JP2000253412A - Image pickup element and image pickup device - Google Patents

Image pickup element and image pickup device

Info

Publication number
JP2000253412A
JP2000253412A JP11055939A JP5593999A JP2000253412A JP 2000253412 A JP2000253412 A JP 2000253412A JP 11055939 A JP11055939 A JP 11055939A JP 5593999 A JP5593999 A JP 5593999A JP 2000253412 A JP2000253412 A JP 2000253412A
Authority
JP
Japan
Prior art keywords
pixel
image pickup
pixels
array
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11055939A
Other languages
Japanese (ja)
Other versions
JP4309505B2 (en
Inventor
Hideaki Yoshida
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP05593999A priority Critical patent/JP4309505B2/en
Priority to US09/518,706 priority patent/US6803955B1/en
Publication of JP2000253412A publication Critical patent/JP2000253412A/en
Application granted granted Critical
Publication of JP4309505B2 publication Critical patent/JP4309505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To drastically improve the image pickup range of an image pickup element by employing image pickup element that is equivalent to a conventional element and has an image pickup pixel matrix consisting of periodic arrangement of two-dimensional elements whose unit matrix is an N-pixel matrix (N is a natural number being 5 or over) while basically leaving a feature of stripe arrangement. SOLUTION: Color filters LR, DR, LG, DG, LB, and DB are arranged to a CCD as an image pickup element. They are the filters in the same colors as R, G, B filters of a CCD of Bayer arrangement. The filter LX (X indicates any of R, G, B) has a transmittance twice that of an X filter and the filter DX has a transmittance a half that of the X filter. A target color X (LX, DX) that is any of R, G, B in a photoelectric conversion characteristic of a pixel information signal read from the CCD is obtained by horizontally a shifting the characteristic of the filer X by a value equivalent to the difference of the filter transmittance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラー撮像素子お
よび撮像装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a color image pickup device and an image pickup apparatus.

【0002】[0002]

【従来の技術】撮像管および固体撮像素子に代表される
撮像素子は撮像装置に広く用いられている。特に単管ま
たは単板(Single Sensor)カラー撮像装置に使用され
るカラー撮像素子は1つの撮像素子で撮像装置が構成で
きるため、色分離プリズムが不要でレンズの小型化が可
能・レジストレーションに代表される多板式の各種調整
が無い・消費電力が小さいなど多くの特徴を有し、撮像
装置の小型化・省電力化に多くの貢献を果たしており、
特に固体素子であるカラーCCD撮像素子を用いた単板
カラーカメラは撮像装置の主流となっている。
2. Description of the Related Art An image pickup device represented by an image pickup tube and a solid-state image pickup device is widely used in an image pickup apparatus. In particular, since the color image sensor used for a single tube or single sensor (Single Sensor) color image sensor can be configured with one image sensor, a color separation prism is not required and the lens can be downsized. It has many features, such as no multi-plate adjustments and low power consumption, and has contributed to the miniaturization and power saving of imaging devices.
In particular, a single-chip color camera using a color CCD image pickup device, which is a solid-state device, has become the mainstream of image pickup devices.

【0003】上記カラー撮像素子はいずれも一つの受光
面で色情報を得るため、ストライプフィルタまたはモザ
イクフィルタなどと称される色フィルタを用いて受光平
面内で色変調(色コーディング)を行なっている。すな
わち、例えばRGB3色のフィルタを所定の規則的配列
で各光電変換素子上に張り付けることで各画素毎に異な
る分光感度を持たせる。従って、被写体撮像によって得
られた映像信号には、このフィルタ配列に従った点順次
の色情報が含まれているから、上記所定の配列にしたが
って各色フィルタに対応した信号毎に分離してこれを取
り出せば色情報が取り出せる。輝度信号(Y信号)を得
るためにはRGB情報が全て必要であるから、1画素の
輝度情報を得るためには最低3画素(RGB各1画素ず
つ)を必要とし、輝度解像度は犠牲になるものの一つの
撮像素子でカラー撮像を行なうことができる。
In order to obtain color information on one light receiving surface, each of the above color imaging elements performs color modulation (color coding) in a light receiving plane using a color filter called a stripe filter or a mosaic filter. . That is, for example, by attaching filters of three colors of RGB in a predetermined regular arrangement on each photoelectric conversion element, each pixel has a different spectral sensitivity. Therefore, the video signal obtained by imaging the subject contains point-sequential color information according to the filter array, and is separated into signals corresponding to the respective color filters according to the above-described predetermined array. If taken out, color information can be taken out. In order to obtain a luminance signal (Y signal), all of the RGB information is required. To obtain the luminance information of one pixel, at least three pixels (one for each of RGB) are required, and the luminance resolution is sacrificed. Color imaging can be performed with one imaging device.

