JPH02142292A - Chrominance signal processor - Google Patents

Chrominance signal processor

Info

Publication number
JPH02142292A
JPH02142292A JP63296731A JP29673188A JPH02142292A JP H02142292 A JPH02142292 A JP H02142292A JP 63296731 A JP63296731 A JP 63296731A JP 29673188 A JP29673188 A JP 29673188A JP H02142292 A JPH02142292 A JP H02142292A
Authority
JP
Japan
Prior art keywords
color
color signals
signals
signal
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63296731A
Other languages
Japanese (ja)
Other versions
JP2744260B2 (en
Inventor
Taku Sasaki
卓 佐々木
Akihiko Shiraishi
白石 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63296731A priority Critical patent/JP2744260B2/en
Priority to EP89311508A priority patent/EP0368614B1/en
Priority to DE89311508T priority patent/DE68909171T2/en
Publication of JPH02142292A publication Critical patent/JPH02142292A/en
Priority to US07/913,978 priority patent/US5202756A/en
Priority to US08/542,428 priority patent/US5581298A/en
Application granted granted Critical
Publication of JP2744260B2 publication Critical patent/JP2744260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To minimize the production of vertical pseudo color by reading two different chrominance signals repetitively for a horizontal scanning period and adjusting the signals so that the reply of the two chrominance signals on the same scanning line in the horizontal scanning period with respect to an achromatic color is equal to each other and converting the signal after the adjustment into an RGB signal by a specific matrix arithmetic means. CONSTITUTION:A picture element signal read from a sensor 201 at every picture element is subjected to gain adjustment at an AGC circuit 230 and A/D- converted by an A/D converter 202 in the timing synchronously with a readout clock. The output of the A/D converter 202 is inputted to 4 interpolation filters 206, 207, 208, 209 and the outputs are chrominance signals Mg, Cy, Ye, Gr subjected to simultaneous processing. Then the signal after the adjustment is converted into an RGB signal by a matrix arithmetic means in which the sum of coefficients of 2 right columns in each row of a matrix of 3-row and 4-column is equal to each other and the sum of coefficients of 2 left columns in each row of the matrix is equal to each other. Thus, the production of vertical pseudo color is minimized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は補色フィルターを装着したカラービデオカメラ
やカラースチルビデオカメラ等のカラー信号処理装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a color signal processing device such as a color video camera or a color still video camera equipped with a complementary color filter.

〔従来の技術〕[Conventional technology]

従来この種の装置においては、例えば第7図(a)に示
すような色フィルターを装着し、第3図に示すような信
号処理をすることで、最終的に輝度と2つの色差信号R
−Y、B−Yを得るのが普通である。
Conventionally, in this type of device, by installing a color filter as shown in FIG. 7(a) and performing signal processing as shown in FIG. 3, the luminance and two color difference signals R are finally obtained.
-Y, BY are usually obtained.

このような従来の方式の色信号処理においてはまず、水
平方向に隣り合っていて、かつ異なる色フィルターを装
着されている画素からの出力を減算した結果である。
In such conventional color signal processing, the result is first subtracted from outputs from pixels adjacent in the horizontal direction and equipped with different color filters.

色差信号からの演算処理が行われる。例えば第7図(a
)に示す色フィルター配列をインタレース走査すれば各
フィールドの奇数列目からは減算器304を介してCr
 = (Mg−Gr)という減算結果が得られ、偶数列
目はC2= (Ye−Cy)という減算結果が得られる
Arithmetic processing is performed from the color difference signals. For example, Fig. 7 (a
) If the color filter array shown in ) is interlaced scanned, Cr
A subtraction result of = (Mg-Gr) is obtained, and a subtraction result of C2= (Ye-Cy) is obtained for the even-numbered column.

これに対して305の色信号処理部では適当な方法でホ
ワイトバランス、γ変換などの色処理演算が行われる。
On the other hand, a color signal processing unit 305 performs color processing calculations such as white balance and γ conversion using an appropriate method.

次に、これらの線順次化されている色差信号C1/C2
に対し、lH遅延線などを含む同時化回路306を用い
て同時化し、更にこれらを色差マトリクス回路307に
通すことにより、色差軸を適当に回転し、最終的に2つ
の色差信号R−Y、 B−Yを得ている。
Next, these line-sequential color difference signals C1/C2
The signals are synchronized using a synchronization circuit 306 including an IH delay line, etc., and then passed through a color difference matrix circuit 307 to appropriately rotate the color difference axis and finally produce two color difference signals R-Y, I'm getting B-Y.

〔発明が解決しようとしている問題点〕しかし、このよ
うな方式の色処理方法には、次のような2つの根本的な
問題がある。
[Problems to be Solved by the Invention] However, this type of color processing method has the following two fundamental problems.

[A]ホワイトバランスがとりにくい。[A] White balance is difficult to obtain.

