JPH02147968A - Apparatus for detecting fault of electric circuit - Google Patents

Apparatus for detecting fault of electric circuit

Info

Publication number
JPH02147968A
JPH02147968A JP63303411A JP30341188A JPH02147968A JP H02147968 A JPH02147968 A JP H02147968A JP 63303411 A JP63303411 A JP 63303411A JP 30341188 A JP30341188 A JP 30341188A JP H02147968 A JPH02147968 A JP H02147968A
Authority
JP
Japan
Prior art keywords
electric circuit
load current
load
output
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303411A
Other languages
Japanese (ja)
Inventor
Kazuyuki Tazawa
田沢 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP63303411A priority Critical patent/JPH02147968A/en
Priority to GB8926984A priority patent/GB2228153A/en
Priority to DE19893939630 priority patent/DE3939630A1/en
Publication of JPH02147968A publication Critical patent/JPH02147968A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16571Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing AC or DC current with one threshold, e.g. load current, over-current, surge current or fault current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To detect fault by a method wherein load current is detected with respect to control signal after a predetermined time has elapsed to detect a state of an electric circuit. CONSTITUTION:In an input processing means 30, output signals from sensors 27, a battery 20 and load current detecting sensor 22 are stored in a memory means 32. In an arithmetic processing means 31, various control data is calculated according to control programs stored in the memory means 32 and based on the signals from the sensors 27 acquired by the input means 30. In an output processing means 33, various kinds of these control data are output to drive various electric loads such as an injector. In a load state determination means 34, signal from the load current detecting sensor 22 is read after a predetermined time has elapsed since the start of outputting the control signals from the output processing means 33, so that a load current value of an electric circuit, fault stored in the above memory means 32 and identifiable current value are checked against one another to determine whether the electric circuit is normal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、車輌などに搭載される電子制all装置に接
続された複数の電気回路の異常検出を行う電気回路の異
常検出袋]dに関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to an electric circuit abnormality detection bag for detecting abnormalities in a plurality of electric circuits connected to an electronically controlled all device mounted on a vehicle, etc. .

[従来の技術と発明が解決しようとづ゛る課題]一般に
、自動車などの車輌に搭載される電子制御装置には、ア
クヂュエータ類などを負荷とする複数の電気回路が接続
され、これらの電気回路に制胛信1]を出力して、各種
の制御を行っている。。
[Prior art and problems to be solved by the invention] Generally, an electronic control device installed in a vehicle such as an automobile is connected to a plurality of electric circuits whose loads include actuators, etc. Control signal 1] is output to perform various controls. .

最近では、上記電子制御装置には、上記電気回路が制御
信号に対して正常に作動しているか否かを自己診断りる
機能が備えられており、例えば、第6図(a)に示Jよ
うに、インジ1”フタ50などの電気4何に直列に接続
された電流検出抵抗51などにJ:す、上記電気回路の
動作を確認している。
Recently, the electronic control device has been equipped with a self-diagnosis function to determine whether the electric circuit is operating normally in response to control signals. The operation of the above-mentioned electric circuit is confirmed by checking the current detection resistor 51 connected in series with the electric circuit such as the cover 50 and the like.

例えば、電流制御駆動方式のインジIクタにJ3いては
、第6図(a)に示すように、モニタ出力pmによって
り1作確認を行っている。Vなわち、制御部52が上記
電子制御装置からの駆動パルス信OPをうけてインジェ
クタ駆動部53を動作させ、インジェクタ50及びt流
検出抵抗51に負荷′83流が流れ始めると、電流検出
比較部54によって上記電流検出抵抗51に発生した電
圧と内部基準電圧とが比較され、負荷電流が内部基準電
圧に相当するピーク電流値1pに達した時、」1記制御
部52がインジエクタ50に流れる電流を制御して一定
のホールド?111hに保つ。
For example, in the case of the current control drive type indicator IC J3, as shown in FIG. 6(a), one operation is checked based on the monitor output pm. In other words, when the control section 52 operates the injector drive section 53 in response to the drive pulse signal OP from the electronic control device, and the load '83 current begins to flow through the injector 50 and the t current detection resistor 51, the current detection comparison The voltage generated in the current detection resistor 51 and the internal reference voltage are compared by the section 54, and when the load current reaches a peak current value 1p corresponding to the internal reference voltage, the control section 52 causes the current to flow to the injector 50. Control the current and hold it constant? Keep it at 111h.

ここで、第6図(b)に示寸J:うに、インジェクタ5
0のピーク電流(+a I pが検出された時、上記制
!!11部52から放雷回路55へtli雷信号Pdを
出力し、この放雷回路55がIIK抗R及びコンデンサ
Cで構成される積分回路のコンデンサ電圧を放電1Jる
。このリイクルが上記インジェクタ駆動パルスの1パル
ス毎に繰り返され、上記コンデン(〕Cの電圧が第6図
(b)のICで示される波形となる。上記コンデンサ゛
Cの電圧は比較器56の非反転入力端子に入力され、反
転入力端子に印加されている基準電圧V rerと比較
されてこのt!準電圧V refよりも低くなった時、
比較器56からローレベルの信号がモニタ出力Paとし
て出力される。
Here, the dimensions J shown in FIG. 6(b): sea urchin, injector 5
When the peak current (+a I p) of 0 is detected, the above control!!11 section 52 outputs the tli lightning signal Pd to the lightning circuit 55. The capacitor voltage of the integrating circuit is discharged for 1 J. This recycle is repeated every pulse of the injector drive pulse, and the voltage of the capacitor (]C becomes the waveform shown by IC in FIG. 6(b). The voltage of the capacitor C is input to the non-inverting input terminal of the comparator 56, and compared with the reference voltage V rer applied to the inverting input terminal, and when it becomes lower than this t! quasi-voltage V ref,
A low level signal is output from the comparator 56 as a monitor output Pa.

