JPH02153008A - Method and apparatus for manufacturing super fine particles of mixed metal or alloy - Google Patents

Method and apparatus for manufacturing super fine particles of mixed metal or alloy

Info

Publication number
JPH02153008A
JPH02153008A JP30420088A JP30420088A JPH02153008A JP H02153008 A JPH02153008 A JP H02153008A JP 30420088 A JP30420088 A JP 30420088A JP 30420088 A JP30420088 A JP 30420088A JP H02153008 A JPH02153008 A JP H02153008A
Authority
JP
Japan
Prior art keywords
ultrafine
alloy
mixed metal
particles
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30420088A
Other languages
Japanese (ja)
Inventor
Hidetsugu Fuchida
英嗣 渕田
Michitaka Tsuneizumi
常泉 通孝
Michio Nagase
長瀬 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP30420088A priority Critical patent/JPH02153008A/en
Publication of JPH02153008A publication Critical patent/JPH02153008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently manufacture super fine particles of mixed metal or alloy having the prescribed composition by generating AC arc discharge overlapping controlled DC currents between plural cooled electrodes made of the mixed metal or alloy raw material under gas atmosphere. CONSTITUTION:Gas for discharge of Ar, etc., is introduced into a vacuum chamber 1 providing a vacuum pump 2 from a gas introducing pipe 3. In this chamber 1, the electrodes 4, 5 composed of the mixed metal or alloy raw material and being possible to be directly cooled are set as facing. Electric source 7 composed of AC source 7a and variable DC source 7b, is connected with the electrodes 4, 5. At first, the arc discharge is generated between the electrodes 4, 5 with the AC source 7a. By this method, the composed metals are vaporized from both electrodes 4, 5, and the super fine particles are formed and recovered from a taking-out hole 8 together with the gas. Successively, the DC current from the DC source 7b is varied and impressed while overlapping. By this method, the composition in the above mixed metal or alloy super fine particles can be controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直径11II!1以下の混合金属超微粒子或
は合金超微粒子を製造する方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention has a diameter of 11II! The present invention relates to a method and apparatus for producing ultrafine mixed metal particles or ultrafine alloy particles of 1 or less.

(従来の技術) 従来、金属微粒子を製造する方法として、水素ガス又は
非酸化性の水素含有化合物ガス中で金属をアーク加熱に
より蒸発させる方法が例えば特公昭57−44725号
公報或いは特開昭80−228609号公報により知ら
れている。
(Prior Art) Conventionally, as a method for manufacturing fine metal particles, a method of evaporating metal by arc heating in hydrogen gas or non-oxidizing hydrogen-containing compound gas has been disclosed, for example, in Japanese Patent Publication No. 57-44725 or Japanese Patent Application Laid-open No. 1983 It is known from the publication No.-228609.

これらの方法では、水素ガスの含有量が5%を越えると
爆発する危険があり、安全を維持するために周到な注意
を必要とし、また、製造された金属微粒子の粒径を制御
すること及び元素間の蒸気圧差が大きい合金超微粒子を
均質な組成で作成することについての配慮を欠く。
In these methods, there is a risk of explosion if the hydrogen gas content exceeds 5%, and careful attention is required to maintain safety. There is a lack of consideration for creating ultrafine alloy particles with a homogeneous composition that have a large vapor pressure difference between elements.

そこで、出願人は、不活性ガス中で、直接冷却した蒸発
母材からなる電極間にアーク放電を発生させて金属超微
粒子を製造する方法と、その際不活性ガスの圧力とアー
ク電流を制御して金属超微粒子の粒径を制御する方法を
提案した(特願昭82−322050)。この方法によ
れば、均質な組成の合金超微粒子を任意の粒径で安全に
製造出来る利点がある。
Therefore, the applicant has proposed a method for producing ultrafine metal particles by generating arc discharge between electrodes made of directly cooled evaporation base material in an inert gas, and controlling the pressure of the inert gas and the arc current at that time. proposed a method for controlling the particle size of ultrafine metal particles (Japanese Patent Application No. 82-322050). This method has the advantage that ultrafine alloy particles with a homogeneous composition can be safely produced with any particle size.

