JPH02149476A - Binder for silicon carbide ceramics - Google Patents

Binder for silicon carbide ceramics

Info

Publication number
JPH02149476A
JPH02149476A JP20997689A JP20997689A JPH02149476A JP H02149476 A JPH02149476 A JP H02149476A JP 20997689 A JP20997689 A JP 20997689A JP 20997689 A JP20997689 A JP 20997689A JP H02149476 A JPH02149476 A JP H02149476A
Authority
JP
Japan
Prior art keywords
powder
resin
silicon carbide
silicon
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20997689A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Motomiya
本宮 達彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP20997689A priority Critical patent/JPH02149476A/en
Publication of JPH02149476A publication Critical patent/JPH02149476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent expansion due to a reaction at joined faces and to improve bonding strength by blending SiC with carbon powder, silicon powder, a thermosetting resin, a catalytically curing resin and a curing catalyst. CONSTITUTION:SiC powder (a) having 1-50mum average particle size is blended with carbon powder (b) having <=15mum average particle size and >=70m<2>/g specific surface area, silicon powder (c) having <=10mum average particle size, 5-20wt.% catalytically curing resin (e.g. furan resin) (d) based on the total amt. of the components (a)-(c), 1/2-1/3 time (weight) as much thermosetting resin (e.g. phenol resin) (e) as the component (d) and 2-5wt.% catalyst (e.g. sulfamic acid) (f) based on the amt. of the component (d) so that the amts. of the components (a), (c) are regulated to 0.4-2.2 pts.wt. and 1.9-4.2 pts.wt., respectively, per 1 pt.wt., in total, of the component (b) and carbon obtd. by thermally decomposing the components (d) to (f).

Description

【発明の詳細な説明】 り叉上ム■朋分互 本発明は炭化珪素セラミックス用接合剤に関する。[Detailed description of the invention] Re-crossing ■Friend-partition The present invention relates to a bonding agent for silicon carbide ceramics.

の   び  が  しよ゛と る 近年、炭化珪素(S i C)セラミックスは、耐熱性
、耐酸化性、耐摩耗性、強硬性等に優れた特性を有する
ことから、半導体、自動車、化学装置、工作機械等の幅
広い分野で使用されている。しかしながら、更に法尻な
用途分野に使用されるためには、その製造技術はもちろ
んのこと、炭化珪素セラミックス同志や炭化珪素セラミ
ックスと金属との接合が重要である。特に工業的見地か
らみれば簡便で安価な接合方法が望まれる。
In recent years, silicon carbide (SiC) ceramics have been growing in popularity due to their excellent properties such as heat resistance, oxidation resistance, abrasion resistance, and toughness, and are being used in semiconductors, automobiles, chemical equipment, It is used in a wide range of fields such as machine tools. However, in order to use it in more formal applications, not only the manufacturing technology but also the bonding between silicon carbide ceramics and between silicon carbide ceramics and metals are important. Particularly from an industrial standpoint, a simple and inexpensive joining method is desired.

従来、セラミックスの接合方法は、(1)機械的接合、
(2)ブレージング(メタライジング)。
Conventionally, the joining methods for ceramics are (1) mechanical joining;
(2) Brazing (metallizing).

(3)金属箔や帯等を使用した固相接合あるいは溶融接
合、(4)化学反応を利用した接合等があるが、これら
の中で(1)の機械的接合法は加工精度が要求され、(
2)のメタライジング及び(3)の同相接合、溶融接合
法は専用の機械設備が必要なため、いずれも簡便で安価
な接合方法とは言い難い。
(3) solid-phase bonding or fusion bonding using metal foils, bands, etc., and (4) bonding using chemical reactions. Among these, (1) mechanical bonding requires high processing precision. ,(
2) Metallizing and (3) in-phase bonding and fusion bonding require specialized mechanical equipment, so it is difficult to say that either of them is a simple or inexpensive bonding method.

一方、(4)の化学反応を利用した接合方法は最も簡便
なものであり、かかる化学反応を利用した炭化珪素の接
合、特に反応焼結炭化珪素の接合に関しては、弁間等(
窯業協会誌91巻、259〜264頁、1983年)に
よる報告がある。この方法は、炭化珪素粉、炭素粉及び
バインダー(フェノールレジンとフランレジンとの混合
物で溶媒を含む)からなる接合剤を被接合面に塗布し、
加圧成形後、真空中、1450°Cで接合面にシリコン
を注入して接合するものである。
On the other hand, the bonding method using chemical reaction (4) is the simplest method, and it is difficult to bond silicon carbide using such a chemical reaction, especially for bonding reactive sintered silicon carbide.
There is a report by Ceramics Association Journal, Vol. 91, pp. 259-264, 1983). This method involves applying a bonding agent consisting of silicon carbide powder, carbon powder, and a binder (a mixture of phenol resin and furan resin and containing a solvent) to the surfaces to be bonded.
After pressure molding, silicon is injected into the bonding surfaces at 1450°C in a vacuum to bond them.