従って、モニタ出力pmがローレベルに保たれていると
き、上記インジェクタ50は正常であると判断でき、上
記電子制御装置では、上記インジェクタ50のピーク電
流値Ipが検出されるまでの持ら時間を経過後、このモ
ニタ出力PIIlを監視することにより、上記インジェ
クタ50の動作確認が行える。
Therefore, when the monitor output pm is kept at a low level, it can be determined that the injector 50 is normal, and the electronic control device calculates the time required until the peak current value Ip of the injector 50 is detected. After the elapse of time, the operation of the injector 50 can be confirmed by monitoring this monitor output PIIl.

しかし、上記モニタ出力Pmは、上記インジェクタ50
の異常の有無を検出する際に、駆動パルスの周期と上記
コンデンサC1抵抗Rの充IJ!i電の時定数との関係
によっては、1パルス18の異常検出に不確実性が生じ
る恐れがあり、上記インジェクタ50のrf!発的な作
動不良に対して必ずしし完全とはいえなかった。
However, the monitor output Pm is
When detecting the presence or absence of an abnormality, the period of the drive pulse and the charge IJ! of the capacitor C1 and the resistance R are determined. Depending on the relationship with the time constant of the i-electron, there is a possibility that uncertainty may arise in the abnormality detection of one pulse 18, and the rf of the injector 50! However, it was not always possible to say that the system was perfect against occasional malfunctions.

ここで、上記制御信号と一対一に対応して電気負荷の動
作を確認する技術は、特開昭63−27769号公報に
電気回路の動作確認装置として開示されており、この先
行例にJ3いては、電源母線に分流器からなる電流レン
サを設け、この電流セン1ノによって上記電源母線の電
流値を検出し、検出回路にて上記電流セン1Jの検出信
号とその時点にお1ノ゛る制御信号との照合を行い、制
御項目が正常動作状態にあることを検出している。
Here, a technique for checking the operation of an electric load in one-to-one correspondence with the control signal is disclosed as an electric circuit operation check device in Japanese Patent Laid-Open No. 63-27769, and this prior example includes J3. A current sensor consisting of a shunt is installed on the power supply bus, the current value of the power supply bus is detected by this current sensor 1, and the detection signal of the current sensor 1J and the current value of the current sensor 1 at that time are detected by a detection circuit. It is checked against the control signal and detects that the control item is in a normal operating state.

しかしながら、上記先行例においては、負荷電流が予め
一義的に設定された基準値内にある峙、その時点で制御
回路から該当づ”る電気回路に出力されている個別の制
御信号と論理和を取り、異常の発生した系統を判別して
いる。このため、上記検出回路には電気回路に対応した
数の異常系統判別回路が必要となり、上記制911回路
に対して多数の外付は回路を付加Uねばならない。従っ
て、コスト増加を111りばかりでなく、回路搭載用基
板の増大による設置スペースの増大、上記制御回路との
接続のためのコネクタビン数の増加による信頼性低下な
どを招くという開鎖があった。
However, in the preceding example, when the load current is within a preset reference value, the logical sum of the individual control signals output from the control circuit to the corresponding electric circuit at that point in time is For this reason, the above detection circuit requires a number of abnormal system discrimination circuits corresponding to the number of electrical circuits, and a large number of external circuits are required for the above control 911 circuit. Therefore, not only does the cost increase, but also the installation space increases due to the increase in the number of circuit boards, and the reliability decreases due to the increase in the number of connector pins for connection with the control circuit. There was an open chain.

さらには、各電気回路の負荷電流が予め一義的に設定さ
れた塁準値内にあるか否かを判定しているため、電II
i電圧の変動を考慮して許容幅を比較的広くけねばなら
ず、この比較的広い許容幅内にある負荷Pifi流埴の
論理出力と上記制御信号とのtllなる論理和ににる異
常判定では、電気負荷の過渡状態の異常判定は困難であ
り、例えば、過渡電流の変化を伴うアク′P:lエータ
の特f1劣化などlま検出できない。
Furthermore, since it is determined whether the load current of each electric circuit is within the standard value set uniquely in advance,
The tolerance range must be set relatively wide in consideration of voltage fluctuations, and abnormality determination is based on the logical sum of the control signal and the logic output of the load Pifi within this relatively wide tolerance range. In this case, it is difficult to determine abnormality in the transient state of the electric load, and for example, it is impossible to detect the deterioration of the characteristic f1 of the actuator accompanied by a change in the transient current.

tなわち、上記インジェクタ50などのように機械的応
答時間が制御hiを支装置るアクヂコエータなどでは、
例えば、劣化による可動部の機械的変化が回路のインピ
ーダンス変化を生じさせ、時定数の変化による過度電流
の変化が開弁時間の変化となって燃料噴射■が変化りる
。このような状態では、」1述のように一義的に設定さ
れた基準値と検出された電流値とを比較して制御信号と
の論理和をとる技術では、異常を検出できず正常と判定
してしまう恐れがあった。
In other words, in an actuator such as the above-mentioned injector 50 in which the mechanical response time supports the control hi,
For example, a mechanical change in a movable part due to deterioration causes a change in circuit impedance, and a change in transient current due to a change in time constant causes a change in valve opening time, which changes fuel injection (1). In such a situation, the technology described in 1 above, which compares the detected current value with the uniquely set reference value and logically ORs it with the control signal, cannot detect the abnormality and determines the current value to be normal. There was a fear that it would happen.