【0004】このような公知の配列の1つにRGBベイ
ヤ配列がある。ベイヤ配列の名で知られるものは幾つか
あるが、代表的な1つを図6に示す。これは2×2の4
画素を2次元の基本配列としてこれを順次ならべて平面
を埋め尽くすものであって、2×2の4画素を単位配列
とした2次元の周期配列となっている。
[0004] One of such known arrangements is the RGB Bayer arrangement. There are several known as Bayer arrays, one of which is shown in FIG. This is 2 × 2 4
The pixels are sequentially arranged in a two-dimensional basic array to fill the plane, and a two-dimensional periodic array having four 2 × 2 pixels as a unit array.

【0005】これに対してRGBストライプ配列は文字
どおりストライプ状に(各垂直列ごとに順次の)3色の
フィルタを配したもので、3×1の3画素を単位配列と
した2次元の周期配列である。一例を図7に示す。
On the other hand, the RGB stripe arrangement literally has three color filters arranged in stripes (sequentially for each vertical column), and is a two-dimensional periodic array having a unit array of 3 × 1 three pixels. It is. An example is shown in FIG.

【0006】これらRGBベイヤ配列やRGBストライ
プ配列はいずれも色再現性の良い原色(RGB)フィル
タを用いており、ベイヤ配列はRGBへの画素数の配分
比率を1:2:1として輝度信号に対する寄与の大きい
Gの密度を高めることで輝度解像度を高くした点に特徴
がある。また垂直水平の2方向に等方配置しているので
ストライプ配列と異なり等方的な解像度が得られる。
Each of the RGB Bayer array and the RGB stripe array uses a primary color (RGB) filter having good color reproducibility. The Bayer array has a 1: 2: 1 distribution ratio of the number of pixels to RGB and has a luminance signal. The feature is that the luminance resolution is increased by increasing the density of G that greatly contributes. In addition, since it is isotropically arranged in two vertical and horizontal directions, an isotropic resolution can be obtained unlike a stripe arrangement.

【0007】一方ストライプ配列は垂直方向には色コー
ディングが行われていないので垂直解像度が極めて高く
(モノクロと同等)、またRGBが等密度なので色S/
Nが良くベイヤ配列より色再現が良いという特徴があ
る。
On the other hand, in the stripe arrangement, the vertical resolution is extremely high because color coding is not performed in the vertical direction (equivalent to monochrome), and the color S /
N is good and the color reproduction is better than the Bayer arrangement.

【0008】[0008]

【発明が解決しようとする課題】上記ベイヤ配列やスト
ライプ配列はそれぞれ上記したとおりの優れたものであ
るが、撮像素子一般の課題としての被写体に対する撮像
ダイナミックレンジ(輝度再現域)の確保については特
別な考慮が為されておらず、輝度分布が高輝度から低輝
度まで輝度レンジの大きな被写体の撮影に際しては白飛
びや黒潰れを生じ易いものであった。
Although the Bayer arrangement and the stripe arrangement are excellent as described above, however, the securing of an imaging dynamic range (luminance reproduction area) for a subject as a general problem of an imaging device is special. When taking an image of a subject having a large luminance range from a high luminance to a low luminance, an overexposure or an underexposure is likely to occur.

【0009】詳述すれば撮像レンジは単純に撮像素子だ
けでは決まらず、それを使用した撮像装置の信号処理も
含めた全体で決まるが、少なくとも高輝度側は撮像素子
の飽和レベルが限界になり、低輝度側は撮像装置に組み
込まれた状態での撮像素子出力のノイズレベルが限界に
なるから、少なくともそれを超えた撮像レンジを得るこ
とはできない。
More specifically, the image pickup range is not simply determined by the image pickup device alone, but is determined by the whole including the signal processing of the image pickup apparatus using the image pickup device. However, the saturation level of the image pickup device is limited at least on the high luminance side. On the other hand, on the low-luminance side, the noise level of the output of the image pickup device in a state of being incorporated in the image pickup device becomes a limit, so that it is impossible to obtain an image pickup range at least exceeding the noise level.