三管式カメラやRGB純色タイプのカメラではGに対す
るRとBの比を色温度に応じて変化させることでホワイ
トバランスがとれるのに対し、この種の装置では色情報
が色差の形で出てくるので、例えば色温度に応じて、輝
度信号の何割かを色差信号に加減算することによって、
白色に対する色差信号を強制的にゼロにし、ホワイトバ
ランスをとっている。この方法は原理的にも正しく巾広
い色温度範囲で精度良くホワイトバランスをとることは
極めて極めて難しい。
With three-tube cameras and RGB pure color type cameras, white balance can be achieved by changing the ratio of R and B to G according to the color temperature, but with this type of device, color information is output in the form of color differences. For example, by adding or subtracting a percentage of the luminance signal to the color difference signal depending on the color temperature,
White balance is achieved by forcibly setting the color difference signal for white to zero. This method is correct in principle, and it is extremely difficult to achieve accurate white balance over a wide color temperature range.

[B]色差のままγをかけるので、色の再現性が良くな
い。
[B] Since the color difference is multiplied by γ, the color reproducibility is not good.

王管式カメラやRGB純色タイプのカメラではNTSC
方式に従って色分離された出力RGBにγをけてR1・
0丁・Bγを得たのち、2つの色差Rγ−Y、B’−Y
を得る。但しYはY=0.30Rγ十0.59Gγ十0
.11Bγである。
NTSC for royal tube type cameras and RGB pure color type cameras.
The output RGB color separated according to the method is multiplied by γ and R1・
After obtaining 0 pieces Bγ, two color differences Rγ-Y, B'-Y
get. However, Y is Y=0.30Rγ+0.59Gγ+0
.. 11Bγ.

ところが補色タイプのカメラでは色信号は最初に差をと
られてからγをかけられるので、(Mg−Gr)γのよ
うに差の形のままでγをかけられてしまう。従って後で
どう補正しても正規のNTSCと対応のついた色信号が
得られず色の再現性はよ(ない。
However, in a complementary color type camera, the color signal is first subtracted and then multiplied by γ, so that it is multiplied by γ in the form of a difference, such as (Mg-Gr) γ. Therefore, no matter how you correct it later, you will not be able to obtain a color signal that corresponds to the regular NTSC, and the color reproducibility will be poor.

上記の問題点を解決するため、出願人は先に第8図に示
すように、得られるすべての色情報を2次元の補間フィ
ルターによって同時化した後、これらの間のマトリクス
演算によってR,G、Hの3つの色信号を形成し、この
状態でホワイトバランス、γ変換を行う方法を提案して
いる。
In order to solve the above problem, the applicant first synchronized all the obtained color information using a two-dimensional interpolation filter, and then performed R, G, and G colors by matrix calculation between them, as shown in FIG. , H, and perform white balance and γ conversion in this state.

即ち第8図中、201はマトリクス状の補色フィルター
が配されたイメージセンサ−1202はセンサーの出力
をA/D変換するA/D変換器であり、このA/D変換
器出力の各色信号は2次元の補間フィルター206〜2
09により同時化された後、RGB変換器でマドリスク
変換されて、R,G、Hの3原色信号となり、その後で
ホワイトバランス、γ変換を行ってから低域輝度信号Y
2、色差信号R−Y。
That is, in FIG. 8, 201 is an image sensor in which a matrix-like complementary color filter is arranged. 1202 is an A/D converter that converts the output of the sensor into A/D, and each color signal of the output of this A/D converter is Two-dimensional interpolation filter 206-2
After being synchronized by 09, it is subjected to Madrisk conversion by an RGB converter to become three primary color signals of R, G, and H. After that, white balance and γ conversion are performed, and then a low-range luminance signal Y
2. Color difference signal R-Y.

B−Yを色差マトリクス回路で形成し、R−Y。B-Y is formed by a color difference matrix circuit, and R-Y.

B−YはD/A変換器214.215でアナログの色差
信号に変換される。
B-Y is converted into an analog color difference signal by D/A converters 214 and 215.

一方、A/D変換器202の出力はHPF216を介し
た後、低域輝度信号YLと加算器217で加算されてか
らD/A変換器218でアナログの輝度信号に変換され
る。
On the other hand, the output of the A/D converter 202 passes through the HPF 216, is added to the low-band luminance signal YL in an adder 217, and is then converted into an analog luminance signal by a D/A converter 218.

しかし、その後の研究の結果、この方法によって色再現
性は大巾に向上するがそのかわり、垂直方向のエツジ部
に偽色が発生する現象があられれることがわかった。
However, as a result of subsequent research, it was found that although this method greatly improved color reproducibility, it also caused the phenomenon of false colors occurring at vertical edges.

本発明は、先の提案の良好な色再現性を維持したままか
つ、上記の問題点を極めて簡単な構成で有効に解決する
手段を提供することを目的とするものである。
An object of the present invention is to provide means for effectively solving the above problems with an extremely simple configuration while maintaining the good color reproducibility of the previous proposal.