しかし、この方法では注入シリコンと接合剤中の炭素と
の反応によって膨張が起こり、膨張により生じた部分に
シリコンが再注入されてシリコンのみからなる層が形成
し、このシリコン層が破壊の原因となるという問題があ
るため、加熱接着時に互いに接合すべき被接合体同志が
離れないように固定する必要がある。また、このような
高温状態で被接合体同志を固定することは技術的に高度
さが要求され、装@製作上多くの制約がある。従って、
多くの場合その接合が実際」ユ製品製造元でしかできな
いという制限がある。東に、複雑形状品の場合の接合は
極めて困難である。
However, with this method, expansion occurs due to the reaction between the implanted silicon and the carbon in the bonding agent, and silicon is reinjected into the area created by the expansion, forming a layer consisting only of silicon, and this silicon layer is the cause of the failure. Therefore, it is necessary to fix the objects to be bonded to each other so that they do not separate during heat bonding. Further, fixing the objects to be joined together in such a high temperature state requires a high level of technical skill, and there are many restrictions in terms of manufacturing. Therefore,
In many cases, there is a restriction that the joining can only be done by the actual product manufacturer. On the other hand, joining products with complex shapes is extremely difficult.

このため、反応焼結法で複雑形状品を得ようとする場合
は、仮焼体の段階で仮焼体組成と同し組成の接合剤を用
いて接着した後、反応焼結を行うという方法が採用され
ているが、この方法も接着強度が小さく、かつ製造元で
しか接合できないという欠点がある。
Therefore, when trying to obtain a complex-shaped product using the reactive sintering method, the method is to bond the calcined body using a bonding agent with the same composition as the calcined body, and then perform reactive sintering. However, this method also has the disadvantage that the adhesive strength is low and it can only be joined by the manufacturer.

本発明は上記事情に鑑みなされたもので、炭化珪素セラ
ミックスの化学反応による接合方法において、接合強度
が高く、かつ接合面に反応による膨張を生じないばかり
か、圧着治具等の特殊な装置が不要である上、仮焼体で
の接着でなく、一般の炭化珪素セラミックス焼結体(す
なオ〕ち製品)を簡便にしかも安価に接合することがで
きる接合剤を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a method for joining silicon carbide ceramics using a chemical reaction, which not only has high joint strength and does not cause expansion due to reaction on the joint surface, but also requires special equipment such as a crimping jig. The purpose of the present invention is to provide a bonding agent that is not necessary and can easily and inexpensively bond general silicon carbide ceramic sintered bodies (i.e., products) without bonding with calcined bodies. do.

を  するための   び 本発明者らは、上記し1的を達成するため鋭意検討を重
ねた結果、弁間等の方法のように外部からシリコンを注
入するのではなく、あらかじめ接合剤中にシリコン(珪
素粉)を含有させ、シリコンと炭化珪素粉、炭素粉とを
組合せること、しかもこれらシリコンと炭化珪素粉とを
全炭素量に対し特定量使用し、かつシリコン、炭化珪素
粉、炭素粉の平均粒径を調整した場合、接合面の接合強
度を低下させるようなシリコン層の形成が阻止でき、高
強度でしかも焼結体(製品)そのものを強固に接合でき
ることを知見した。
In order to achieve the above-mentioned objective 1, the inventors of the present invention have made extensive studies and found that, instead of injecting silicon from the outside as in the valve-mapping method, silicon is added to the bonding agent in advance. (silicon powder), and a combination of silicon, silicon carbide powder, and carbon powder, and furthermore, using a specific amount of silicon and silicon carbide powder relative to the total carbon amount, and combining silicon, silicon carbide powder, and carbon powder. It has been found that by adjusting the average particle size of the sintered body, it is possible to prevent the formation of a silicon layer that would reduce the bonding strength of the bonding surface, and it is possible to firmly bond the sintered body (product) itself with high strength.

即ち、本発明は、炭化珪素セラミックス用接合剤を、平
均粒径1〜50声の炭化珪素粉、平均粒径15−以下の
炭素粉、平均粒径1〇−以下の珪素粉、熱硬化性樹脂、
触媒硬化型樹脂及び該触媒硬化型樹脂を硬化させる硬化
剤を成分とし、上記炭素粉と上記熱硬化性樹脂、触媒硬
化型樹脂及び硬化剤の熱分解によって得られる炭素分と
の合計炭素量1重量部に対し、上記炭化珪素粉、珪素粉
を各々0.4〜2.2重量部、1.9〜4.2重量部・
の割合で配合することにより、上記目的を達成したもの
である。
That is, the present invention provides a bonding agent for silicon carbide ceramics including silicon carbide powder with an average particle size of 1 to 50, carbon powder with an average particle size of 15 or less, silicon powder with an average particle size of 10 or less, and a thermosetting material. resin,
The total carbon content of the carbon powder and the carbon content obtained by thermal decomposition of the thermosetting resin, the catalyst curing resin, and the curing agent, including a catalyst curing resin and a curing agent for curing the catalyst curing resin, is 1. 0.4 to 2.2 parts by weight and 1.9 to 4.2 parts by weight of the silicon carbide powder and silicon powder, respectively, per part by weight.
The above objective was achieved by blending in the ratio of .