【0010】従来、一般的な撮像素子を用いた撮像装置
を構成した場合の撮像素子の光電変換特性は、例えば図
8で模式的に示されるようなものであった。この図にお
いて、横軸は入射光量を、縦軸は信号レベルをそれぞれ
対数的に示すものである。図中ULは高輝度側限界レベ
ルを、LLは低輝度側限界レベルをそれぞれ示すもので
ある。ULは撮像素子の飽和レベルにほぼ対応するレベ
ルであり、一方LLについてはノイズレベルNLそのも
のではなく、ノイズと共存しても鑑賞に堪える所定の限
界S/N比を有する信号レベルとして定まる。そしてU
LとLLの間が有効輝度域となり、これらの(対数軸上
での)差:Range=UL−LLが撮像レンジとなる。
Heretofore, the photoelectric conversion characteristics of an image pickup device when an image pickup device using a general image pickup device is constructed are, for example, as schematically shown in FIG. In this figure, the horizontal axis represents the amount of incident light, and the vertical axis represents the signal level logarithmically. In the figure, UL indicates a high luminance limit level, and LL indicates a low luminance limit level. UL is a level substantially corresponding to the saturation level of the image sensor, while LL is determined not as the noise level NL itself, but as a signal level having a predetermined limit S / N ratio that allows the viewer to appreciate the image even when coexisting with noise. And U
The effective luminance range is between L and LL, and the difference (on the logarithmic axis): Range = UL-LL is the imaging range.

【0011】この撮像レンジは撮像装置の設計製造によ
って異なるが、多くの場合5〜6EV(30〜36dB)
程度であり、更なる改善が望まれていた。しかしなが
ら、撮像素子の飽和レベルやノイズレベルの改善には限
界があり、実現が困難であるという問題があった。
Although this imaging range varies depending on the design and manufacture of the imaging device, it is often 5 to 6 EV (30 to 36 dB).
It was a degree, and further improvement was desired. However, there is a limit to the improvement of the saturation level and noise level of the image sensor, and there is a problem that it is difficult to realize the improvement.

【0012】本発明の目的の一つは、上記問題点を解決
し、従来と同等の撮像素子を用いつつ、且つ従来のスト
ライプ配列の持つ特長を基本的に有したまま撮像レンジ
を飛躍的に向上した高画質な撮像装置と、それに適した
撮像素子を提供することにある。
One of the objects of the present invention is to solve the above-mentioned problems and dramatically increase the imaging range while using the same imaging element as the conventional one and basically having the features of the conventional stripe arrangement. An object of the present invention is to provide an improved high-quality image pickup device and an image pickup device suitable for the image pickup device.

【0013】さらに本発明の他の目的は、上記課題の具
体的な解決手段として発明した新規な撮像方式である多
画素単位配列撮像方式の広範な応用可能性に着目して、
多画素単位配列撮像方式による撮像装置と、それに適し
た撮像素子を提供することにある。
Still another object of the present invention is to pay attention to the wide applicability of a multi-pixel unit array imaging system which is a novel imaging system invented as a specific means for solving the above-mentioned problems.
It is an object of the present invention to provide an imaging device using a multi-pixel unit array imaging method and an imaging device suitable for the imaging device.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に請求項1に記載された撮像素子は、N画素配列(ただ
しNは5以上の自然数)を単位配列とする2次元の周期
配列として構成された撮像画素配列を有したことを特徴
とする。
According to an aspect of the present invention, there is provided an image pickup device comprising a two-dimensional periodic array having an N pixel array (where N is a natural number of 5 or more) as a unit array. It is characterized by having a configured imaging pixel array.

【0015】請求項2に記載された撮像素子は、請求項
1記載の撮像素子において、上記Nは6であることを特
徴とする。
According to a second aspect of the present invention, in the imaging device of the first aspect, N is 6.