〔問題点を解決するための手段〕[Means for solving problems]

本願の第1の発明は、第1の水平走査期間に2つの異な
る色信号がくり返し読み出され、第2の水平走査期間に
上記の2つの色信号とは更に異なる2つの色信号がくり
返し読み出される撮像手段と、第1及び第2の水平走査
期間内の同一走査線上の2つの色信号の無彩色に対する
応答を等しくなるように調整する調整手段と、上記調整
手段による調整後の信号を3行4列のマトリクスの内各
行の右2列の係数の和が互いに等しくまた該マトリクス
の各行の左2列の係数の和が互いに等しいマトリクス演
算手段によってRGB信号へ変換することを特徴とする
In the first invention of the present application, two different color signals are repeatedly read out during the first horizontal scanning period, and two color signals different from the above two color signals are repeatedly read out during the second horizontal scanning period. an adjusting means for adjusting the response of two color signals on the same scanning line in the first and second horizontal scanning periods to an achromatic color to be equal; The present invention is characterized in that the sum of the coefficients in the right two columns of each row of the matrix of four rows and four columns is equal to each other, and the sum of the coefficients of the left two columns of each row of the matrix is equal to each other.

本願の第2の発明は第1の水平走査期間に、2つの異な
る第1.第2の色信号がくり返し読み出され、第2の水
平走査期間に上記の2つの色信号とは更に異なる2つの
第3.第4の色信号がくり返し読み出される撮像手段と
、第1及び第2の水平走査期間内の同一走査線上の2つ
の色信号の無彩色に対する応答を等しくなるように調整
する調整手段を持ち、上記調整手段による調整後の色信
号のうち、第1゜第2の色信号の和をとる第1の加算手
段と、第3゜第4の色信号の和をとる第2の加算手段と
、第1゜第2の色信号の差をとる第1の減算手段と、第
3゜第4の色雪号の差をとる第2の減算手段と、第1゜
第2の加算手段の出力の夫々定数倍を加算する第3の加
算手段と、第3の加算手段の出力と、第1゜第2の減算
手段の出力の夫々の定数倍を加算することによってRG
Bの信号を形成する演算手段と、を有することを特徴と
する。
In the second invention of the present application, two different first . The second color signal is read out repeatedly, and during the second horizontal scanning period, two third color signals, which are different from the above two color signals, are read out repeatedly. an imaging means from which the fourth color signal is repeatedly read out; and an adjustment means for adjusting the responses of the two color signals on the same scanning line in the first and second horizontal scanning periods to an achromatic color so that they are equal; Of the color signals adjusted by the adjusting means, a first adding means takes the sum of the first and second color signals, a second adding means takes the sum of the third and fourth color signals, and a second adding means takes the sum of the third and fourth color signals. 1゜first subtraction means for taking the difference between the second color signals, 3゜second subtraction means for taking the difference between the fourth color signals, and outputs of the 1゜second addition means, respectively. RG is obtained by adding a third addition means for adding a constant multiple, the output of the third addition means, and a constant multiple of the output of the first and second subtraction means.
A calculation means for forming a signal of B.

〔作用〕[Effect]

このように構成することによりR,G、B信号を夫々形
成する為の演算手段の構成として、一般に12回の乗算
と9回の加減算が必要であった(4X3)のマトリクス
演算を、わずか8回の乗算と11回の加減算で非常に効
率よ(行い、かつ大きな問題点であった垂直偽色の発生
を極小化できる。
With this configuration, the (4×3) matrix operation, which generally requires 12 multiplications and 9 additions/subtractions, can be reduced to just 8 as the configuration of the calculation means for forming R, G, and B signals, respectively. With 1 multiplications and 11 additions/subtractions, it is very efficient and can minimize the occurrence of vertical false color, which was a major problem.

〔実施例〕〔Example〕

本発明の詳細な説明する前にまず、垂直エツジにおける
偽色発生の原因を考え、次にこれを防止する条件を考え
る。
Before explaining the present invention in detail, we will first consider the cause of the occurrence of false colors at vertical edges, and then consider the conditions for preventing this.

第8図示の構成において、 例えば第6図(a)に示す色フィルター配列を使う場合
には、次にような(3X4)の−次マトリクス(a +
1 )の演算によってRGBへ変換する。
In the configuration shown in FIG. 8, for example, when using the color filter array shown in FIG. 6(a), the following (3×4) -order matrix (a +
1) Conversion to RGB is performed.

(1)式右辺のMg、Gr、Cy、Yeは第8図に示す
2次元補間フィルター206〜209で同時化されてい
る。
Mg, Gr, Cy, and Ye on the right side of equation (1) are synchronized by two-dimensional interpolation filters 206 to 209 shown in FIG.

今、第7図のように垂直方向に周期が1丁度4画素分の
白黒の濃淡パターンが被写体の場合を考える。
Now, let us consider the case where the subject is a black and white shading pattern with a period of exactly 4 pixels in the vertical direction as shown in FIG.

ここで色温度で決まるパラメータαβを無彩色に対して を満たすように、予め決めたとする。Here, the parameter αβ determined by the color temperature is Suppose that we have decided in advance to satisfy the following.

この時、Mg、Grの位置はぴったり暗部に一致し、又
Cy、Yeの位置はぴったり明部と一致しているのでど
のような補間フィルターを用いても、となる、但し、v
l、v2は明るさに対する画素信号出力で第8図の場合
V、<V2である。
At this time, the positions of Mg and Gr exactly match the dark areas, and the positions of Cy and Ye exactly match the bright areas, so no matter what interpolation filter is used,
1 and v2 are pixel signal outputs with respect to brightness, and in the case of FIG. 8, V, <V2.