[発明の目的] 本発明は、上記事情に鑑みてなされたもので、電気回路
の負荷に供給される負荷電流を、制all (3号に対
して所定時間経過後に検出し、この所定時間経過後の負
荷電流によって電気回路の状態を検知して確実に異常を
検出することのできる電気回路の異常検出装置を提供η
ることを[1的としている。
[Object of the Invention] The present invention has been made in view of the above circumstances. Provides an electrical circuit abnormality detection device that can reliably detect abnormalities by detecting the state of the electrical circuit based on the subsequent load current.
The first thing is to

[課題を解決するための手段及び作用]本発明による電
気回路の異常検出Vtlは、複数の電気回路を電子制御
装置からの制御信号によって1.II all ′1す
るとき、これらの電気回路の異常を検出りる電気回路の
異常検出装置において、上記電気回路に、この電気回路
の負荷に供給される負荷電流を検出する負荷電流検出セ
ンサを設り、上記電子制till装防に、上記制御信号
出力開始から所定時間紙送1uに上記負荷電流検出廿ン
IJ′ぐ検出される角荷電流賄と、予め異常と判定可能
なm流値との照合を行い、上記電気回路が正常か否かを
判定1ノ″るQ ?、″j状態判定手段を設りたもので
あり、上記電気回路の負6Xiに供給される負荷電流が
、上記電子制御!II装置から上記電気回路に出力され
る制御信号の出力開始から所定時間経過後に上記負荷電
流検出センサにJ:って検出され、上記負荷状態判定手
段によってこの所定時間経過後の負荷電流と予め異常と
判定jグ能なFi流値とが照合されて上記電気回路が正
常か否かが判定される。
[Means and operations for solving the problems] The abnormality detection Vtl of electric circuits according to the present invention detects a plurality of electric circuits by 1. using a control signal from an electronic control device. II all '1, in the electric circuit abnormality detection device that detects abnormalities in these electric circuits, a load current detection sensor is installed in the electric circuit to detect the load current supplied to the load of this electric circuit. In addition, the electronic till device is provided with an angular charge current detected by the load current detection unit IJ' during a predetermined period of paper feeding 1u from the start of output of the control signal, and a current value m that can be determined to be abnormal in advance. A state determination means is provided to check whether the electric circuit is normal or not, and the load current supplied to the negative 6X of the electric circuit is Electronic control! J: is detected by the load current detection sensor after a predetermined period of time has elapsed from the start of the output of the control signal outputted from the II device to the electric circuit, and the load state determination means determines whether the load current after the predetermined period of time is abnormal or not. It is determined whether the electric circuit is normal or not by comparing the current value with the Fi current value that can be determined.

[発明の実施例] 以下、図面を参照して本発明の詳細な説明J。[Embodiments of the invention] The following is a detailed description of the invention with reference to the drawings.

る。Ru.

第1図〜第5図は本発明の一実施例を示し、第1図は本
発明に係わる電気回路の異常検出装置の機能ブI]ツク
図、第2図は回路ブ〔Iツク図、第3図(a )は負荷
電流検出センサ゛を示」゛説明図、第3図(b)は負荷
電流検出センサーの特性図、第4図は電気回路におりる
負荷の波形図、第5図は11i気回路の動作確認手順を
示すフローヂャ−1・である。
1 to 5 show an embodiment of the present invention, FIG. 1 is a functional block diagram of the electric circuit abnormality detection device according to the present invention, and FIG. 2 is a circuit block diagram. Figure 3 (a) is an explanatory diagram of the load current detection sensor, Figure 3 (b) is a characteristic diagram of the load current detection sensor, Figure 4 is a waveform diagram of the load flowing into the electric circuit, and Figure 5 Flowchart 1 shows the operation confirmation procedure for the 11i circuit.

(回路4’4成) 第2図において、符号1は電子制御1let(ECU)
Cあり、自動車などの車輌に搭載されてエンジン制御、
トランスミッション制御、あるいは、エアコンデシ]ナ
ー制御などの各種制御を行う。
(Circuit 4'4 configuration) In Figure 2, code 1 is electronic control 1let (ECU)
With C, it is installed in vehicles such as cars to control the engine,
Performs various controls such as transmission control or air conditioner control.

このECUlには、マイクロプロしツリ(CI) U 
)2、ROM3、RAM4、不揮発性RAM4a、出力
インターフェイス5、および、入力インターフェイス6
がパスライン7を介して互いに接続されてお−り、上記
各種制御が上記ROM3に格納された制御プログラムに
従って上記CPU2ににって行われる。ここrは、エン
ジン制御を例にとって、以下の説明を進める。
This ECUl includes a microprocessor (CI) U
)2, ROM3, RAM4, nonvolatile RAM4a, output interface 5, and input interface 6
are connected to each other via a pass line 7, and the various controls described above are performed by the CPU 2 according to control programs stored in the ROM 3. Here, the following explanation will be given by taking engine control as an example.

上記出力インク−フェイス5には、抵抗8.9゜10を
介してそれぞれトランジスタ11.12゜13などが接
続され、各種アク′f−1エータ類などの電気9葡を駆
動する。例えば、上記[−ランジスタ11には、外11
抵抗15、インジェクタ16が接続され、また」−記1
ヘランジスタ12には、アイドルスピードコントロール
バルブ(ISCV)17が接続されている。さらに、上
記ECU1の外部に設けられた上記]・ランジスタ13
には、外部抵抗18、点火コイル19が接続されている
。また、上記出力インターフェイス5には、制御系の異
常を知らせる自己#断うンプ14が接続されている。
Transistors 11, 12, 13, etc. are connected to the output ink face 5 through resistors 8.9, 10, respectively, and drive electric circuits such as various actuators. For example, the above [- transistor 11 has an outer 11
A resistor 15 and an injector 16 are connected, and
An idle speed control valve (ISCV) 17 is connected to the helangister 12. Furthermore, the above transistor 13 provided outside the ECU 1
An external resistor 18 and an ignition coil 19 are connected to. Further, a self-cutting amplifier 14 is connected to the output interface 5 to notify an abnormality in the control system.