【0016】請求項3に記載された撮像素子は、請求項
2記載の撮像素子において、上記単位配列を構成する第
1〜第6の6画素のうち第1〜第3画素は相異なる3つ
の色特性(相対分光感度特性)を有し、第4画素は上記
第1画素と、第5画素は上記第2画素と、第6画素は上
記第3画素と、それぞれ感度(絶対感度)が異なる同一
の色特性を有したものであることを特徴とする。
According to a third aspect of the present invention, in the image sensor according to the second aspect, the first to third pixels of the first to sixth pixels forming the unit array are different from each other. The fourth pixel has different sensitivities (absolute sensitivities) from the first pixel, the fifth pixel from the second pixel, and the sixth pixel from the third pixel. It is characterized by having the same color characteristics.

【0017】請求項4に記載された撮像素子は、請求項
3記載の撮像素子において、 上記相異なる3つの色特
性は、加色混合の3原色RGBであることを特徴とす
る。
According to a fourth aspect of the present invention, there is provided the image sensor according to the third aspect, wherein the three different color characteristics are three primary colors RGB of additive color mixing.

【0018】請求項5に記載された撮像素子は、第1〜
第6の6画素のうち第1〜第3画素は相異なる3つの色
特性(相対分光感度特性)を有し、第4画素は上記第1
画素と、第5画素は上記第2画素と、第6画素は上記第
3画素と、それぞれ感度(絶対感度)が異なる同一の色
特性を有する6画素からなる単位配列を2次元の周期配
列として構成された撮像素子と、上記撮像素子の上記第
1〜第6の各画素に対応して得られる第1〜第6の各画
素情報信号に基づいて所定の態様の映像信号を生成する
映像信号生成手段とを有した撮像装置であって、上記撮
像素子の上記第1と第4(第2と第5、第3と第6)の
画素の相異なる感度は、上記第1(第2、第3)の画素
情報信号の有効輝度域と上記第4(第5、第6)の画素
情報信号の有効輝度域とが共通領域を有するように設定
されたものであることを特徴とする。
The image pickup device according to the fifth aspect has the first to the first aspects.
Of the sixth six pixels, the first to third pixels have three different color characteristics (relative spectral sensitivity characteristics), and the fourth pixel is the first pixel.
A pixel, a fifth pixel, a second pixel, and a sixth pixel, a unit array of six pixels having the same color characteristics but different sensitivities (absolute sensitivities) from the third pixel as a two-dimensional periodic array. A configured image sensor, and a video signal that generates a video signal in a predetermined mode based on first to sixth pixel information signals obtained corresponding to the first to sixth pixels of the image sensor An imaging device having a generating unit, wherein different sensitivities of the first and fourth (second and fifth, third and sixth) pixels of the image sensor are equal to the first (second, second, and third) pixels. A third feature is that the effective luminance area of the pixel information signal and the effective luminance area of the fourth (fifth and sixth) pixel information signals are set so as to have a common area.

【0019】請求項6に記載された撮像素子は、請求項
5記載の撮像素子において、上記映像信号生成手段は、
上記第1(第2、第3)の画素情報信号と第4(第5、
第6)の画素情報信号の同一輝度被写体に対する信号レ
ベル差を補償するレベル補償手段を有したものであるこ
とを特徴とする。
According to a sixth aspect of the present invention, in the imaging device of the fifth aspect, the video signal generating means includes:
The first (second, third) pixel information signal and the fourth (fifth, fifth,
The sixth feature is that a level compensating means for compensating a signal level difference of the pixel information signal with respect to the subject having the same luminance is provided.

【0020】請求項7に記載された撮像素子は、請求項
5記載の撮像素子において、上記映像信号生成手段は、
上記各画素情報信号の処理に際して有効輝度域からの逸
脱が生じており、且つ隣接する異感度同一色の画素情報
信号が逸脱を生じていない場合には、上記隣接する異感
度同一色の画素情報信号によって補完する画素情報補完
手段を有したものであることを特徴とする。
According to a seventh aspect of the present invention, in the imaging device of the fifth aspect, the video signal generating means includes:
When a deviation from the effective luminance range occurs during the processing of each of the pixel information signals, and the adjacent pixel information signals of the different sensitivity and the same color do not deviate, the pixel information of the adjacent different sensitivity and the same color is used. It is characterized by having pixel information complementing means for complementing with a signal.