従って(1) (2) (3)より、 R=(att +a12 / (1)V+ +(aha
 +a14/β)V2G = (a、、 +a22 /
 a )V1+(a23 +a24/β) V 2B 
= (a3. +a32 / a )Vl +(a、 
+au/β) V 2となる。
Therefore, from (1) (2) (3), R=(att +a12 / (1)V+ +(aha
+a14/β)V2G = (a,, +a22/
a) V1+(a23 +a24/β) V 2B
= (a3. +a32 / a) Vl + (a,
+au/β) V 2.

この被写体の濃淡パターンはもともと白黒の被写体であ
るからすべてのv3.v2について偽色が出ないために
は、 また5all−a12=2R1R13”+4 =2R2
の2条件が同時に成立しなければいけない。
The shading pattern of this subject is originally a black and white subject, so all v3. In order to avoid false color for v2, 5all-a12=2R1R13”+4 =2R2
These two conditions must be satisfied simultaneously.

今、Grの出力をα倍、cyの出力を8倍したものを各
々(Gr) ’ 、 (Ye) ’  とすると(1)
のかわりにによって変換すると考える。この時(5)及
び(6)の条件は a+1十a12=a21+a22=a3++aaz  
           (8)a 13 +a 、4 
= 823 +a、、a°a33+a34      
      (9)と書き換えられる。
Now, if the output of Gr multiplied by α and the output of cy multiplied by 8 are respectively (Gr)' and (Ye)', then (1)
Consider converting by instead. At this time, the conditions for (5) and (6) are a+10a12=a21+a22=a3++aaz
(8) a 13 +a , 4
= 823 +a,,a°a33+a34
It can be rewritten as (9).

ここで(8) (9)の共通部分を各々2P、2Qとお
(。
Here, the common parts of (8) and (9) are respectively 2P and 2Q (.

an +a12= a2+ +a22= as1+B5
2= 2P        (8)’a 13 +a 
+4 = R23+a24 = aH+a34 = 2
Q        (9)’all −822=2G 
1823−R24=2G 2a31−at2 =28 
!a33−834 =282・・・・(10) とすると、例えばRは(7)より R= a、、 Mg+a、□G? +a、3Cy十a、
、 Ye’なので(8’ ) (9’ ) (10)に
よりR= (P+R+)Mg+(P−R+)Gr’  
+(Q+R2)Cy+(Q−R2)Ye’=P(Mg+
Gr’ )+Q(Cy+Ye’ )十R+(Mg−Gr
′)+Rz(Cy−Ye′)・・・・(11) となる。また、同様に G =P(Mg+Gr’ )+Q(Cy十Ye’ )+
G+(Mg−Gr′)+G2(Cy−Ye’ )・・・
・(12) B =P(Mg+Gr′)+Q(Cy+Ye′)+B+
(Mg−Gr’ )十Bz(Cy  Ye’ )・・・
・(13) となる。
an +a12= a2+ +a22= as1+B5
2= 2P (8)'a 13 +a
+4 = R23+a24 = aH+a34 = 2
Q (9)'all -822=2G
1823-R24=2G 2a31-at2=28
! a33-834 =282...(10) For example, from (7), R = a, Mg+a, □G? +a, 3Cy tena,
, Ye', so (8') (9') (10), R= (P+R+)Mg+(P-R+)Gr'
+(Q+R2)Cy+(Q-R2)Ye'=P(Mg+
Gr')+Q(Cy+Ye')1R+(Mg-Gr
')+Rz(Cy-Ye') (11). Similarly, G = P (Mg + Gr') + Q (Cy + Ye') +
G+(Mg-Gr')+G2(Cy-Ye')...
・(12) B = P (Mg + Gr') + Q (Cy + Ye') + B +
(Mg-Gr') 10 Bz (Cy Ye')...
・(13) becomes.

一般に(7)のように3×4のマトリクス演算を行うと
、3x4=12回の乗算と3X3=9回の加減算が必要
である。
Generally, when performing a 3×4 matrix operation as in (7), 3×4=12 multiplications and 3×3=9 additions/subtractions are required.

しかし、本発明では(5) (6)の条件を利用するこ
とによって、RGBを(11) (12) (13)の
ように演算する。
However, in the present invention, by using the conditions (5) and (6), RGB is calculated as (11) (12) (13).

