を超えた2゜5wt%で
もBrが高まり、大きなエネルギー積を得ることができ
るが、Tjlは材料コストが高く、2.5wt%もの含
有量であると、製品コストが高くなるため、経済性の面
から2wt%を上限値とする。
Table 3 As is clear from Tables 1 to 3, in the case of Tfi, Br increases even at 2°5 wt%, which exceeds the upper limit of 2 wt% for group B, and a large energy product can be obtained. The material cost is high, and if the content is as high as 2.5 wt%, the product cost will be high. Therefore, from the economic point of view, the upper limit is set at 2 wt%.

実施例4 Sm:24、lwt%   Fe:12.9wt%Cu
:3.9wt%    Mn:2wt%Zn:表4の*
      All : 1.  Owt%CO:残部 の組成の永久磁石を実施例1と全く同様にして調整した
Example 4 Sm: 24, lwt% Fe: 12.9wt%Cu
: 3.9wt% Mn: 2wt% Zn: * in Table 4
All: 1. Owt% CO: A permanent magnet having the remaining composition was prepared in exactly the same manner as in Example 1.

この永久磁石の特性は表4の通りであった。The properties of this permanent magnet were as shown in Table 4.

表  4 なお、表4から明らかなように、Znが0.5wt%、
6.0wt%の場合、BHfllaxが若干低くなるが
、実用的には充分であり、しかもZnは低価格で、かつ
入手、取扱いが容易であることから、経済性や生産性の
面で効果が大きい。
Table 4 As is clear from Table 4, Zn was 0.5 wt%,
In the case of 6.0 wt%, BHflalax is slightly lower, but it is sufficient for practical use, and Zn is low in price and easy to obtain and handle, so it is effective in terms of economy and productivity. big.

実施例5 Sm:24.1wt%   Fe:12.9wt%Cu
:3.9wt%    Mn : 2.  Owt%Z
n:1.1wt%    Zr:0.9wt%Ap  
 二 〇 、  5 νt%          Bi
:0.1wt %Tit : O,lwt%    C
O:残部の組成の永久磁石を実施例1と全く同様にして
調整した。
Example 5 Sm: 24.1wt% Fe: 12.9wt%Cu
:3.9wt% Mn:2. Owt%Z
n: 1.1wt% Zr: 0.9wt% Ap
20, 5 νt% Bi
: 0.1wt %Tit : O, lwt% C
O: A permanent magnet having the remaining composition was prepared in exactly the same manner as in Example 1.

この永久磁石の特性は、iHc:10.51、B r 
: 11.10.BHmax : 29.4であった。
The characteristics of this permanent magnet are iHc: 10.51, B r
: 11.10. BHmax: 29.4.

実施例6 実施例5において、Bi又はTgの添加を行わない以外
は実施例5と全く同様にして永久磁石を調整した。
Example 6 A permanent magnet was prepared in the same manner as in Example 5 except that Bi or Tg was not added.

Biを添加していない永久磁石の特性は、lHc:10
.49、Br:11.09、BHmax:29.2であ
り、Tfiを添加していない永久磁石の特性は、iHc
:10,52、Br:11.07、BHmax  : 
29.3であった。
The characteristics of a permanent magnet without adding Bi are lHc:10
.. 49, Br: 11.09, BHmax: 29.2, and the characteristics of the permanent magnet without Tfi are iHc
:10,52, Br:11.07, BHmax:
It was 29.3.

実施例7 Sm:24.1wt%   Fe:12.9wt%Cu
:3.9wt%    Mn:表5の量Zn:2.3w
t %           A、Q   二  1.
   Owt %Co=残部 の組成の永久磁石を実施例1と全く同様にして調整した
Example 7 Sm: 24.1wt% Fe: 12.9wt%Cu
: 3.9wt% Mn: Amount in Table 5 Zn: 2.3w
t % A, Q two 1.
A permanent magnet having a composition of Owt % Co = balance was prepared in exactly the same manner as in Example 1.

この永久磁石の特性は表5の通りであった。The characteristics of this permanent magnet were as shown in Table 5.

表  5 (発明の効果) 以上詳述したように本発明に係る永久磁石によれば、A
9.Zn等の低コストで、人手が容易で、しかも取扱い
も容品な元素を用いることにより、iHcは従来程度と
し、B「のみを高めて、エネルギー櫃を向上させること
ができる。また、製品コストを極端に低減できる等の効
果を奏する。
Table 5 (Effects of the invention) As detailed above, according to the permanent magnet according to the present invention, A
9. By using low-cost, easy-to-handle, and easy-to-handle elements such as Zn, it is possible to keep iHc at the conventional level and increase only B', thereby improving energy efficiency.In addition, the product cost can be reduced. This has the effect of dramatically reducing

特許出願人      富士電気化学株式会社代 理 
人      弁理士 −色 健 輪間       
 弁理士 松本雅利
Patent applicant Fuji Electrochemical Co., Ltd. Representative
People Patent Attorney - Iro Ken Rinma
Patent attorney Masatoshi Matsumoto

Claims (1)