(発明が解決しようとする課題) 前記従来の方法では、例えば2元素の混合金属超微粒子
或は合金超微粒子を直流アーク放電により製造する場合
、2本の陽極と2本の陰極を設けてその一方の陰極を1
の金属とすると共にもう一方の陰極を他の金属とするか
、或は1対の電極を設けてその陰極を合金製電極とする
必要がある。前者の場合、電極の本数が多くなって装置
が複雑化し、各電極間に投入する電力により生成する合
金超微粒子等の組成をある程度は制御出来るが微妙な組
成制御は困難であった。また後者の場合、得られる合金
超微粒子はMmの合金組成に限定され、組成の制御は出
来ない。更に前者及び後者のいずれの場合にも、陰極か
ら蒸発した粒子の一部が陽極に堆積し、実際の蒸発量が
少なくなる欠点がある。
(Problems to be Solved by the Invention) In the conventional method, for example, when producing ultrafine mixed metal particles or alloy ultrafine particles of two elements by DC arc discharge, two anodes and two cathodes are provided. One cathode
It is necessary to use the same metal and make the other cathode another metal, or to provide a pair of electrodes and make the cathode an alloy electrode. In the former case, the number of electrodes increases, making the device complicated, and although the composition of ultrafine alloy particles etc. produced can be controlled to some extent by electric power applied between each electrode, delicate compositional control is difficult. In the latter case, the ultrafine alloy particles obtained are limited to the alloy composition of Mm, and the composition cannot be controlled. Furthermore, in both the former and latter cases, there is a drawback that some of the particles evaporated from the cathode are deposited on the anode, reducing the actual amount of evaporation.

前記従来の方法で合金超微粒子等を交流アーク放電によ
り製造することも考えられ、この場合には1対の電極の
一方を1の金属とすると共にもう一方を他の金属とする
ことにより行なわれるが、電極への電力を制御しても生
成する合金超微粒子の組成を正確に制御することは難し
い。
It is also possible to produce ultrafine alloy particles, etc. by alternating current arc discharge using the conventional method described above, and in this case, one of the electrodes of a pair is made of one metal, and the other is made of another metal. However, even if the power to the electrodes is controlled, it is difficult to accurately control the composition of the produced ultrafine alloy particles.

本発明は、上記した従来の製造方法の欠点や困難を解決
し、効率良く組成を制御して混合金属の超微粒子或は合
金超微粒子を製造する方法を提案することを第1の目的
とし、その方法の実施に適した装置を提供することを第
2の目的とするものである。
The first object of the present invention is to solve the drawbacks and difficulties of the conventional manufacturing methods described above, and to propose a method for manufacturing ultrafine mixed metal particles or ultrafine alloy particles by efficiently controlling the composition, A second object is to provide an apparatus suitable for carrying out the method.

(課題を解決するための手段) 本発明では、ガス雰囲気中で、混合金属超微粒子或は合
金超微粒子の原料からなる直接冷却された複数の電極間
に交流アーク放電を発生させ、混合金属或は合金の超微
粒子を製造する方法に於て、該電極に交流電流と共に直
流電流を重畳して与え、該直流電流を変化させて製造さ
れる混合金属超微粒子或は合金超微粒子の組成を制御す
るにより前記第1の目的を達成するようにした。
(Means for Solving the Problems) In the present invention, alternating current arc discharge is generated in a gas atmosphere between a plurality of directly cooled electrodes made of a raw material of ultrafine mixed metal particles or ultrafine alloy particles. is a method for producing ultrafine alloy particles, in which a direct current is superimposed with an alternating current to the electrode, and the composition of the produced mixed metal ultrafine particles or alloy ultrafine particles is controlled by changing the direct current. By doing so, the first objective was achieved.

また前記第2の目的は、ガス雰囲気の室内に、混合金属
超微粒子或は合金超微粒子の原料からなる電極を浚数本
設け、各電極に、これを直接冷却する冷却手段を接続す
ると共に各電極間でアーク1i!L電を発生させるため
の電源を接続するようにしたものに於て、該電源を交流
電源と直流電源とで構成することにより達成される。
The second object is to provide several electrodes made of raw materials of ultrafine mixed metal particles or ultrafine alloy particles in a room with a gas atmosphere, connect each electrode to a cooling means for directly cooling it, and Arc 1i between electrodes! This can be achieved by connecting a power source for generating L electricity, and configuring the power source with an AC power source and a DC power source.

(作 用) 例えばA「ガス雰囲気中で、旧とTIの混合或は合金超
微粒子を製造する場合、真空室内に純T1と純Nlの電
極を対向して設け、各電極に冷却水を循環させて水冷し
、Arガス圧を3QQTorrとする。
(Function) For example, A: When manufacturing ultrafine particles of a mixture or alloy of old and TI in a gas atmosphere, electrodes of pure T1 and pure Nl are placed facing each other in a vacuum chamber, and cooling water is circulated to each electrode. The sample was cooled with water, and the Ar gas pressure was set to 3QQTorr.