この結果、次のように乗算回数の少い演算で実行できる
。例えばRについては ■ P (Mg−Gr’ ) 十Q (Cy十Ye’ 
)の演算3回の加減算と2回の乗算 ■ R、(Mg−Gr’ )の演算 1回の加減算と1回の乗算 ■ R2(Cy  Ye’)の演算 1回の加減算と1回の乗算 ■ ■十■+■の演算 2回の加減算 が必要である。このうち■と■、■の加減算は各色間で
共通化できるので、 全部で 3+1+1+3X2=11回の加減算と、2+
aXl+3X1=8回の乗算で 実行できる。
As a result, the following calculation can be performed with a small number of multiplications. For example, for R, ■ P (Mg-Gr') 10Q (Cy0Ye'
) operations: 3 additions/subtractions and 2 multiplications ■ R, (Mg-Gr') operations: 1 addition/subtraction and 1 multiplication ■ R2 (Cy Ye') operations: 1 addition/subtraction and 1 multiplication ■ Two additions and subtractions are required for the calculation of (10) + (2). Among these, the addition and subtraction of ■, ■, and ■ can be shared between each color, so 3+1+1+3X2=11 additions and subtractions, and 2+
This can be executed by multiplying aXl+3X1=8 times.

(5) (6)式の条件は非常に強い条件であり、本発
明はこの特徴を利用することによって、一般に12回の
乗算と9回の加減算の必要な(4x3)のマトリクス演
算を、上述したようにわずか8回の乗算と11回の加減
算で非常に効率よく行い、かつ大きな問題点であった垂
直偽色の発生を極小化できる。
(5) The condition in equation (6) is a very strong condition, and by utilizing this feature, the present invention can solve the above-mentioned (4x3) matrix operation, which generally requires 12 multiplications and 9 additions/subtractions. As described above, the process is very efficient with only 8 multiplications and 11 additions/subtractions, and the occurrence of vertical false color, which was a major problem, can be minimized.

第2図は本発明を第7図のようにCCDをインタレース
走査する場合の実施例を示す。
FIG. 2 shows an embodiment of the present invention in which a CCD is interlaced scanned as shown in FIG.

本発明を実施するためにはMg、 Gr、 Cy、 Y
eの4つの色信号が同時化されていなければならない。
In order to carry out the present invention, Mg, Gr, Cy, Y
The four color signals of e must be synchronized.

なぜならこれら4つの情報を演算によってRGBへ変換
するからである。
This is because these four pieces of information are converted into RGB by calculation.

例えば、第7図のようなセンサー出力の場合、Mgに注
目すると、そのサンプリングの位置は第6図(b)に○
印で示した所になる。その他のX印の所は他の色情報は
あるがMgの色情報がないので○印のついたデータ(A
−Hなど)の適当な重みっけで補間する。これが2次元
補間フィルターによる同時化である。これは各色に対し
て行われる。
For example, in the case of the sensor output as shown in Figure 7, if we focus on Mg, the sampling position is shown in Figure 6(b).
It will be at the place indicated by the mark. Other X-marked areas have other color information, but there is no Mg color information, so the data marked with an ○ (A
-H, etc.) with an appropriate weight. This is synchronization using a two-dimensional interpolation filter. This is done for each color.

以上を念頭において、以下第2図を使用して説明する。With the above in mind, explanation will be given below using FIG. 2.

CDDセンサー201には第7図に示すような、4種の
カラーフィルターが夫々の画素に対応して配置されてい
る。センサー201からインタレース走査で一画素ごと
に読み出された画素信号はAGC回路230でゲインを
調整されたのちA/D変換器202で、読み出しクロッ
クに同期したタイミングでA/D変換される。後で行う
色処理のために、このA/D変換器はリニヤな特性が良
く、量子化誤差の点から考えて、8bit以上で行うの
が望ましい。
In the CDD sensor 201, four types of color filters are arranged corresponding to each pixel, as shown in FIG. A pixel signal read out pixel by pixel from the sensor 201 by interlaced scanning has its gain adjusted by an AGC circuit 230, and is then A/D converted by an A/D converter 202 at a timing synchronized with a read clock. For color processing to be performed later, this A/D converter has good linear characteristics, and from the viewpoint of quantization error, it is desirable to use 8 bits or more.

輝度信号はバイパスフィルター216で高域成分が検出
され後述するような方法で得られる輝度の低域成分yt
、と加算器217で加算され、D/A変換器218でD
/A変換され出力される。
The high-frequency component of the luminance signal is detected by the bypass filter 216, and the low-frequency component yt of the luminance is obtained by a method described later.
, are added by the adder 217, and D is added by the D/A converter 218.
/A conversion and output.

次に、定数P+ Q、RIT R21G l+ G2+
 B IT B2の決め方について説明する。一般に(
7)式のマトリクスではパラメータの数は12であるが
、条件(5) (6)式によってパラメータの数が8個
に集約されている。
Next, constant P+ Q, RIT R21G l+ G2+
How to determine B IT B2 will be explained. in general(
Although the number of parameters is 12 in the matrix of formula 7), the number of parameters is aggregated to eight due to conditions (5) and formula (6).

Mg、Gr、Cy、Yeのカラーフィルターの分光特性
Mg(λ)、Gr(λ)、Cy(λ)、Ye(λ)を3
80nmから780nmまでlonm間隔で測定しMg
(λi)、Gr(λi)、Cy(λi)、Ye(λi)
 (i=1.=−,41)を得る。
Spectral characteristics Mg (λ), Gr (λ), Cy (λ), Ye (λ) of Mg, Gr, Cy, Ye color filters are 3
Mg measured at lonm intervals from 80nm to 780nm
(λi), Gr (λi), Cy (λi), Ye (λi)
(i=1.=-,41) is obtained.