【特許請求の範囲】[Claims]  22〜28wt%のR(R:Yを含む希土類元素の1
種以上)、5〜16wt%のFe、0.2〜6.5wt
%のCu、0.1〜6wt%のMn、0.5〜6wt%
のA(A:Zn,Zrの1種以上)、0.1〜3wt%
のB(B:Al,Bi,Tlの1種以上)、残部Coか
らなることを特徴とする永久磁石材料。
22 to 28 wt% of R (R: 1 of rare earth elements containing Y)
species), 5-16 wt% Fe, 0.2-6.5 wt
% Cu, 0.1-6 wt% Mn, 0.5-6 wt%
A (A: one or more of Zn and Zr), 0.1 to 3 wt%
B (B: one or more types of Al, Bi, Tl), the balance being Co.
JP63308720A 1988-12-08 1988-12-08 Permanent magnet material Granted JPH02156051A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63308720A JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material
DE1989616522 DE68916522T2 (en) 1988-12-08 1989-12-07 Permanent magnet compilation.
EP19890312748 EP0372948B1 (en) 1988-12-08 1989-12-07 Permanent magnet composition
US07/759,130 US5183517A (en) 1988-12-08 1991-09-11 Permanent magnet composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63308720A JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material

Publications (2)

Publication Number Publication Date
JPH02156051A true JPH02156051A (en) 1990-06-15
JPH0524219B2 JPH0524219B2 (en) 1993-04-07

Family

ID=17984471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63308720A Granted JPH02156051A (en) 1988-12-08 1988-12-08 Permanent magnet material

Country Status (3)

Country Link
EP (1) EP0372948B1 (en)
JP (1) JPH02156051A (en)
DE (1) DE68916522T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074235A (en) * 2011-09-29 2013-04-22 Toshiba Corp Permanent magnet, and motor and dynamo including the same
JP2016157952A (en) * 2016-03-18 2016-09-01 株式会社東芝 Motor, generator, and motor car
JP2017168847A (en) * 2017-04-04 2017-09-21 株式会社東芝 Permanent magnet, motor, power generator, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1035700C (en) * 1992-07-07 1997-08-20 上海跃龙有色金属有限公司 Rare-earth magnetic alloy powder and its processing method
DE102012110629A1 (en) 2012-11-06 2014-05-08 Rainer Geschwandtner Safety device i.e. safety roof hook, for steep roof, has extension section arranged and fastened perpendicular at lateral leg of U-shaped fastening section by welding, and fastening section including fastening points on legs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS56116862A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of rare earth element magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033287B2 (en) * 1979-09-21 1985-08-02 セイコーエプソン株式会社 Magnetic field forming method for powdered permanent magnets
US4497672A (en) * 1982-04-06 1985-02-05 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-cobalt based permanent magnet
JPS58186906A (en) * 1982-04-26 1983-11-01 Toshiba Corp Permanent magnet and preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149118A (en) * 1974-10-25 1976-04-28 Suwa Seikosha Kk
JPS55128502A (en) * 1979-03-23 1980-10-04 Tdk Corp Permanent magnet material and its manufacture
JPS56116862A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of rare earth element magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074235A (en) * 2011-09-29 2013-04-22 Toshiba Corp Permanent magnet, and motor and dynamo including the same
JP2016157952A (en) * 2016-03-18 2016-09-01 株式会社東芝 Motor, generator, and motor car
JP2017168847A (en) * 2017-04-04 2017-09-21 株式会社東芝 Permanent magnet, motor, power generator, and vehicle

Also Published As

Publication number Publication date
JPH0524219B2 (en) 1993-04-07
EP0372948A2 (en) 1990-06-13
EP0372948A3 (en) 1991-05-29
DE68916522D1 (en) 1994-08-04
DE68916522T2 (en) 1994-10-13
EP0372948B1 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
EP0898778B1 (en) Bonded magnet with low losses and easy saturation
US5486239A (en) Method of manufacturing magnetically anisotropic R-T-B-M powder material and method of manufacturing anisotropic magnets using said powder material
JPH03129702A (en) Rare-earth-fe-b-based permanent magnet powder and bonded magnet excellent in magnetic anisotropy and corrosion resistance
JPH02156051A (en) Permanent magnet material
JPS59132105A (en) Permanent magnet
JPH0352529B2 (en)
US5849109A (en) Methods of producing rare earth alloy magnet powder with superior magnetic anisotropy
US4375996A (en) Rare earth metal-containing alloys for permanent magnets
JPH0146575B2 (en)
JPH0535210B2 (en)
JPS59218705A (en) Permanent magnet material and manufacture thereof
JPS6180805A (en) Permanent magnet material
JPS6052556A (en) Permanent magnet and its production
JPH0535211B2 (en)
US5217541A (en) Permanent magnet and the method for producing the same
JPS6052555A (en) Permanent magnet material and its production
JPH02192102A (en) Permanent magnet
US4789521A (en) Permanent magnet alloy
US5183517A (en) Permanent magnet composition
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPS61159710A (en) Permanent magnet
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH02128404A (en) Manufacture of rare-earth permanent magnet
JP3284563B2 (en) Manufacturing method of alloy for rare earth magnet
JPS60182104A (en) Permanent magnet material and manufacture thereof