更に詳述すると、弁間等の報告にある接着メカニズムは
SiCとCとの混合粉からなる接合面に外部よりSiを
注入するものであり、Siの注入によりsi+c−+s
icの化学反応が進行して接合するが、上述したように
この反応は体積膨張を伴うため、膨張に伴う隙間が生じ
、これに81が浸透し、その結果として新たにシリコン
のみからなる層が生成し、これが冷却時に再膨張するた
め接合体が剥離するという問題がある。これに対し、外
部からのSi注入方法ではなく、予め接合剤中に適量の
Siを共存させ、上述したような平均粒径1〜50−の
炭化珪素粉、平均粒径15−以下の炭素粉、平均粒径1
0−以下の珪素粉を熱硬化性樹脂、触媒硬化型樹脂及び
該触媒硬化型樹脂を硬化させる硬化剤を使用すると共に
、上記炭素粉と上記熱硬化性樹脂、触媒硬化型樹脂及び
硬化剤の熱分解によって得られる炭素分との合計炭素量
1重量部に対し、上記炭化珪素粉、珪素粉を各々0.4
〜2.2重量部、1.9〜4.2重量部の割合で使用し
た炭化珪素セラミックス用接合剤を用いた接合方法を採
用した場合、Si+C→SiCの反応に基づく体積膨張
を充分吸収できるばかりでなく、共存Si量がコントロ
ールされているためSi層の生成を岨止し得るものであ
る。
To explain in more detail, the adhesion mechanism reported by Benma et al. is that Si is injected from the outside into the joint surface made of a mixed powder of SiC and C.
The chemical reaction of the IC progresses and they are bonded, but as mentioned above, this reaction is accompanied by volumetric expansion, so a gap is created due to the expansion, 81 penetrates into this gap, and as a result, a new layer consisting only of silicon is formed. There is a problem in that the bonded body is peeled off because it is generated and expands again when cooled. On the other hand, instead of using an external Si injection method, an appropriate amount of Si is coexisting in the bonding agent in advance, and silicon carbide powder with an average particle size of 1 to 50 mm and carbon powder with an average particle size of 15 mm or less as described above are used. , average particle size 1
0- or less silicon powder using a thermosetting resin, a catalyst curing resin, and a curing agent for curing the catalyst curing resin, and a combination of the carbon powder, the thermosetting resin, the catalyst curing resin, and the curing agent. 0.4 parts of each of the silicon carbide powder and silicon powder is added to 1 part by weight of the total amount of carbon including the carbon content obtained by thermal decomposition.
When a bonding method using a bonding agent for silicon carbide ceramics used at a ratio of ~2.2 parts by weight and 1.9 to 4.2 parts by weight is adopted, the volume expansion due to the reaction of Si + C → SiC can be sufficiently absorbed. Moreover, since the amount of coexisting Si is controlled, it is possible to prevent the formation of a Si layer.

従って、本発明は特定量、特定粒径の炭化珪素粉、炭素
粉、珪素粉、それに熱硬化性樹脂、触媒硬化型樹脂及び
該触媒硬化型樹脂を硬化させる硬化剤を成分とする炭化
珪素セラミックス用接合剤を提供するものであり、この
接合剤によれば常温で被接合体に塗布接着し、接合時に
被接合体相互を圧着することなく、プロパンバーナー等
を用いた簡便な加熱方法で炭化珪素セラミックス焼結体
く製品)を高強度で接合できるものである。
Therefore, the present invention provides silicon carbide ceramics comprising silicon carbide powder, carbon powder, silicon powder in a specific amount and particle size, a thermosetting resin, a catalytic curing resin, and a curing agent for curing the catalytic curing resin. This bonding agent can be applied to objects to be bonded at room temperature and carbonized by a simple heating method using a propane burner, etc., without pressing the objects together during bonding. It is possible to join sintered silicon ceramic products with high strength.

以下1本発明について更に詳しく説明する。The present invention will be explained in more detail below.

本発明の接合剤は、上述したように炭化珪素粉。As mentioned above, the bonding agent of the present invention is silicon carbide powder.

炭素粉、珪素粉、熱硬化性樹脂、触媒硬化型樹脂及び該
触媒硬化型樹脂を硬化させる硬化剤を成分とするもので
ある。接合剤の形態は炭化珪素粉、炭素粉、珪素粉、熱
硬化性樹脂及び触媒硬化型樹脂を主剤とし、主剤中の触
媒硬化型樹脂を硬化させる硬化剤を副主剤として、使用
時に両者を混合するようにすることが好ましい。
The components include carbon powder, silicon powder, thermosetting resin, catalyst-curing resin, and a curing agent for curing the catalyst-curing resin. The form of the bonding agent is silicon carbide powder, carbon powder, silicon powder, thermosetting resin, and catalytic curing resin as the main ingredient, and a curing agent that hardens the catalytic curing resin in the main ingredient as the sub-main ingredient, and both are mixed at the time of use. It is preferable to do so.

ここで、本発明の接合剤を構成する主剤のうち第1の成
分の炭化珪素(S i C)粉は、α−8i C。
Here, silicon carbide (S i C) powder, which is the first component of the main ingredients constituting the bonding agent of the present invention, is α-8i C.

β−3iCのいずれでも良いが、経済的には通常市販さ
れているアチソン法α−5iCを粉砕したものが好まし
い。SiCの粒径は本発明の接合剤の他の成分の粒径に
よっても影響されるが、その範囲は1〜5Qguである
必要があり、特に:3〜35癖が好ましい。1μn未満
であると反応に伴う体積膨張を吸収できずに加熱中クラ
ックを生じ、50μsを超えると接合層が厚くなりすぎ
てやはり加熱中にクラックが生じる。
Any type of β-3iC may be used, but from an economical point of view, it is preferable to use pulverized Acheson method α-5iC, which is usually commercially available. The particle size of SiC is also influenced by the particle size of other components of the bonding agent of the present invention, but the range needs to be from 1 to 5 Qgu, and particularly preferably from 3 to 35 Qgu. If it is less than 1 μn, the volume expansion accompanying the reaction cannot be absorbed and cracks will occur during heating, and if it exceeds 50 μs, the bonding layer will become too thick and cracks will also occur during heating.