次にNTSCのRGBの理想分光特性r(λ、)。Next is the ideal spectral characteristic r(λ,) of NTSC RGB.

g(λ+)、b(λI)を、例えば“色彩科学ハンドブ
ック東京大学出版会(1981)“より読みとる。
g(λ+) and b(λI) are read from, for example, "Color Science Handbook, University of Tokyo Press (1981)".

そして(11)、(12)、(13)を書き直すと、と
なる。
Then, rewriting (11), (12), and (13) yields.

従って、(14)によって交換されたR、 G、 Bの
等測的分光特性R(λ)、G(λ)、B(λ)はとなる
。これを先に述べたNTSCのRGBの理想分光特性r
 (、λ)g(λ)b(λ)にできるだけ近似させる。
Therefore, the isometric spectral characteristics R(λ), G(λ), B(λ) of R, G, B exchanged by (14) are as follows. This is the ideal spectral characteristic r of RGB of NTSC mentioned earlier.
(,λ)g(λ)b(λ) as much as possible.

但し、8コのパラメータp、 Ql及びR1,GI、 
B+(i=1.2)は色温度によらず一定にしたいので
例えば5100°Kに対するα、βを用いて、これらの
パラメータを決めるとよい。
However, the eight parameters p, Ql and R1, GI,
Since B+ (i=1.2) is desired to be constant regardless of the color temperature, these parameters may be determined using, for example, α and β for 5100°K.

このためには、例えば最小2乗法を用いる。For this purpose, for example, the least squares method is used.

即ち、誤差関数E (P+ QI B+、 に+、 l
31)を、次のように定義する。
That is, the error function E (P+ QI B+, +, l
31) is defined as follows.

E(P  Q  B+  GI  Bθ = Σ  (
[r(λ+)−R(λθコ2+[g(λ1)−G(λI
)]2 +[b(λ+)−B(λi)]”1 これをP+ Q、  B+、 GI、 Ih (i=1
.2)で各々編微分してOと置(ことにより、8元連立
1次方程式が得られるので、これをP+ Qr Ri+
 GI、  Blについて解けばよい。
E(P Q B+ GI Bθ = Σ (
[r(λ+)-R(λθko2+[g(λ1)-G(λI
)]2 + [b(λ+)-B(λi)]”1 This is P+ Q, B+, GI, Ih (i=1
.. 2), respectively, and set it as O (by this, an eight-element simultaneous linear equation is obtained, so this can be written as P+ Qr Ri+
Just solve for GI and Bl.

このように色について最適化すると必ずしもP=Qにな
らないがP=Qの場合よりパラメータが1つ多い分だけ
色再現が良好である。
Optimizing colors in this way does not necessarily result in P=Q, but the color reproduction is better because there is one more parameter than in the case of P=Q.

尚、このように構成することでα、βを調整することが
でき、ホワイトバランスがとれる。何故なら減算器10
5,106の出力が0になると、必ずR=G=Bとなる
からである。
Note that with this configuration, α and β can be adjusted, and white balance can be achieved. Because subtractor 10
This is because when the output of 5,106 becomes 0, R=G=B.

次に、γ変換器の12では、テーブル変換によてRGB
信号がγ変換される。
Next, in the γ converter 12, RGB is converted by table conversion.
The signal is gamma transformed.

色差マトリクス部213では(16)式に従ってマトリ
クス演算が行われる。ここでも整数型の固定乗算を行う
ため、各係数といくつかの2のべき乗の加減算と近似す
ると良い。
The color difference matrix unit 213 performs matrix calculation according to equation (16). Since fixed multiplication of integer type is performed here as well, it is best to approximate it by adding and subtracting each coefficient and several powers of 2.

・・・・(16) 第2の実施例として、 前述のPとQが等しい場合が考えられる。P=Qでかつ
Mg(λ)+Gr (X) 〜Cy (λ) +Ye 
(λ)と考えられるような場合、加算器103. 10
4、定数倍器104,105が共通化できる。
(16) As a second example, a case can be considered in which the above-mentioned P and Q are equal. P=Q and Mg(λ)+Gr(X) ~Cy(λ)+Ye
(λ), the adder 103. 10
4. Constant multipliers 104 and 105 can be shared.

もちろん上述のようなハードワイヤードな構成をとらず
にDSP (デジタル・シグナル・プロセシング)など
を用いてソフトウェアで直接(5)、  (6)式の条
件を満たす係数[a +r ]を用いてマトリクス演算
を行ってRGBへ交換してもよい。
Of course, without using the hard-wired configuration described above, it is possible to directly perform matrix calculations using the coefficients [a + r] that satisfy the conditions of equations (5) and (6) using software such as DSP (digital signal processing). You may also do this to exchange it to RGB.