そして画電極に100A、 257の交流を与えると共
に旧電極をアノード、TI電極がカソードとなるように
251”、 0〜IQOAの直流を与えると、N1−↑
1の混合あるいは合金超微粒子が35g/hの割合で製
造され、直流電流値を増加させると次第にTIの含有量
が増大し、所望の組成のN1− TIの超微粒子を製造
することが出来る。
Then, when applying an alternating current of 100 A and 257 to the picture electrode, and applying a direct current of 251" and 0 to IQOA so that the old electrode becomes the anode and the TI electrode becomes the cathode, N1-↑
Mixed or alloyed ultrafine particles of N1-TI were produced at a rate of 35 g/h, and as the DC current value was increased, the TI content gradually increased, making it possible to produce N1-TI ultrafine particles with a desired composition.

(実施例) 本発明の詳細な説明するに、第1図は本発明の実施に使
用される装置の1例を示し、これに於て符号(1)はバ
ルブを介して真空ポンプ(2)が接続されると共にAr
ガス、Heガス等の放電ガスの導入管(3)が接続され
た真空室、(4) (5)は該真空室(1)内に対向し
て設けた1対の電極である。各電極(4) (5)は製
造される混合金属或は合金超微粒子の原料からなり、例
えばN1− TIの混合金属或は合金超微粒子を製造す
る場合、電極(4)を純N1、電極り5)を純Tlで形
成する。(6) (6)は内部に冷却水の循環通路を備
えた電極ホルダで、その先端に取付けた電極(4) (
5)を冷却水で直接冷却すると共に電R(7)からの給
電経路として作用するようにした。該電F1.(7)は
例えば100A、 257の交流電源(7a)と、0−
15OAに電流を可変し得る257の直流電源(7b)
とで構成するものとし、図示の例では該直流電源(7b
)のアノードを純N1の電極(4)に接続すると共にそ
のカソードを純T1の電極(5)に接続した。(8)は
超微粒子の取出口である。
(Example) To explain the present invention in detail, FIG. 1 shows an example of an apparatus used for carrying out the present invention, in which reference numeral (1) is connected to a vacuum pump (2) via a valve. is connected and Ar
A vacuum chamber (4) and (5) are connected to an inlet pipe (3) for introducing a discharge gas such as He gas, and a pair of electrodes are provided facing each other in the vacuum chamber (1). Each electrode (4) (5) is made of the raw material of the mixed metal or alloy ultrafine particles to be manufactured. For example, when manufacturing N1-TI mixed metal or alloy ultrafine particles, the electrode (4) is made of pure N1, electrode 5) is formed from pure Tl. (6) (6) is an electrode holder equipped with a cooling water circulation passage inside, and the electrode (4) (
5) is directly cooled with cooling water and acts as a power supply path from the electric power R (7). The electric F1. (7) is, for example, a 100A, 257 AC power supply (7a) and a 0-
257 DC power supply (7b) that can vary the current to 15OA
In the illustrated example, the DC power supply (7b
) was connected to the pure N1 electrode (4) and its cathode to the pure T1 electrode (5). (8) is an outlet for ultrafine particles.

以上の構成の装置を使用して旧−TIの混合或は合金超
微粒子を製造する方法を説明すると次の通りである。
A method for producing ultrafine particles of old-TI mixture or alloy using the apparatus configured as described above will be explained as follows.

まず、真空室(1)内をArガス圧300Torrに調
整し、電極(4) (5)を水冷し乍らこれに交流電源
(7a)から通電すると、電極(4) (5)間に交流
アーク放電が発生し、電極(4) (5)からN1とT
Iが超微粒子となって蒸発する。蒸発した超微粒子は対
向した電極(4) (5)の上方の取出口(8)から熱
対流とArガスにより搬出される。
First, the Ar gas pressure in the vacuum chamber (1) is adjusted to 300 Torr, and the electrodes (4) and (5) are water-cooled and energized from the AC power source (7a). Arc discharge occurs and N1 and T from electrodes (4) (5)
I becomes ultrafine particles and evaporates. The evaporated ultrafine particles are carried out from the outlet (8) above the opposing electrodes (4) and (5) by thermal convection and Ar gas.