【0021】[0021]

【発明の実施の形態】図1は、本発明の実施の形態に係
る撮像装置1の全体の概略ブロック図、図2は本発明の
実施の形態に係る撮像素子のフィルタ配列を示す図、図
3は撮像素子のLX(ただしXは、R,G,Bのいずれ
かを表わすものとする。以下同じ。),DX画素の特性
曲線、図4は撮像装置のX信号に関する総合特性曲線で
ある。
FIG. 1 is a schematic block diagram of an entire image pickup apparatus 1 according to an embodiment of the present invention. FIG. 2 is a diagram showing a filter arrangement of an image pickup device according to the embodiment of the present invention. Reference numeral 3 denotes an LX (where X represents any one of R, G, and B; the same applies hereinafter) of the image sensor, a characteristic curve of a DX pixel, and FIG. .

【0022】図1に示すように、撮像装置1は被写体像
を結像するための撮影レンズ系101、撮影レンズの焦
点を被写体に合わせるための撮影レンズ駆動機構10
2、適正レベルの撮像信号を得るための露出制御機構1
03、色分離を行なうためのフィルタ系104、被写体
光を電気信号に変換し撮像信号を生成するための撮像素
子としてのCCD105、上記CCD105を駆動する
ためのCCDドライバ106、A/D変換等を行なうプ
リプロセス107、映像信号処理などの全てのディジタ
ルプロセスを実行するディジタルプロセス108、カー
ドインターフェース109、ディジタルプロセス108
で処理されたディジタル信号を該カードインターフェー
ス109を介して記録するためのメモリカード110、
撮影された画像や種々の情報を表示するためのLCD画
像表示系111、全体システムのコントロールを行なう
システムコントローラ(主構成としてマイコン含む)1
12、撮影開始や各種モード設定などを行なうための操
作スイッチ系113、該操作スイッチ系113により操
作された操作内容を表示するための操作表示系114、
被写体に補助光を照射するためのストロボ115、上記
撮影レンズ駆動機構102を駆動するためのレンズドラ
イバ116、上記露出制御機構103およびストロボ1
15の露出を制御するための露出制御ドライバ117と
を備えている。
As shown in FIG. 1, an image pickup apparatus 1 includes a photographing lens system 101 for forming a subject image, and a photographing lens driving mechanism 10 for focusing the photographing lens on the subject.
2. Exposure control mechanism 1 for obtaining an appropriate level of imaging signal
03, a filter system 104 for performing color separation, a CCD 105 as an image sensor for converting subject light into an electric signal to generate an image signal, a CCD driver 106 for driving the CCD 105, an A / D converter, and the like. Preprocess 107, digital process 108 for executing all digital processes such as video signal processing, card interface 109, digital process 108
A memory card 110 for recording the digital signal processed by the
LCD image display system 111 for displaying captured images and various information, system controller (including microcomputer as main configuration) 1 for controlling the entire system
12, an operation switch system 113 for starting shooting, setting various modes, and the like; an operation display system 114 for displaying operation contents operated by the operation switch system 113;
A flash 115 for irradiating the subject with auxiliary light, a lens driver 116 for driving the photographing lens driving mechanism 102, the exposure control mechanism 103, and the flash 1
15 is provided with an exposure control driver 117 for controlling exposure.

【0023】図2は、上記CCD105の色フィルタ配
列を示したものである。LRはLight Red、DRはDark
Redを、LGはLight Green、DGはDark Greenを、LB
はLight Blue、DBはDark Blueをそれぞれ表わし、そ
れぞれ上記従来のベイヤ配列の撮像素子のR、G、B各
フィルタと同じ色(相対分光透過率)のフィルタである
が、LXはXフィルタの2倍の透過率、DXはXフィル
タの1/2の透過率を有している。
FIG. 2 shows a color filter array of the CCD 105. LR is Light Red, DR is Dark
Red, LG is Light Green, DG is Dark Green, LB
Represents Light Blue and DB represents Dark Blue, respectively. Each of the filters has the same color (relative spectral transmittance) as each of the R, G, and B filters of the above-mentioned conventional Bayer array image sensor. DX has twice the transmittance of the X filter.