尚、上記外部抵抗15.18は、それぞれインジェクタ
16、点火コイル19の電流制限抵抗で、′ri流制開
制御駆動方式のでは、不要である。
The external resistors 15 and 18 are current limiting resistors for the injector 16 and the ignition coil 19, respectively, and are unnecessary in the 'ri flow brake control drive system.

また、バッテリ20から紙出された電源母線21には、
外部抵抗I E5−インジェクタ16−トランジスタ1
1、l5cVI 7−1’−5/ジスタ12、J3よび
、外部抵抗18−点火コイル19−トランジスタ13が
接続されて、各々電気回路が構成される。上記バラjす
20から各電気回路に供給される負荷電流ILは、上記
電気回路に設けられた負荷電流検出センサ22によって
直接検出される。
In addition, on the power supply bus 21 taken out from the battery 20,
External resistance I E5 - Injector 16 - Transistor 1
1, l5cVI 7-1'-5/distor 12, J3, external resistor 18, ignition coil 19, and transistor 13 are connected to form an electric circuit. The load current IL supplied from the balance 20 to each electric circuit is directly detected by a load current detection sensor 22 provided in the electric circuit.

上記負荷電流検出レンv′22は、第3図(a)に示す
ように、例えば、フェライトなどからなるコア23に電
線を巻回した変成器とホール素子24と増幅器25とで
構成され、第3図(b)に示1′ように、入力信号であ
る電流Iと出力電圧Vとの関係が略リニアt′に特性を
有している。上記電気回路に電流が流れると、この電流
にJ:る磁界が発生し、コア23からなる変成器によっ
て上記ホール素子24を磁束が貫き、上記ホール素子2
4に電圧が発生する。上記ホール素子24に発生した電
圧は、上記増幅器25にJ:って増幅、出力され、電流
に略比例した電圧が出力される。
As shown in FIG. 3(a), the load current detection lens v'22 is composed of a transformer in which an electric wire is wound around a core 23 made of, for example, ferrite, a Hall element 24, and an amplifier 25. As shown in FIG. 3(b) 1', the relationship between the current I, which is the input signal, and the output voltage V has a substantially linear characteristic t'. When a current flows through the electric circuit, a magnetic field J: is generated in this current, and a magnetic flux passes through the Hall element 24 by the transformer consisting of the core 23, causing the Hall element 2 to pass through the Hall element 24.
A voltage is generated at 4. The voltage generated in the Hall element 24 is amplified and outputted by the amplifier 25, and a voltage approximately proportional to the current is outputted.

一方、上記入力インターフェイス6には、アナログ−デ
ジタル変換器(Δ/D変換器)26を介して上記f4荷
電流検出センサ22及びバッテリ20が接続され、上記
負荷電流検出セン′す22及びバッテリ20の出力電圧
が上記△/D変換器26によってデジタル信号に変換さ
れて入力される。
On the other hand, the f4 load current detection sensor 22 and battery 20 are connected to the input interface 6 via an analog-to-digital converter (Δ/D converter) 26. The output voltage is converted into a digital signal by the Δ/D converter 26 and inputted.

また、上記人力インターフェイス6には、例えば、吸入
空気ffiセンセン、クランク角ピン1す、021!ン
+J−4’どのヒンサ類27が接続されている。
Further, the human power interface 6 includes, for example, an intake air ffi sensor, a crank angle pin 1, 021! +J-4' which hinge type 27 is connected.

上記ROM3には制御プログラムなどの固定データが記
憶されており、また、上記RA M 4に1よ、データ
処理した後の上it!レンリ類27からの出力値及び上
記CPU2にて演n処即されたアークが格納される。ま
た、」二記不揮発性RAM4Hには、上記アクヂ1エー
タ類16.17,19、センサ類27、あるいは、制御
系統に故障が発生した場合のトラブルデータが格納され
、上記バッテリ20にJ:ってバックアップされて図示
しないキースイッチOFFの状態にJ3いても記憶され
たトラブルデータが保持されるようになっている。
Fixed data such as control programs are stored in the ROM 3, and the RAM 4 stores the data after data processing. The output value from the controller 27 and the arc processed by the CPU 2 are stored. In addition, the non-volatile RAM 4H stored in the memory 4H stores trouble data in the event of a failure in the actuators 16, 17, 19, sensors 27, or control system. The stored trouble data is backed up and retained even when the key switch (not shown) is in the OFF state.

上記CPU2では、上記ROM3に記憶されている制御
プログラムに従い上記RA M 4に記憶されている各
種データに基づき各梯制御データを演わ1Jる。そして
、上記CP t、J 2は、1lqt9t、た各種制御
データを一旦」−記RAM4に格納し、所定のタイミン
グで上記出力インターフェイス5を介して上記アクy〜
ユエータ類16,17.19などの電気9何に制御信号
を出力し、空燃圧制り(1、アイドル回転数制御、点火
時期制御などの各種制御を行うと共に、各電気回路の状
態を判定して白己診所を行い、異常が検出されると自己
診断ランプ14を点灯(点滅)させてドライバーに異常
を知らせる。
The CPU 2 executes each ladder control data based on the various data stored in the RAM 4 in accordance with the control program stored in the ROM 3. Then, the CP t, J 2 temporarily stores the various control data 1lqt9t in the RAM 4, and outputs the ac y to the above data via the output interface 5 at a predetermined timing.
It outputs control signals to electric motors such as the Yuetas 16, 17, and 19, performs various controls such as air-fuel pressure control (1), idle speed control, and ignition timing control, and determines the status of each electrical circuit. When an abnormality is detected, the self-diagnosis lamp 14 is turned on (flashing) to notify the driver of the abnormality.

(機能構成) 次に、上記ECIJIの機能構成について説明Jる。(Functional configuration) Next, the functional configuration of the ECIJI will be explained.