次に、第2の成分の炭素(C)粉は本発明の接合剤の重
要成分であり、−本発明の第二0の成分の珪素(Si)
粉と均一に反応して均質な炭化珪素(S i C)を得
るためにはできるだけ微粉であること、更に比表面積が
大であることが好ましい。
Next, the second component, carbon (C) powder, is an important component of the bonding agent of the present invention, and - the twentieth component of the present invention, silicon (Si)
In order to react uniformly with the powder to obtain homogeneous silicon carbide (S i C), it is preferable that the powder be as fine as possible and further have a large specific surface area.

即ち、微粉はど反応時における接合面の膨張による隙間
が生じにくく、無理な応力がかからないので接合強度が
高くなる。従って粒径は15−以下であることが必要で
あり、特に10−以下とすることが好ましい。比表面積
は70 m / g以上、特に100 rn’ / g
以上とすることが好ましい。粒径が15−を超えると加
熱中クラックが生じ、比表面積が小さすぎると反応が均
一に進行せずに接合強度が低下する場合がある。
That is, gaps are less likely to be formed due to expansion of the joint surfaces during the reaction of fine powder, and the joint strength is increased because no unreasonable stress is applied. Therefore, the particle size must be 15 or less, and preferably 10 or less. Specific surface area is 70 m/g or more, especially 100 rn'/g
It is preferable to set it as above. If the particle size exceeds 15 -, cracks will occur during heating, and if the specific surface area is too small, the reaction will not proceed uniformly and the bonding strength may decrease.

上記炭素粉と反応する第3の成分の珪素(Si)粉は炭
素粉と同様にできる限り微粉であることか好ましい。そ
の粒径は10LI+以下である必要があり、特に74以
下とすることが好ましい。粒径が10声より大きくなる
と反応が局部的となり、加熱時にクラックが発生し、接
合強度が低下する。
It is preferable that the silicon (Si) powder, which is the third component that reacts with the carbon powder, is as fine a powder as possible, similar to the carbon powder. The particle size must be 10LI+ or less, and preferably 74 or less. If the particle size is larger than 10 tones, the reaction will be localized, cracks will occur during heating, and the bonding strength will decrease.

また、第4の成分の熱硬化性樹脂としては特に制限はな
く、SiとCとが反応する高温に至るまで被接合体を固
定させることができればよく、具体的にはフェノール樹
脂、シリコーンワニス、メラミン樹脂、フェノール−メ
ラミン樹脂、アルキッド樹脂等が挙げられる。
The thermosetting resin as the fourth component is not particularly limited as long as it can fix the objects to be joined up to the high temperature at which Si and C react.Specifically, phenolic resin, silicone varnish, Examples include melamine resin, phenol-melamine resin, and alkyd resin.

更に、第5の成分の触媒硬化型樹脂は、触媒により硬化
して被接合体相互を接着させ、常温での取扱いを可能に
するための目的で加えられるもので、この目的に沿う触
媒硬化型樹脂であればよく、具体的にはフラン樹脂、エ
ポキシ樹脂、不飽和ポリエステル樹脂、尿素系樹脂等の
常温硬化性のものが好適に用いられる。
Furthermore, the fifth component, a catalytic curing resin, is added for the purpose of curing with a catalyst and adhering the objects to be joined together, making it possible to handle them at room temperature. Any resin may be used, and specifically, room temperature curable ones such as furan resin, epoxy resin, unsaturated polyester resin, and urea resin are preferably used.

以上の炭化珪素粉、炭素粉、珪素粉、熱硬化性樹脂脂及
び触媒硬化型樹脂は主剤として構成することができるが
、この場合この主剤には他の成分、例えばポリイソシア
ネート系やポリオール系粘着剤を加えることもできる。
The above-mentioned silicon carbide powder, carbon powder, silicon powder, thermosetting resin, and catalyst-curing resin can be used as a main ingredient, but in this case, the main ingredient may contain other ingredients, such as polyisocyanate-based or polyol-based adhesives. Agents can also be added.

また、上述した成分をペースト状にして接合剤を接合面
に塗布しやすくするために溶媒を加えることが好ましい
。この場合、溶媒は使用時に加えるようにしてもよいが
、予め主剤中に加えておくこともできる。溶媒としては
、アセトン、クロロホルム、ジメチルエーテル、ベンゼ
ン、エタノール、アセトニトリル等の揮発性溶媒を使用
することができるが、保管時の揮発性の点から、沸点が
100℃以上の7容媒が好ましい。具体的にはジメチル
スルホキシド、ジメチルホルムアミド、フルフリールア
ルコール等の1種又は2種以」二が好適に用いられる。
Further, it is preferable to add a solvent to the above-mentioned components in order to form a paste and make it easier to apply the bonding agent to the bonding surface. In this case, the solvent may be added at the time of use, but it may also be added to the base agent in advance. As the solvent, volatile solvents such as acetone, chloroform, dimethyl ether, benzene, ethanol, and acetonitrile can be used, but from the viewpoint of volatility during storage, a solvent with a boiling point of 100° C. or higher is preferable. Specifically, one or more of dimethyl sulfoxide, dimethylformamide, furfuryl alcohol and the like are preferably used.