【0024】さてこのようなCCD105を用いた撮像
装置1は、従来の撮像装置と同様に信号を読み出し処理
して撮像画像をメモリカード110に記録、あるいはL
CD画像表示系111に表示する。従来と異なるのは映
像信号生成処理であるが、以下で述べる本発明に直接関
連する部分以外については従来公知のRGBストライプ
配列CCDに対するものと全く同様に行われるものとす
る。この映像信号生成処理は、上記システムコントロー
ラ112の制御下にディジタルプロセス108によって
行われる。
The image pickup apparatus 1 using such a CCD 105 reads and processes signals in the same manner as a conventional image pickup apparatus, and records a picked-up image on a memory card 110.
It is displayed on the CD image display system 111. What is different from the conventional one is the video signal generation processing. However, except for the part directly related to the present invention described below, it is assumed that the processing is performed in exactly the same way as that for the conventionally known RGB stripe array CCD. This video signal generation processing is performed by the digital process 108 under the control of the system controller 112.

【0025】上記撮像素子から読み出される画素情報信
号の光電変換特性はR、G、Bの各色間の感度の違いを
さておけば、R,G,Bのいずれかである着目する色X
(LX,DX)については図3に示すようなものとなっ
ている。すなわち、従来のXの特性をフィルタ透過率の
違いに相当する分だけ左右に平行移動させたものになっ
ている。(図の基準感度線は従来のXの有効輝度域の光
電変換特性に対応する補助線である。)
The photoelectric conversion characteristic of the pixel information signal read from the image pickup device is any one of R, G, and B, if the difference in sensitivity among the R, G, and B colors is taken into account.
(LX, DX) is as shown in FIG. That is, the characteristic of the conventional X is shifted in the horizontal direction by an amount corresponding to the difference in the filter transmittance. (The reference sensitivity line in the figure is an auxiliary line corresponding to the conventional photoelectric conversion characteristic in the effective luminance range of X.)

【0026】ところで、従来の映像信号処理における色
信号生成処理(通例色分離処理と称される)とは、基本
的には対応色信号の存在しない画素(例えばB信号生成
処理におけるRフィルタ画素など)に対する近隣画素情
報等を用いた信号補完処理である。すなわち、撮像素子
から画素配列順に出力されるところの画素情報に直接対
応した間欠的色信号から連続的な色信号を生成するから
信号同時化とも称される。本発明の実施の形態のように
ディジタルプロセスを用いる場合は、一旦画素配列のま
ま所定のメモリ領域に画素情報信号を格納し、これを用
いて適当な補完処理を施しつつRGBの3同時化信号を
発生させれば良い。(必要に応じて、RGB3つの画像
としてメモリ内の所定領域に個別格納してからそれぞれ
出力しても良い。)すなわち、各X信号は単に一種類の
X画素情報から生成されていた。
By the way, the color signal generation processing (generally called color separation processing) in the conventional video signal processing is basically defined as a pixel having no corresponding color signal (for example, an R filter pixel in the B signal generation processing). ) Is a signal complementing process using neighboring pixel information and the like. That is, since continuous color signals are generated from intermittent color signals directly corresponding to pixel information output from the image sensor in the order of pixel arrangement, this is also referred to as signal synchronization. When a digital process is used as in the embodiment of the present invention, the pixel information signal is temporarily stored in a predetermined memory area without changing the pixel arrangement, and the RGB three-synchronization signal is applied while performing an appropriate complementing process. Should be generated. (If necessary, the three RGB images may be individually stored in a predetermined area in the memory and then output.) That is, each X signal is generated from only one type of X pixel information.

【0027】これに対して本発明の実施の形態の撮像装
置1の色信号の生成処理は従来のものとは異なり、後述
のように各色Xに対応するX信号はLX画素情報とDX
画素情報との2種の画素情報から生成される。この点を
別にすれば、上記したような他の色に関する信号補完の
考え方自体は従来の処理と異なるところは無い。具体的
な各X信号の生成処理は以下のように行なわれる。ただ
しY画素とはLX,DX以外の4種の画素(例えばX=
Gの時、LR、DR、LB、DBのいずれか)を示す。
On the other hand, the color signal generation processing of the image pickup apparatus 1 according to the embodiment of the present invention is different from the conventional one, and the X signal corresponding to each color X is LX pixel information and DX as described later.
The pixel information is generated from two types of pixel information. Apart from this point, the concept of signal complementation for other colors as described above does not differ from the conventional processing. The specific process of generating each X signal is performed as follows. However, Y pixels are four types of pixels other than LX and DX (for example, X =
G indicates any of LR, DR, LB, and DB).