上記ECUIは、第1図に示づ−ように、人力処1!]
!手段30、油筒処理手段31、記憶手段32、出力処
理手段33、負荷状態判定手段34、自己診断手段35
から構成されている。
As shown in FIG. ]
! Means 30, oil cylinder processing means 31, storage means 32, output processing means 33, load condition determination means 34, self-diagnosis means 35
It consists of

2L記大入力処理段30では、上記吸入空気量レンサ、
クランク角センリ′、02t?ンサなどのピンサ類27
、上記バッテリ20、および、上記負荷電流検出はン1
J22からの出ツノ信号を波形整形、あるいはアナログ
−デジタル変換器1!l! I、、記憶手段31に格納
する。
In the 2L input processing stage 30, the intake air amount sensor,
Crank angle center', 02t? 27 types of pinsa such as
, the battery 20, and the load current detection unit 1
Waveform shaping the output signal from J22 or analog-to-digital converter 1! l! I, stored in the storage means 31.

上記演i処理手段31では、」二記記憶手段32に格納
された制御プロゲラ11に従って、」−記入力手段30
によって取り込まれたセンサ類27からの信号に基づい
て各抽料り11用デーウを演算する。
In the operation processing means 31, according to the control programmer 11 stored in the storage means 32, "-input means 30
The data for each drawing hole 11 is calculated based on the signals from the sensors 27 taken in by.

」ユ記出力処理手段33では、上記演算処理手段31で
峰出された各種制御用データを出力し、インジェクタ1
6、l5CV17、点火コイル194【どの各種電気負
荷を駆Eat する。
The output processing means 33 outputs various control data output from the arithmetic processing means 31, and outputs the various control data output to the injector 1.
6, l5CV17, ignition coil 194 [Which electric load is driven?

上記f″4?Ijj状態判定手段34では、」二記出力
処理手段33からの制御信号出力開始後、所定時間が経
過した時、負荷電流検出センリ22からの信号を読込l
νで、上記電気回路の負荷電流値ILと上記記憶手段3
2に格納された異常と判定可能な電流値との照合を行い
、電気回路が正常か否かを判定する。上記電流値は、例
えば、バッテリ20の電圧BVをパラメータとして、上
記各電気0荷の特性から予め設定された基準電流値I 
I+がデープルとして上記記憶手段32(4体的には上
記ROM3)に格納されており、このl(準゛准流+t
ri i nに対して上記各電気回路に流れる実際の負
荷電流値[1が予め設定されたγ「容幅Δl R内にあ
るか否かを判定することにより、上記各電気負荷の作動
に対して、定常状態あるいは過度状態での異常が判定で
きる。
The f''4?Ijj state determination means 34 reads the signal from the load current detection sensor 22 when a predetermined time has elapsed after the start of outputting the control signal from the output processing means 33.
ν, the load current value IL of the electric circuit and the storage means 3
2 is compared with the current value that can be determined to be abnormal, and it is determined whether the electric circuit is normal or not. The above-mentioned current value is, for example, a reference current value I that is preset from the characteristics of each electrical zero load using the voltage BV of the battery 20 as a parameter.
I+ is stored as a dimple in the storage means 32 (fourthly, the ROM 3), and this l (semi-quadrature + t
By determining whether or not the actual load current value [1 flowing through each of the above electric circuits with respect to ri in is within a preset capacity range ΔlR, the operation of each of the above electric loads can be determined. Therefore, abnormalities in steady state or transient state can be determined.

すなわち、例えば、上記インジェクタ16に対し制御信
号が出力されたどき、ぞのときのバッテリ電圧BVをパ
ラメータとして基準電流値I 11をテーブルから直接
あるいは補間計nにより求め、上記インジェクタ16に
制御信号が出力されてから所定時間T経道後の実際の負
荷電流値ILと上記基準電流値Inとを比較して許容幅
ΔIII内にあるか否かを判定する。このとき、上記経
過時間Tを予め適切に設定してJ3 <ことにJ:す、
インジェクタ16の劣化などによる可動部の機械的変化
に起因する過度電流の変化、すなわら量弁時間の変化を
も検出でき、定常電流値だけでは検出できない燃料噴射
間の変化をも異常検出できる。
That is, for example, when a control signal is output to the injector 16, the reference current value I11 is determined using the battery voltage BV at that time as a parameter, either directly from the table or by an interpolator n, and the control signal is output to the injector 16. The actual load current value IL after a predetermined time T has passed since the output is compared with the reference current value In to determine whether it is within the allowable range ΔIII. At this time, the above elapsed time T is set appropriately in advance and J3 <especially J:su,
It is also possible to detect changes in transient current caused by mechanical changes in moving parts due to deterioration of the injector 16, that is, changes in flow rate valve time, and it is also possible to detect abnormalities between fuel injections that cannot be detected from steady current values alone. .

上記自己診断手段35では、上記4何状態判定手段34
によって異常と判定されたとき、そのトラブルデータを
上記記憶手段32に格納するど共に、異常信号を出力し
て自己診断ランプ14を点灯(点滅)さける。
In the self-diagnosis means 35, the four state determination means 34
When it is determined that there is an abnormality, the trouble data is stored in the storage means 32, and an abnormality signal is output to prevent the self-diagnosis lamp 14 from turning on (blinking).

(動 作) 次に、上記構成にJ:る電気回路の動作確認手順を、第
5図のフローヂト一トに従って説明する。
(Operation) Next, a procedure for checking the operation of the electric circuit having the above configuration will be explained according to the flowchart of FIG.

尚、ここでは、電気角4:lとしてインジェクタ16を
例にとって説明を行うが、l5CV17、点火コイル1
9などの他の電気負荷においてム同様である。
Incidentally, here, the explanation will be given using the injector 16 as an example with an electrical angle of 4:1, but 15CV17, ignition coil 1
The same is true for other electrical loads such as 9.