本発明の接合剤は上記主剤に加えられている触媒硬化型
樹脂を硬化させる硬化剤を使用するが5これは別途に副
主剤として措成し、使用時に主剤と混合することが好ま
しい。ここで、硬化剤はt記触媒硬化型樹脂の種類によ
って決定され、通常縮合反応に使用されるスルホン酸型
アンモニウム塩、アミン塩あるいはスルホニウムクロラ
イド類。
The bonding agent of the present invention uses a curing agent that cures the catalytically cured resin added to the main material.5 It is preferable that this is separately provided as a sub-main material and mixed with the main material at the time of use. Here, the curing agent is determined depending on the type of catalyst-curing resin described in t, and is usually a sulfonic acid type ammonium salt, amine salt, or sulfonium chloride used in the condensation reaction.

アマイドの無機酸塩、スルファミン酸、トリクロル酢酸
等が使用できるが、触媒硬化型樹脂と一組となって販売
されているものを使用するのが好ましい。なお、当然の
こととして、これら触媒により熱硬化性樹脂は一部縮合
を起こし、常温強度の向上に寄与する。また、この硬化
剤を含む副主剤には主剤と同し溶媒を含むことができ、
この溶媒で硬化剤を希釈しておくことが好ましい。
Inorganic acid salts of amide, sulfamic acid, trichloroacetic acid, etc. can be used, but it is preferable to use those sold as a set with a catalyst-curing resin. Incidentally, as a matter of course, these catalysts cause partial condensation of the thermosetting resin, contributing to improvement in room temperature strength. In addition, the sub-main agent containing this curing agent can contain the same solvent as the main agent,
It is preferable to dilute the curing agent with this solvent.

上述した本発明の接合剤成分は、この接合剤によって形
成される接合部が被接合体と同程度の密度となるように
その配合量、配合割合を選定する。
The blending amount and proportion of the bonding agent component of the present invention described above are selected so that the bonded portion formed by the bonding agent has a density comparable to that of the objects to be bonded.

具体的には、炭素粉と、上記熱硬化性樹脂、触媒4硬化
型樹脂、硬化剤の熱分解によって得られる炭素分との合
計炭素ff11部(重量部、以下同じ)に対し、炭化珪
素粉は0.4〜2.2部である必要があり、特に0.6
〜2部が好ましく、珪素粉は1.9〜4.2部である必
要があり、特に2〜4部が好ましい。炭化珪素量が0.
4部未満ではCとSiとの反応に伴う体積膨張を吸収で
きずに加熱中にクラックが入り、2.2部を超えるとボ
アが発生して接合強度が低下する。また、珪素量が1.
9部未満では加熱中クラックが入り、4.2部を超える
とボアが発生して接着強度が低下する。
Specifically, for a total carbon ff of 11 parts (parts by weight, same hereinafter) of carbon powder and the carbon content obtained by thermal decomposition of the thermosetting resin, catalyst 4-curing resin, and curing agent, silicon carbide powder was added. should be 0.4 to 2.2 parts, especially 0.6
~2 parts is preferred, and the silicon powder needs to be 1.9 to 4.2 parts, particularly preferably 2 to 4 parts. The amount of silicon carbide is 0.
If it is less than 4 parts, the volumetric expansion caused by the reaction between C and Si cannot be absorbed and cracks will occur during heating, and if it exceeds 2.2 parts, bores will occur and the bonding strength will decrease. In addition, the amount of silicon is 1.
If it is less than 9 parts, cracks will occur during heating, and if it exceeds 4.2 parts, bores will occur and the adhesive strength will decrease.

なお、上・述したように炭化珪素粉、珪素粉の使用量に
対する炭素量には炭素粉以外の炭素成分、即ち、熱硬化
性樹脂、触媒硬化型樹脂、硬化剤が熱分解して接合面に
残存するCを含んだ量として計算する。ここで、これら
の分解により生じた炭素は通常アモルファスであり、S
iとの反応が穏やかであるところから、接合面の反応に
よる膨張を防止することにも寄与している。
As mentioned above, the amount of carbon relative to the amount of silicon carbide powder and silicon powder used includes carbon components other than carbon powder, such as thermosetting resins, catalyst curing resins, and hardening agents that are thermally decomposed and Calculated as the amount including the remaining C. Here, the carbon produced by these decompositions is usually amorphous, and S
Since the reaction with i is mild, it also contributes to preventing expansion of the joint surface due to reaction.

触媒硬化型樹脂の配合量は炭化珪素粉、炭素粉、珪素均
分の総量に対して5〜20重量%、特に7〜18重量%
が好ましい。5重量%未満では常温での取扱いに十分な
強度が得られない場合があり、20重量%を超えると接
合剤層が厚くなり、接合面の隙間が大になって接合強度
が低下する場合がある。
The amount of catalyst curing resin is 5 to 20% by weight, especially 7 to 18% by weight, based on the total amount of silicon carbide powder, carbon powder, and silicon proportions.
is preferred. If it is less than 5% by weight, sufficient strength may not be obtained for handling at room temperature, and if it exceeds 20% by weight, the bonding agent layer may become thick and the gap between the bonding surfaces may become large, resulting in a decrease in bonding strength. be.