交流アーク放電を発生させ乍ら直流型iiW (7b)
を電極(4) (5)に接続し、直流電流を0A−10
OAまで変化させたところ、生成した旧−T1の混合或
は合金超微粒子の量は35g/hでほぼ一定であったが
、その組成は、第2図の曲線Aで示すように直流電流値
の増大に伴ないTIの濃度(wt%)が増大する変化が
見られた。具体的には、直流電流がOAであるときは、
Nl−43wt%Tlの組成であったが、直流電流が1
00Aになると旧−61Wt96TIの組成となった。
DC type iiW (7b) while generating AC arc discharge
Connect to the electrodes (4) (5) and apply a DC current of 0A-10
When the OA was changed to OA, the amount of the old-T1 mixed or alloy ultrafine particles was almost constant at 35 g/h, but the composition changed with the DC current value as shown by curve A in Figure 2. A change was observed in which the concentration of TI (wt%) increased as the amount of TI increased. Specifically, when the DC current is OA,
The composition was Nl-43wt%Tl, but the DC current was 1
When it reached 00A, it became the composition of old -61Wt96TI.

従って、交流電流に重畳させた直流電流を制御すれば、
所望の組成のNl−TIの超微粒子を製造することが出
来る。また、交流アーク放電により加熱されて陰極から
蒸発する微粒子は、電極の極性が反転するため陽極に堆
積することがなく、超微粒子の生成量は、直流アーク放
電の場合よりも10倍以上向上する。
Therefore, if you control the DC current superimposed on the AC current,
Ultrafine particles of Nl-TI having a desired composition can be produced. In addition, the fine particles that are heated by AC arc discharge and evaporate from the cathode do not accumulate on the anode because the polarity of the electrode is reversed, and the amount of ultrafine particles produced is more than 10 times higher than in the case of DC arc discharge. .

電極(4) (5)として旧、T1以外に導電性の各種
金属を使用することが出来、組成を制御して各種金属の
混合或は合金超微粒子を製造することも可能である。
Various conductive metals other than T1 can be used as the electrodes (4) and (5), and it is also possible to control the composition to produce ultrafine particles of a mixture or alloy of various metals.

また図示してはないが、混合或は合金超微粒子の原料か
らなる電極を3本対向して真空室内に設け、各電極に三
相交流を電源から給電すれば、例えば各電極の金属を異
ならせることで3元素の混合或は合金超微粒子を製造出
来、この場合、電極間に電位差を与えて直流電流を重畳
することにより該超微粒子の組成を制御することが出来
る。
Although not shown, if three electrodes made of mixed or alloyed ultrafine particle raw materials are placed in a vacuum chamber facing each other, and each electrode is supplied with three-phase AC power from a power source, it is possible to By doing so, it is possible to produce ultrafine particles of a mixture or alloy of three elements, and in this case, the composition of the ultrafine particles can be controlled by applying a potential difference between the electrodes and superimposing a direct current.

(発明の効果) 以上のように、本発明によるときは、ガス雰凹気中の合
金超微粒子等の原料からなる直接冷却された複数の電極
へ交流電流と共に直流電流を重畳して与え、該直流電流
を変化させて製造される合金等の超微粒子の組成を制御
するようにしたので、効率良くしかも任意組成の混合金
属或は合金超微粒子を製造することが出来、この製造方
法は前記電極間にアーク放電を生じさせるための電源を
交流電源と直流電源とで構成した装置により好都合に実
施することが出来る等の効果がある。
(Effects of the Invention) As described above, according to the present invention, direct current and alternating current are superimposed and applied to a plurality of directly cooled electrodes made of raw materials such as ultrafine alloy particles in a gas atmosphere. Since the composition of ultrafine particles such as alloys produced is controlled by changing the direct current, it is possible to efficiently produce mixed metal or alloy ultrafine particles of arbitrary composition. There are effects such as the fact that the power source for causing arc discharge in between can be conveniently implemented by a device composed of an alternating current power source and a direct current power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す線図、第2図は放S電流
の変化と組成の変化の関係を示す線図である。 (1)・・・真空室 (3)・・・ガス導入管 (4)(5)・・・電極 (1)・・・電 源 (7a)・・・交流電源 (7b)・・・直流電源 特  許  出  願  人 真空冶金株式会社 チタンのル喪L(wt 0to )
FIG. 1 is a diagram showing an example of the present invention, and FIG. 2 is a diagram showing the relationship between changes in discharge current and changes in composition. (1)...Vacuum chamber (3)...Gas introduction tube (4) (5)...Electrode (1)...Power supply (7a)...AC power supply (7b)...DC Power supply patent application Hitachi Vacuum Metallurgy Co., Ltd. Titanium Rumor L (wt 0to)

Claims (1)