ステップ5100で、インジェクタ16に対りる噴射開
始の制御信号、1yなわら第4図にPiで示される駆動
パルス信@パ出力される。次いで、ステップ5101に
て、上記駆動パルス信号]〕1の時刻TOにJ3ける立
上がりからΔ/D変換開始のトリガー信qが△/D変換
盟26に出力され、負荷電流検出レンザ22の出力電圧
信号のデジタル信号への変換が開始される。
In step 5100, a control signal for starting injection to the injector 16 is outputted as a drive pulse signal indicated by Pi in FIG. Next, in step 5101, a trigger signal q for starting Δ/D conversion is output to the Δ/D conversion module 26 from the rise of the drive pulse signal J3 at time TO of 1, and the output voltage of the load current detection lens 22 is Conversion of the signal into a digital signal begins.

スーアップ5102へ進むと、第4図のl1njで示さ
れるインジェクタ16の電流波形にJ3ける時刻TOの
電流値I[【0に相当する負荷電流検出センサ22の出
力(微小出力)が」二記A/D変換器26にてデジタル
信号に変換され、RAM4の所定アドレスにストアされ
る。次にステップ5103で、上記A/[〕変換器26
にA/D変換終了信号が出ツノされ、上記ステップ51
00でインジエクタ16に出力された駆動パルス信号P
iの立上がりから所定時間T1が経過するまで持つ。こ
の所定11.Y間゛「1は、例えば上記インジェクタ1
6などのにうにインダクタンスを右する負荷では、第4
図のl1njC示Jように、制御信号が出力されCから
定″常雷流値に達するまで経過時間にJ:ってその電流
値が異なるため、負荷の特性に応じて退官設定されてい
る。
Proceeding to step-up 5102, the current waveform of the injector 16 shown by l1nj in FIG. The signal is converted into a digital signal by the A/D converter 26 and stored at a predetermined address in the RAM 4. Next, in step 5103, the A/[ ] converter 26
An A/D conversion end signal is output, and step 51 is performed.
The drive pulse signal P output to the injector 16 at 00
It lasts until a predetermined time T1 elapses from the rise of i. This prescribed 11. Y interval "1 is, for example, the above injector 1
For loads with a large inductance such as 6, the 4th
As shown by l1njC in the figure, the current value differs depending on the elapsed time J: from when the control signal is output until it reaches the steady lightning current value, so that the current value is set according to the characteristics of the load.

」二記所定時聞T1経過後、ステップ5104で、再び
上記−負伺TIf流検出セン1す22の出力電圧信号の
A/D変換が開始され、ステップ5105で、第4図に
示される時刻T1のインジェクタ16の電流値1目1が
、上記Δ/D変換器26にて再びデジタル信号に変換さ
れると」(に、バッテリ20の電圧BVがデジタル信号
に変換され、それぞれ、上記RAM4の別のアドレスに
ストアされる。
After the second predetermined time period T1 has elapsed, in step 5104, the A/D conversion of the output voltage signal of the negative TIF flow detection sensor 1-22 is started again, and in step 5105, the time shown in FIG. When the current value 1 of the injector 16 of T1 is again converted into a digital signal by the Δ/D converter 26, the voltage BV of the battery 20 is converted into a digital signal, and the voltage BV of the battery 20 is converted into a digital signal, Stored at a different address.

次に、ステップ8106で、上記ステップ5102及び
5105でRAM4にストアされた電流値I LtOと
1LHとから電流変化量Δ11  (Δ1l−ILt1
−ILtO)が筒用され、ステップ5107へ進む。こ
の電流変化量Δ11の算出は、負荷電流値ILがO付近
のとき上記t1拘電流検出ヒン1す22の出ツノに加わ
るドリフトなどの影響をIJI除し、検出電流値の精度
を上げるために行われる。
Next, in step 8106, the current change amount Δ11 (Δ1l−ILt1
-ILtO) is used, and the process advances to step 5107. This current change amount Δ11 is calculated in order to increase the accuracy of the detected current value by dividing by IJI the influence of the drift that is applied to the output horn of the t1 constraint current detection pin 1-22 when the load current value IL is around O. It will be done.

ステップ5107では、上記ステップ5IQ4で検出し
たバッテリ電圧BVをパラメータとして、例えば、RO
M3に格納されたテーブルから上記インジエクタ16の
基準電流値111を直接あるいは補闇討痒により求め、
このfJ Q値IRと上記ステップ8106で算出され
た電流変化量Δ!1とから、診断値I 0IAGを算出
(l DIAG=△1l−111)t、て、ステップ5
108へ進む。
In step 5107, for example, RO
Determine the reference current value 111 of the injector 16 from the table stored in M3 directly or by supplementation,
This fJQ value IR and the current change amount Δ calculated in step 8106 above! 1, calculate the diagnostic value I0IAG (lDIAG=Δ1l-111)t, step 5
Proceed to step 108.

ステップ3108では、上記ステップ5107で算出さ
れた診断値I DIACが、予め設定された許容幅ΔI
R内か否かを判定し、許容幅ΔIR内にある場合はステ
ップ5100へ戻って上述の手順を繰り返り。
In step 3108, the diagnostic value I DIAC calculated in step 5107 is adjusted to a preset allowable range ΔI
It is determined whether or not it is within R, and if it is within the allowable width ΔIR, the process returns to step 5100 and the above-mentioned procedure is repeated.