また、熱硬化性樹脂の配合量は触媒硬化型樹脂の重量の
1/2〜1/3が好ましい。この範囲量より配合量が少
ないと、加熱中の接合面の密着を保てない場合があり、
多いと触媒硬化型樹脂の配合量が少なくなり、被接合体
の初期接着時において十分な強度が得られない場合があ
る。
Further, the amount of the thermosetting resin blended is preferably 1/2 to 1/3 of the weight of the catalyst-curing resin. If the amount is less than this range, it may not be possible to maintain close contact between the joint surfaces during heating.
If the amount is too large, the amount of catalytic curing resin will be reduced, and sufficient strength may not be obtained during the initial adhesion of the objects to be joined.

なお、上記主剤をペースト状にするための溶媒の量は、
ペースト状を維持する必要量であり、応の目安は熱硬化
性樹脂と当量乃至その1/2量である。
In addition, the amount of solvent to make the above main ingredient into a paste is as follows:
This is the amount necessary to maintain a paste-like state, and the appropriate amount is equivalent to or 1/2 the amount of the thermosetting resin.

一方、硬化剤の量は選定した触媒硬化型樹脂に対する硬
化剤の種類により異なるが、−船釣に触媒硬化性樹脂の
量の2〜5重量%が好ましい。
On the other hand, the amount of the curing agent varies depending on the type of curing agent for the selected catalytic curing resin, but is preferably 2 to 5% by weight of the amount of the catalytic curing resin for boat fishing.

本発明の接合剤を用いて炭化珪素セラミックスを接合す
る方法は、特に制限されるものではないが、炭化珪素粉
、炭素粉、珪素粉、熱硬化性樹脂及び触媒硬化型樹脂を
成分とする混合物にフルフリールアルコール等の溶媒を
加え、ボールミル等で混合してペースト状にしくなお、
これら成分の混合の順序は自由である)、これと溶媒で
希釈した硬化剤とを使用直前に混合し、被接合面に塗布
した後、圧着して硬化させ(これにより接合面が接着し
て常温で取扱うことが可能になる)、この接着した被接
合体を150℃前後に加熱して溶媒を蒸発させると共に
熱硬化性樹脂を硬化させ、次いで徐々に温度を上げて樹
脂を炭化させ、更に1400℃以上、好ましくは145
0〜1600℃に加熱してSiとCを反応させる方法が
好適に採用される。この場合、1400°C以上の加熱
雰囲気は真空、不活性ガス等が好ましく、更に空気中で
も可能である。加熱は場合によってはプロパンバーナー
等を用いて行うことができる。なお、また加熱時間は被
接合体の形状により異なるので一定ではない。
The method of bonding silicon carbide ceramics using the bonding agent of the present invention is not particularly limited, but may include a mixture containing silicon carbide powder, carbon powder, silicon powder, thermosetting resin, and catalytic curing resin as components. Add a solvent such as furfuryl alcohol to the mixture and mix with a ball mill etc. to make a paste.
These components can be mixed in any order), and this and a hardening agent diluted with a solvent are mixed immediately before use, applied to the surfaces to be joined, and then pressed and cured (this allows the surfaces to be joined to adhere. ), the bonded objects to be joined are heated to around 150°C to evaporate the solvent and harden the thermosetting resin, then gradually raise the temperature to carbonize the resin, and then 1400℃ or more, preferably 145
A method in which Si and C are reacted by heating to 0 to 1600°C is preferably employed. In this case, the heating atmosphere at 1400° C. or higher is preferably a vacuum, an inert gas, or the like, and even air can be used. Heating can be performed using a propane burner or the like depending on the case. Note that the heating time is not constant because it varies depending on the shape of the objects to be joined.

本発明の接合剤は反応焼結、再結晶、常圧焼結等で得ら
れる炭化珪素セラミックス相互の接合やこれらセラミッ
クスと金属等との接合に好適に使用し得るものである。
The bonding agent of the present invention can be suitably used for bonding silicon carbide ceramics obtained by reaction sintering, recrystallization, pressureless sintering, etc. and bonding these ceramics to metals and the like.

l(社)ム勉米 以上説明したように、本発明の接合剤は仮焼体の状態で
はなく、製品としての炭化珪素セラミックスをそのまま
接合でき、また接合面を加熱反応時に圧着することなし
に、場合によってはプロパンバーナー等の簡便な加熱方
法で強力に接合できるものである。しかも、かかる炭化
珪素セラミックスの接合において、高温に耐える締めつ
け装置、真空装置、高温加熱装置等の高価な装置を必要
としないので、破損品の修理、大型品、 PJ、雑形状
品等の接合が簡便にかつ安価にできることが可能となっ
たものである。
As explained above, the bonding agent of the present invention can bond silicon carbide ceramics as a product, rather than in a calcined state, and can also bond silicon carbide ceramics as they are without pressing the bonded surfaces during a heating reaction. In some cases, strong bonding can be achieved using a simple heating method such as a propane burner. Moreover, since the joining of such silicon carbide ceramics does not require expensive equipment such as a tightening device that can withstand high temperatures, a vacuum device, and a high-temperature heating device, it is easy to repair damaged products, and to join large products, PJs, irregularly shaped products, etc. This makes it possible to do it easily and at low cost.