又、本発明は第6(a)図のようなフィルターを有する
センサーをインタレース走査する場合以外にも、第10
図のようなフィルター配置のセンサー出力を2水平ライ
ンずつ垂直方向に混合して読み出す場合や、一画素を2
分割してフィルターを貼り合せたCODの場合のように
信号が水平方向に2色垂直方向に2色計4色の繰り返し
であるのであっても有効である。
Furthermore, the present invention is applicable not only to interlaced scanning of a sensor having a filter as shown in FIG.
When reading out sensor outputs with a filter arrangement as shown in the figure, by mixing them vertically in two horizontal lines, or when reading one pixel by two
It is also effective even if the signal is a repetition of two colors in the horizontal direction and two colors in the vertical direction, a total of four colors, as in the case of COD in which filters are divided and pasted together.

また、輝度信号はR,G、Hの重み付けで作られるYL
とセンサー信号はHPFして得られる信号との和を用い
て色再現性の向上を図ったが、LPFLないMg、Gr
、Cy、Ye倍信号本発明と同じ重み付けをしてそのま
ま用いてもよい。
In addition, the luminance signal is YL, which is created by weighting R, G, and H.
We attempted to improve color reproducibility by using the sum of the sensor signal and the signal obtained by HPPF, but Mg, Gr without LPFL
, Cy, Ye multiplied signals may be used as they are with the same weighting as in the present invention.

また、無彩色に対して応答を等しくする手段としてA/
D変換器の前を4チヤンネルにしてアナログ回路で実行
してもよいことはいうまでもない。
Also, as a means to equalize the response to achromatic colors, A/
It goes without saying that the analog circuit may be used with four channels in front of the D converter.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明においては色再現性に優れており
、かつ垂直偽色の発生も少ない。しかもカラー信号処理
装置を極めて簡単なハードウェア構成で実現できる。
As described above, the present invention has excellent color reproducibility and less occurrence of vertical false colors. Moreover, the color signal processing device can be realized with an extremely simple hardware configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す図、第2図は本発明によ
るビデオカメラの信号処理装置のブロック図、第3図は
、従来例によるビデオカメラの信号処理装置のブロック
図、第4図、第5図は補間フィルターの構成例を示す図
、第6図(a)、  (b)は、色フィルターの配列例
を示す図、第7図は垂直偽色の発生を説明する図、第8
図は先願によるビデオカメラの信号処理装置のブロック
図、第9図は色フィルターの他の配列例を示す図である
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of a video camera signal processing device according to the present invention, FIG. 3 is a block diagram of a conventional video camera signal processing device, and FIG. 5 is a diagram showing an example of the configuration of an interpolation filter, FIGS. 6(a) and 6(b) are diagrams showing an example of the arrangement of color filters, and FIG. 7 is a diagram illustrating the occurrence of vertical false color. 8th
The figure is a block diagram of a signal processing device for a video camera according to the prior application, and FIG. 9 is a diagram showing another example of arrangement of color filters.

Claims (2)

【特許請求の範囲】[Claims] (1)第1の水平走査期間に、2つの異なる色信号が、
くり返し読み出され、第2の水平走査期間に上記の2つ
の色信号とは更に異なる2つの色信号がくり返し読み出
される撮像手段と、第1及び第2の水平走査期間内の同
一走査線上の2つの色信号の無彩色に対する応答を等し
くなるように、調整する調整手段と、上記調整手段によ
る調整後の信号を3行4列のマトリクスの内各行の右2
列の係数の和が互いに等しく、また該マトリクスの各行
の左2列の係数の和が互いに等しい、マトリクス演算手
段によってRGB信号へ変換することを特徴とするカラ
ー信号処理装置。
(1) During the first horizontal scanning period, two different color signals are
an imaging means that is repeatedly read out and in which two color signals further different from the above two color signals are repeatedly read out during a second horizontal scanning period; an adjusting means for adjusting the responses of the two color signals to the achromatic color to be equal;
A color signal processing device characterized in that the sum of coefficients in columns is equal to each other, and the sum of coefficients in two left columns of each row of the matrix is equal to each other, and conversion into RGB signals is performed by a matrix calculation means.
(2)第1の水平走査期間に2つの異なる第1、第2の
色信号が、くり返し読み出され、第2の水平走査期間に
上記の2つの色信号とは更に異なる2つの第3、第4の
色信号がくり返し読み出される撮像手段と、第1及び第
2の水平走査期間内の同一走査線上の2つの色信号の無
彩色に対する応答を等しくなるように調整する調整手段
を持ち、上記調整手段による調整後の色信号のうち、第
1、第2の色信号の和をとる第1の加算手段と第3、第
4の色信号の和をとる第2の加算手段と、第1、第2の
色の信号の差をとる第1の減算手段と、第3、第4の色
信号の差をとる第2の減算手段と、第1、第2の加算手
段の出力の夫々定数倍を加算する第3の加算手段と、第
3の加算手段の出力と、第1、第2の減算手段の出力の
夫々の定数倍を加算することによってRBGの信号を形
成する演算手段と、を有することを特徴とするカラー信
号処理装置。
(2) During the first horizontal scanning period, two different first and second color signals are repeatedly read out, and during the second horizontal scanning period, two third color signals, which are different from the above two color signals, are read out repeatedly. an imaging means from which the fourth color signal is repeatedly read out; and an adjustment means for adjusting the responses of the two color signals on the same scanning line in the first and second horizontal scanning periods to an achromatic color so that they are equal; A first addition means that takes the sum of the first and second color signals among the color signals adjusted by the adjustment means; a second addition means that takes the sum of the third and fourth color signals; , a first subtraction means for taking the difference between the second color signal, a second subtraction means for taking the difference between the third and fourth color signals, and constants for the outputs of the first and second addition means, respectively. a third addition means for adding times, and an arithmetic means for forming an RBG signal by adding constant times the output of the third addition means and the outputs of the first and second subtraction means, respectively; A color signal processing device comprising:
JP63296731A 1988-11-09 1988-11-22 Color signal processing device Expired - Lifetime JP2744260B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63296731A JP2744260B2 (en) 1988-11-22 1988-11-22 Color signal processing device
EP89311508A EP0368614B1 (en) 1988-11-09 1989-11-07 Color signal processing apparatus
DE89311508T DE68909171T2 (en) 1988-11-09 1989-11-07 Color signal processing device.
US07/913,978 US5202756A (en) 1988-11-09 1992-07-16 Color signal processing apparatus using plural luminance signals
US08/542,428 US5581298A (en) 1988-11-09 1995-10-12 Color signal processing apparatus using plural luminance signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296731A JP2744260B2 (en) 1988-11-22 1988-11-22 Color signal processing device