一方、上記ステップ8108で上記診断fiA I D
IACがyra幅八IへI内にないと判定されたとき1
ま、ステップ5109へ進み故障と判断して自己診断手
段35によって故障の発生した上記インジェクタ16の
トラブルデータを不揮発性RAM4aにス1−ア1Jる
と共に、故障発生を賢1告Jる自己詮所ランプ14を点
灯(点滅)さしる。
On the other hand, in step 8108, the diagnosis fiA ID
1 when it is determined that IAC is not within yra width 8I
Well, the process proceeds to step 5109, where it is determined that there is a failure, and the self-diagnosis means 35 stores the trouble data of the injector 16 in which the failure has occurred to the non-volatile RAM 4a, and at the same time, the self-inspection unit 35 stores the trouble data of the injector 16 in which the failure has occurred. Turn on the lamp 14 (flashing).

従って、制御信号の出力開始から負荷用流を検出する経
過時間T1を負荷の特性に応じて適切に設定することに
より、定常状態、過渡状態にかかわらず異常が検出でき
、また、電気回路中の:lネクタの接触不良、トランジ
スク11.12.13などの異常も検出できる。
Therefore, by appropriately setting the elapsed time T1 for detecting the load flow from the start of output of the control signal according to the characteristics of the load, abnormalities can be detected regardless of the steady state or transient state. :It is also possible to detect abnormalities such as poor contact of l connectors and transistors 11, 12, and 13.

尚、上述の例においては、経過時間T1の1ボインドか
ら負荷電流のb′シ常判定を行っているが、例えば、経
過時間Tを複数に設定し、経過時間Tおよびバッテリ電
圧BVをパラメータとJ゛る基準電流1ll111Rの
マツプから対応する基準電流値IRを求め、過渡電流お
よび定常電流の複数ポインhで異常判定を行っても良い
In the above example, the load current b' normality determination is made from one point of the elapsed time T1, but for example, if the elapsed time T is set to a plurality of values and the elapsed time T and the battery voltage BV are used as parameters. The corresponding reference current value IR may be obtained from a map of the reference currents 1ll111R, and abnormality determination may be made at multiple points h of the transient current and steady current.

[発明の効果1 以上説明したにうに本発明ににれば、電気回路の負荷に
供給される負荷電流を負荷電流検出センサ゛にJ:って
検出し、上記電子制御装置の負荷状態判定手段で上記制
御信号出力開始から所定IS問経過後に上記負荷電流検
出センサで検出される負荷電流値と予め&’I!常と判
定可能な電流値どの照合を行い、十記7I2気回路が正
常か否かを判定するため、各電気回路に対Jる多数の外
イ・」け異常検出回路が不要となり、コス1へ増加、設
置スペースの増大、]ネクタビン数の増加による信頼性
低下/、1どを1aくことなく、各電気回路の異常を確
実に検出できる。また、定常、過渡にかかわらず負荷の
状態が検出でき、従来、検出が回能であった負荷の部分
的動作不良41どが検出可能となり、制611性の悪化
が未然に防止できるなど優れた効果が奏される。
[Effect of the Invention 1] As explained above, according to the present invention, the load current supplied to the load of the electric circuit is detected by the load current detection sensor, and the load state determination means of the electronic control device detects the load current supplied to the load of the electric circuit. The load current value detected by the load current detection sensor after a predetermined IS period has elapsed from the start of the control signal output and &'I! Since the current value that can be determined to be normal is compared to determine whether the circuit is normal or not, there is no need for many external abnormality detection circuits for each electric circuit, and the cost is reduced. Anomalies in each electrical circuit can be reliably detected without any problems such as increase in installation space, decrease in reliability due to increase in the number of connector bins, etc. In addition, it is possible to detect the load condition regardless of whether it is steady or transient, and it is now possible to detect partial malfunctions of the load, which were conventionally detected by rotation, making it possible to prevent deterioration of controllability. The effect is produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明の一実施例を示し、第1図は本
発明に係わる電気回路の異常検出装置の機能ブrXlツ
ク図、第2図は回路ブロック図、第3図(a)は負荷電
流検出セン1すを丞す説明図、第3図(b)は負荷電流
検出セン1ノの特性図、第4図は電気回路における負荷
の波形図、第5図は電気回路の動作確認手順を示すフロ
ーチtz −t−1第6図(a)及び第6図(b)は従
来例を示し、第6図(a)は電気回路の異常検出装置を
示す説明図、第6図(b)は波形図である。 1・・・電子制御装置、22・・・負荷電流検出センサ
、34・・・負荷状態判定手段、
1 to 5 show an embodiment of the present invention, FIG. 1 is a functional block diagram of an abnormality detection device for an electric circuit according to the present invention, FIG. 2 is a circuit block diagram, and FIG. a) is an explanatory diagram showing the load current detection sensor 1, Fig. 3(b) is a characteristic diagram of the load current detection sensor 1, Fig. 4 is a waveform diagram of the load in the electric circuit, and Fig. 5 is the electric circuit. FIGS. 6(a) and 6(b) show a conventional example, and FIG. 6(a) is an explanatory diagram showing an abnormality detection device for an electric circuit. FIG. 6(b) is a waveform diagram. DESCRIPTION OF SYMBOLS 1... Electronic control device, 22... Load current detection sensor, 34... Load state determination means,

Claims (1)