以下、実施例及び比較例を挙げて本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

〔実施例1〜5、比較例1〜9〕 下記に示した配合成分をボールミル中で混合し、主剤を
調製した。
[Examples 1 to 5, Comparative Examples 1 to 9] The ingredients shown below were mixed in a ball mill to prepare a main ingredient.

粒径20 pUn (# 800 ) (7+ a −
S i C(イRJ電気製錬社製)         
   e、□g粒径1〜3−の黒鉛(比表面積150m
/g)3.5g 粒径1/a以下のSi微粉       15gフェノ
ールレジン(商品名レジントップ、群栄化学社製)  
           1.0gフランレジン(商品名
ブロミネー1〜Q、武1f1薬品工業社製)     
        2. E5gフルフリールアルコール
      2.Qgまた、下記に示した配合成分を混
合し、副生剤を調製した。
Particle size 20 pUn (#800) (7+ a-
S i C (manufactured by IRJ Denki Smelting Co., Ltd.)
e, □g graphite with particle size 1 to 3- (specific surface area 150 m
/g) 3.5g Si fine powder with a particle size of 1/a or less 15g phenol resin (trade name: Resin Top, manufactured by Gunei Chemical Co., Ltd.)
1.0g furan resin (trade name Bromine 1-Q, manufactured by Take 1f1 Yakuhin Kogyo Co., Ltd.)
2. E5g furfuryl alcohol 2. Qg Also, a by-product agent was prepared by mixing the ingredients shown below.

フランレジン専用硬化剤(商品名ブロミネ−1・0.2
001武田薬品工業社’!A)   O,1gフルフリ
ールアルコール         5g上記主剤0.3
gと副生剤0.3gとを混合し、反応焼結SiCのサン
プル(直径30nn、厚さ5■の円板を中心より半割し
た半円状板)表面に塗布し、これらサンプルを圧着した
Curing agent for furan resin (product name Bromine-1/0.2)
001 Takeda Pharmaceutical Company'! A) O, 1g Furfuryl alcohol 5g Above main agent 0.3
g and 0.3 g of by-product agent were mixed and applied to the surface of a reaction sintered SiC sample (a semicircular plate obtained by dividing a disk with a diameter of 30 nn and a thickness of 5 cm in half from the center), and these samples were crimped together. did.

次いで、このサンプルを120℃で30分間加熱して接
合剤を硬化された。このときのサンプル接着面の接着強
度は2kg/n+n+”であった。
The sample was then heated at 120° C. for 30 minutes to cure the bonding agent. The adhesive strength of the sample adhesive surface at this time was 2 kg/n+n+''.

次いで、常圧、Ar雰囲気中で1500℃、5分間熱処
理を行い、サンプルを接合した。この接合強度は30k
g/1III12であった。
Next, heat treatment was performed at 1500° C. for 5 minutes in an Ar atmosphere at normal pressure to bond the samples. This joint strength is 30k
g/1III12.

また、上記と同様な方法で第1表に示した配合処方の接
合剤を用いて実験を行った。その結果を第1表に併記す
る。
In addition, experiments were conducted in the same manner as above using bonding agents having the formulations shown in Table 1. The results are also listed in Table 1.

〔実施例6〕 実施例1と同じ主剤、副主剤を同量使用し、これを同寸
法の反応焼結SiCサンプルに塗布し、サンプルを圧着
した後、120°Cで30分間加熱して接合剤を硬化し
た。
[Example 6] The same amounts of the same main material and sub-main material as in Example 1 were used, and these were applied to a reaction sintered SiC sample of the same size, and after the sample was crimped, it was heated at 120°C for 30 minutes to bond it. The agent was cured.

次いで、空気雰囲気下でプロパンバーナーを用いてl 
500 ’C以上に加熱し、この温度を30分間保った
後、ゆっくり降温した。
Then, using a propane burner under an air atmosphere,
It was heated to 500'C or higher, maintained at this temperature for 30 minutes, and then slowly cooled down.

このサンプルの接合強度は20 kg / n*n ”
であった。
The bonding strength of this sample is 20 kg/n*n”
Met.

出願人  信越化学」二業 株式会社 代理人  弁理士 小 島 降 司 (他1名)Applicant: Shin-Etsu Chemical Co., Ltd. Agent: Patent attorney Furuji Kojima (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 1、平均粒径1〜50μmの炭化珪素粉、平均粒径15
μm以下の炭素粉、平均粒径10μm以下の珪素粉、熱
硬化性樹脂、触媒硬化型樹脂及び該触媒硬化型樹脂を硬
化させる硬化剤を成分とし、上記炭素粉と上記熱硬化性
樹脂、触媒硬化型樹脂及び硬化剤の熱分解によって得ら
れる炭素分との合計炭素量1重量部に対し、上記炭化珪
素粉、珪素粉を各々0.4〜2.2重量部、1.9〜4
.2重量部の割合で配合したことを特徴とする炭化珪素
セラミックス用接合剤。
1. Silicon carbide powder with an average particle size of 1 to 50 μm, average particle size of 15
Ingredients include carbon powder with a particle diameter of 10 μm or less, silicon powder with an average particle size of 10 μm or less, a thermosetting resin, a catalyst-curing resin, and a curing agent for curing the catalyst-curing resin. 0.4 to 2.2 parts by weight and 1.9 to 4 parts by weight of the silicon carbide powder and silicon powder, respectively, per 1 part by weight of the total carbon content of the curable resin and carbon obtained by thermal decomposition of the curing agent.
.. A bonding agent for silicon carbide ceramics, characterized in that it is blended in a proportion of 2 parts by weight.
JP20997689A 1988-08-15 1989-08-14 Binder for silicon carbide ceramics Pending JPH02149476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20997689A JPH02149476A (en) 1988-08-15 1989-08-14 Binder for silicon carbide ceramics