Publications (2)

Publication Number Publication Date
JPH02142292A true JPH02142292A (en) 1990-05-31
JP2744260B2 JP2744260B2 (en) 1998-04-28

Family

ID=17837364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296731A Expired - Lifetime JP2744260B2 (en) 1988-11-09 1988-11-22 Color signal processing device

Country Status (1)

Country Link
JP (1) JP2744260B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025123A1 (en) * 1997-11-11 1999-05-20 Sanyo Electric Co., Ltd. Color signal processing circuit
WO2002060185A1 (en) * 2001-01-23 2002-08-01 Seiko Epson Corporation Image input device and image input method
JP2005004767A (en) * 2003-06-10 2005-01-06 Samsung Electronics Co Ltd Method and system for filtering noise adaptively to luminance change
JP2011040088A (en) * 2003-06-10 2011-02-24 Samsung Electronics Co Ltd Method and system for luminance change-adaptive noise filtering

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025123A1 (en) * 1997-11-11 1999-05-20 Sanyo Electric Co., Ltd. Color signal processing circuit
WO2002060185A1 (en) * 2001-01-23 2002-08-01 Seiko Epson Corporation Image input device and image input method
US7042465B2 (en) 2001-01-23 2006-05-09 Seiko Epson Corporation Image input unit and image input method
US7230631B2 (en) 2001-01-23 2007-06-12 Seiko Epson Corporation Image input unit and image input method
US7830398B2 (en) 2001-01-23 2010-11-09 Seiko Epson Corporation Image input unit and image input method
US8159502B2 (en) 2001-01-23 2012-04-17 Seiko Epson Corporation Image input unit and image input method
US8624917B2 (en) 2001-01-23 2014-01-07 Seiko Epson Corporation Image input unit and image input method
JP2005004767A (en) * 2003-06-10 2005-01-06 Samsung Electronics Co Ltd Method and system for filtering noise adaptively to luminance change
JP2011040088A (en) * 2003-06-10 2011-02-24 Samsung Electronics Co Ltd Method and system for luminance change-adaptive noise filtering

Also Published As

Publication number Publication date
JP2744260B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US7400332B2 (en) Hexagonal color pixel structure with white pixels
RU2556022C2 (en) Colour image forming apparatus
RU2548567C1 (en) Colour image forming element
CN101494795B (en) Improved solid state image sensing device, method for arranging pixels and processing signals for the same
JPH10200906A (en) Image pickup signal processing method, image pickup signal processing unit, and recording medium readable by machine
JP4600315B2 (en) Camera device control method and camera device using the same
US9060159B2 (en) Image processing device and method, and imaging device
JP3489118B2 (en) Single-chip color camera and its color signal processing circuit
US9160999B2 (en) Image processing device and imaging device
WO2007145087A1 (en) Image pickup device and signal processing method
EP0368614B1 (en) Color signal processing apparatus
US6904166B2 (en) Color interpolation processor and the color interpolation calculation method thereof
JP2002112276A (en) Color solid-state image pickup device
JPH02142292A (en) Chrominance signal processor
US8711257B2 (en) Color imaging device
JPH02107091A (en) Signal processing circuit for video camera
JPH06339145A (en) Color image pickup device
JP2920380B2 (en) Color signal processing device
JPH0823541A (en) Color image pickup device
JP3039653B2 (en) Imaging device
JPH0453343A (en) Picture reader
US6373532B1 (en) Method and apparatus for processing image data
JP3049434B2 (en) Color imaging device
JP2000253412A (en) Image pickup element and image pickup device
US6674465B1 (en) Image processing apparatus which does not generate a false signal even if unevenness of spectral sensitivities of the color filter occurs

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 11

EXPY Cancellation because of completion of term