【特許請求の範囲】 1、ガス雰囲気中で、混合金属超微粒子或は合金超微粒
子の原料からなる直接冷却された複数の電極間に交流ア
ーク放電を発生させ、混合金属或は合金の超微粒子を製
造する方法に於て、該電極に交流電流と共に直流電流を
重畳して与え、該直流電流を変化させて製造される混合
金属超微粒子或は合金超微粒子の組成を制御することを
特徴とする混合金属或は合金の超微粒子の製造方法。 2、ガス雰囲気の室内に、混合金属超微粒子或は合金超
微粒子の原料からなる電極を複数本設け、各電極に、こ
れを直接冷却する冷却手段を接続すると共に各電極間で
アーク放電を発生させるための電源を接続するようにし
たものに於て、該電源を交流電源と直流電源とで構成し
たことを特徴とする混合金属或は合金の超微粒子の製造
装置。
[Claims] 1. In a gas atmosphere, an alternating current arc discharge is generated between a plurality of directly cooled electrodes made of raw materials for ultrafine mixed metal particles or ultrafine alloy particles, and ultrafine mixed metal or alloy particles are generated. The method for manufacturing is characterized by applying a superimposed direct current together with an alternating current to the electrode, and controlling the composition of the produced ultrafine mixed metal particles or ultrafine alloy particles by varying the direct current. A method for producing ultrafine particles of mixed metals or alloys. 2. A plurality of electrodes made of ultrafine mixed metal particles or ultrafine alloy particles are installed in a room with a gas atmosphere, and a cooling means is connected to each electrode to directly cool it, and an arc discharge is generated between each electrode. 1. An apparatus for producing ultrafine particles of mixed metals or alloys, characterized in that the power source is connected to an AC power source and a DC power source.
JP30420088A 1988-12-02 1988-12-02 Method and apparatus for manufacturing super fine particles of mixed metal or alloy Pending JPH02153008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30420088A JPH02153008A (en) 1988-12-02 1988-12-02 Method and apparatus for manufacturing super fine particles of mixed metal or alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30420088A JPH02153008A (en) 1988-12-02 1988-12-02 Method and apparatus for manufacturing super fine particles of mixed metal or alloy

Publications (1)

Publication Number Publication Date
JPH02153008A true JPH02153008A (en) 1990-06-12

Family

ID=17930223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30420088A Pending JPH02153008A (en) 1988-12-02 1988-12-02 Method and apparatus for manufacturing super fine particles of mixed metal or alloy

Country Status (1)

Country Link
JP (1) JPH02153008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105136A (en) * 2006-10-26 2008-05-08 Ulvac Japan Ltd Method for manufacturing nanoparticle and catalyst for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105136A (en) * 2006-10-26 2008-05-08 Ulvac Japan Ltd Method for manufacturing nanoparticle and catalyst for fuel cell

Similar Documents

Publication Publication Date Title
US9997338B2 (en) Method for operating a pulsed arc source
US4197175A (en) Method and apparatus for evaporating materials in a vacuum coating plant
JPH02285072A (en) Coating of surface of workpiece and workpiece thereof
BRPI0714437A2 (en) Method for separating electrically insulating layers
EP0734459B1 (en) Plasma-activated vapour-deposition process and device
JPH02153008A (en) Method and apparatus for manufacturing super fine particles of mixed metal or alloy
SU1836488A3 (en) Electrical arc evaporator to apply multilayer and mixed coatings
CN1192483A (en) Film growth method and film growth apparatus capable of forming magnesium oxide film with increased film growth speed
Eagar The physics of arc welding processes
JP2694659B2 (en) Method for producing ultrafine metal nitride particles
JP2596434B2 (en) Method for producing ultrafine alloy particles
US6302056B1 (en) Device for coating substrates with a material vapor in negative pressure or vacuum
JPS59190357A (en) Supersaturated electron type ion plating method
JPS6016419A (en) Plasma cvd processing apparatus
JPS57152436A (en) Manufacture of titanium-manganese alloy
KR102531449B1 (en) The fabricating method of titanium ingot
Borisenko et al. Nonself-sustained arc discharge in anode material vapors
JPS63303016A (en) Vacuum arc melting method
JPS61113703A (en) Production of pulverous powder
JP2567843B2 (en) Hybrid ion plating method and apparatus
JP3199543B2 (en) Vacuum arc deposition equipment
JP2782090B2 (en) Manufacturing method of alloy fine particles
JPS63307254A (en) Apparatus for forming thin oxide film
JPS6261601A (en) Method for forming particles by sputtering
JPS60228604A (en) Production of ultrafine particles