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20282788 1988-08-15
JP63-202827 1988-08-15
JP20997689A JPH02149476A (en) 1988-08-15 1989-08-14 Binder for silicon carbide ceramics

Publications (1)

Publication Number Publication Date
JPH02149476A true JPH02149476A (en) 1990-06-08

Family

ID=26513591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20997689A Pending JPH02149476A (en) 1988-08-15 1989-08-14 Binder for silicon carbide ceramics

Country Status (1)

Country Link
JP (1) JPH02149476A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
WO2010092831A1 (en) * 2009-02-16 2010-08-19 株式会社 東芝 Hydrogen energy storage system and hydrogen energy storage method
JP2012505144A (en) * 2009-05-11 2012-03-01 エルケム カーボン アクシエセルスカプ Adhesives and coatings for heat-resistant materials and ceramics
JP2012121785A (en) * 2010-05-27 2012-06-28 Toto Ltd Method for producing ceramic joined body
WO2013045308A1 (en) * 2011-09-30 2013-04-04 Sgl Carbon Se Laser soldering of silicon carbide-based materials
WO2013045306A1 (en) * 2011-09-30 2013-04-04 Sgl Carbon Se Laser soldering of silicon carbide-based materials for the production of ceramic parts
JP2014015392A (en) * 2009-02-16 2014-01-30 Toshiba Corp Material for joining ceramics and method for manufacturing a ceramic composite member
JP2014518832A (en) * 2011-04-20 2014-08-07 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing ceramic member combined from a plurality of preforms

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100379743B1 (en) * 2000-06-12 2003-04-11 (주)글로벌코센테크 Method for Jointing Porous SiC Body
WO2010092831A1 (en) * 2009-02-16 2010-08-19 株式会社 東芝 Hydrogen energy storage system and hydrogen energy storage method
US8394543B2 (en) 2009-02-16 2013-03-12 Kabushiki Kaisha Toshiba Electrical power storage system using hydrogen and method for storing electrical power using hydrogen
JP2014015392A (en) * 2009-02-16 2014-01-30 Toshiba Corp Material for joining ceramics and method for manufacturing a ceramic composite member
US9362576B2 (en) 2009-02-16 2016-06-07 Kabushiki Kaisha Toshiba Electrical power storage system using hydrogen and method for storing electrical power using hydrogen
JP2012505144A (en) * 2009-05-11 2012-03-01 エルケム カーボン アクシエセルスカプ Adhesives and coatings for heat-resistant materials and ceramics
JP2012121785A (en) * 2010-05-27 2012-06-28 Toto Ltd Method for producing ceramic joined body
JP2014518832A (en) * 2011-04-20 2014-08-07 エスゲーエル カーボン ソシエタス ヨーロピア Method for producing ceramic member combined from a plurality of preforms
WO2013045308A1 (en) * 2011-09-30 2013-04-04 Sgl Carbon Se Laser soldering of silicon carbide-based materials
WO2013045306A1 (en) * 2011-09-30 2013-04-04 Sgl Carbon Se Laser soldering of silicon carbide-based materials for the production of ceramic parts

Similar Documents

Publication Publication Date Title
US5858144A (en) Low temperature joining of ceramic composites
EP0356800B1 (en) Silicon carbide ceramics bonding compositions
EP0498097B1 (en) Carbonaceous cement
JP2014518832A (en) Method for producing ceramic member combined from a plurality of preforms
JPH02149476A (en) Binder for silicon carbide ceramics
EP1888329A2 (en) Sealant for high strength carbon foam
Loehman Recent progress in ceramic joining
EP0225802A2 (en) Adhesion structures and method of producing the same
US5474849A (en) Adhesive composition, carbon-carbon composite structures prepared therewith, and method of forming same
JP4540875B2 (en) High temperature carbonaceous cement
JPH06256067A (en) Compound for joining ceramic
EP0158473B1 (en) Method for production of sintered article of silicon nitride
JP4523186B2 (en) Refractory adhesive composition
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JPH04335079A (en) Adhesive for carbonaceous material and its manufacture
JPH03793A (en) Refractory material
JPS5884186A (en) Ceramics bonding method
JPH05186285A (en) Substrate for heat treatment and its production
JPH0517245A (en) Jointing agent for carbonaceous material and production thereof
JP6783643B2 (en) Carbon material bonding agent and bonding method
JPS63303871A (en) Adhesive agent for carbon material and joining method using said agent
JPS60251177A (en) Bonding method
JPS5864271A (en) Silicon nitride sintered body
KR100253941B1 (en) A high-temperature adhesive for permanent joint
JPS62138577A (en) Bonded construction and its manufacture