【特許請求の範囲】  複数の電気回路を電子制御装置からの制御信号によっ
て制御するとき、これらの電気回路の異常を検出する電
気回路の異常検出装置において、上記電気回路に、この
電気回路の負荷に供給される負荷電流を検出する負荷電
流検出センサを設け、 上記電子制御装置に、上記制御信号出力開始から所定時
間経過後に上記負荷電流検出センサで検出される負荷電
流値と、予め異常と判定可能な電流値との照合を行い、
上記電気回路が正常か否かを判定する負荷状態判定手段
を設けたことを特徴とする電気回路の異常検出装置。
[Scope of Claims] An electric circuit abnormality detection device for detecting abnormalities in a plurality of electric circuits when the plurality of electric circuits are controlled by control signals from an electronic control device, wherein the electric circuit has a load on the electric circuit. A load current detection sensor is provided to detect a load current supplied to the electronic control device, and the load current value detected by the load current detection sensor after a predetermined time elapses from the start of outputting the control signal is determined to be abnormal in advance. Check with possible current values,
An abnormality detection device for an electric circuit, characterized in that it is provided with a load condition determining means for determining whether the electric circuit is normal or not.
JP63303411A 1988-11-30 1988-11-30 Apparatus for detecting fault of electric circuit Pending JPH02147968A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63303411A JPH02147968A (en) 1988-11-30 1988-11-30 Apparatus for detecting fault of electric circuit
GB8926984A GB2228153A (en) 1988-11-30 1989-11-29 Detecting abnormality in electric circuit
DE19893939630 DE3939630A1 (en) 1988-11-30 1989-11-30 SYSTEM FOR DETECTING ABNORMALITIES IN ELECTRICAL CIRCUITS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303411A JPH02147968A (en) 1988-11-30 1988-11-30 Apparatus for detecting fault of electric circuit

Publications (1)

Publication Number Publication Date
JPH02147968A true JPH02147968A (en) 1990-06-06

Family

ID=17920698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303411A Pending JPH02147968A (en) 1988-11-30 1988-11-30 Apparatus for detecting fault of electric circuit

Country Status (3)

Country Link
JP (1) JPH02147968A (en)
DE (1) DE3939630A1 (en)
GB (1) GB2228153A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287043A (en) * 2005-04-01 2006-10-19 Fujitsu Ten Ltd Mulfunction-detecting method of linear solenoid driving device
CN109844724A (en) * 2016-10-26 2019-06-04 日立汽车***株式会社 On-vehicle control apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2659891B1 (en) * 1990-03-26 1996-01-05 Ntn Toyo Bearing Co Ltd TOOL ANOMALY DETECTION DEVICE FOR MACHINE TOOL.
DE4242177A1 (en) * 1992-12-15 1994-06-16 Teves Gmbh Alfred Circuit arrangement for monitoring a large number of coils
BR9509446A (en) * 1994-10-26 1997-12-23 Siemens Ag Process for analyzing a measured value as well as a measured value analyzer for the execution of the process
DE19725880C1 (en) * 1997-06-18 1999-04-08 Andreas Koepff Detector determining switched on condition of electric user loads at house mains
DE10228983A1 (en) * 2002-06-28 2004-01-29 Voith Turbo Gmbh & Co. Kg Electrical power supply system, characteristic value determination and diagnostic system and diagnostic method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619635A (en) * 1969-02-13 1971-11-09 Westinghouse Electric Corp Power regulation system
US4068669A (en) * 1975-11-24 1978-01-17 Stimulation Technology, Inc. Stimulator fault protection circuit
DE3043255A1 (en) * 1980-11-15 1982-07-01 Robert Bosch Gmbh, 7000 Stuttgart Vehicle electrical system diagnostic unit - reduces noise by operating independently of supply, and contains window comparator, logic and display
DE3346435A1 (en) * 1983-12-22 1985-08-14 Robert Bosch Gmbh, 7000 Stuttgart CIRCUIT ARRANGEMENT FOR SWITCHING ON AND OFF AND FOR MONITORING ELECTRICAL CONSUMERS
FR2565430B1 (en) * 1984-06-04 1990-12-28 Shinko Electric Co Ltd CIRCUIT DETECTING A RELAY FAILURE
JPH06327769A (en) * 1993-05-21 1994-11-29 Terumo Corp Plasma treating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287043A (en) * 2005-04-01 2006-10-19 Fujitsu Ten Ltd Mulfunction-detecting method of linear solenoid driving device
CN109844724A (en) * 2016-10-26 2019-06-04 日立汽车***株式会社 On-vehicle control apparatus

Also Published As

Publication number Publication date
GB8926984D0 (en) 1990-01-17
GB2228153A (en) 1990-08-15
DE3939630A1 (en) 1990-05-31

Similar Documents

Publication Publication Date Title
JP3286637B2 (en) Electronic control unit for internal combustion engine of automobile
US7415343B2 (en) Engine controller
US5224453A (en) System for open-loop controlling and/or closed-loop controlling an internal combustion engine
JPH04214949A (en) Method and device for electronically controlling internal combustion engine for automobile
JP6726214B2 (en) Method for monitoring an electronic control device and control device for a motor vehicle
US7856306B2 (en) Vehicle-mounted engine control apparatus
US20070199373A1 (en) Acceleration sensor status detecting apparatus
JP3505789B2 (en) Failure diagnosis circuit for occupant protection device and its diagnosis method
JP4248410B2 (en) Circuit apparatus and method for inspecting a current circuit
JPH05131864A (en) Device to detect variable ratio of automobile
JP3988609B2 (en) Oxygen sensor abnormality detection device
JPH02147968A (en) Apparatus for detecting fault of electric circuit
JPH02165070A (en) Abnormality detector for electric circuit
GB2226888A (en) Abnormality detecting system for electric circuits
EP1473611B1 (en) Load failure diagnosis method and apparatus and load failure processing method and apparatus
JPS6327769A (en) Apparatus for confirming operation of electric circuit
JPH02165069A (en) Abnormality detector for electric circuit
JPWO2020110821A1 (en) Control method of load drive device and fuel injection device
JPH02216068A (en) Abnormality detector for electric circuit
US6295501B1 (en) Method and arrangement for controlling a drive unit
JP3956527B2 (en) Voltage output device
JPH02168172A (en) Abnormality detecting apparatus of electric circuit
JPS63248969A (en) Trouble diagnosing device for fuel injector
JPH06207959A (en) Abnormality diagnosis system for capacitor
JP2020167065A (en) Load drive circuit