【0028】(1)LX画素の位置に対応するG信号の
生成処理 自己の画素情報信号がUL(LX)より小さい値の
ときは自己の画素情報信号の値の1/2の値をX信号値
とする。 自己の画素情報信号がUL(LX)以上のときは自
己の上下に隣接する2つのDX画素の画素情報信号の値
を判定した結果によって、 (−A)それがLL(DX)より大きくUL(DX)
より小さいときはそのDX画素の値(複数ある場合はそ
の代表値)の2倍の値をX信号値とする。 (−B)それがLL(DX)以下またはUL(DX)
以上のときは自己の画素情報信号の値の1/2の値をX
信号値とする。
(1) G signal generation processing corresponding to the position of the LX pixel When the own pixel information signal has a value smaller than UL (LX), the half of the value of the own pixel information signal is converted to the X signal. Value. When the own pixel information signal is equal to or greater than UL (LX), the value of the pixel information signal of the two DX pixels adjacent above and below itself is determined. DX)
If it is smaller than the value of the DX pixel (or the representative value if there is more than one), the value is twice as the X signal value. (-B) It is equal to or less than LL (DX) or UL (DX)
In the above case, the value of 1/2 of the value of the own pixel information signal is set to X
Let it be a signal value.

【0029】(2)DX画素の位置に対応するG信号の
生成処理 自己の画素情報信号がLL(DX)より大きい値の
ときは自己の画素情報信号の値の2倍の値をX信号値と
する。 自己の画素情報信号がLL(DX)以下のときは自
己の上下に隣接する2つのLX画素の画素情報信号の値
を判定した結果によって、 (−A)それがLL(LX)より大きくUL(LX)
より小さいときはそのLX画素の値(複数ある場合はそ
の代表値)の1/2の値をX信号値とする。 (−B)それがLL(LX)以下またはUL(LX)
以上のときは自己の画素情報信号の値の2倍の値をX信
号値とする。
(2) G signal generation processing corresponding to the position of the DX pixel When the own pixel information signal has a value larger than LL (DX), the value of twice the value of the own pixel information signal is set to the X signal value. And When the own pixel information signal is equal to or less than LL (DX), the value of the pixel information signal of the two LX pixels adjacent above and below the self is determined. (-A) It is larger than LL (LX) and UL (LX). LX)
If it is smaller than the value of the LX pixel (if there are a plurality of LX pixels, a half value thereof) is set as the X signal value. (-B) It is equal to or less than LL (LX) or UL (LX)
In the above case, a value twice as large as the value of the pixel information signal is set as the X signal value.

【0030】(3)Y画素の位置に対応するG信号の生
成処理 自己の右または左に辺隣接するX画素(LX画素または
DX画素:これは1つだけ存在する)の出力するX信号
値を自己のX信号値とする。なお、上記複数の値から
「代表値」を得るに関しては、選択法(例えば、高い解
像度を得るために必ず上を選択する。)あるいは補間法
(例えば、疑似信号の発生レベルが小さくするために平
均値を算出する。)のいずれを用いても良い。
(3) G signal generation processing corresponding to the position of the Y pixel The X signal value output from the X pixel (LX pixel or DX pixel: only one exists) adjacent to the right or left side of the self Is its own X signal value. In addition, with respect to obtaining the “representative value” from the plurality of values, a selection method (for example, always select the upper side in order to obtain a high resolution) or an interpolation method (for example, in order to reduce the generation level of the pseudo signal, Calculate the average value).

【0031】上記のような色分離処理の結果得られた色
信号は、全画素に関する同時化されたRGB3原色信号
として従来のRGB3原色信号と同様に後段の回路で処
理され、最終的にメモリカード110に記録、あるいは
LCD画像表示系111に表示される。
The color signals obtained as a result of the above-described color separation processing are processed as a synchronized RGB three-primary-color signal for all the pixels by a subsequent circuit in the same manner as the conventional RGB three-primary-color signals, and finally the memory card Recorded in 110 or displayed on LCD image display system 111.

【0032】上記X信号生成処理において、上記項目
(1)又は項目(2)とは要するにLX、DXそれ
ぞれの画素について「所定の撮像レンジ(有効輝度域)
に収まっている場合はその画素の情報をそのまま使用す
る」ということであり、その際各画素が従来技術におけ
るX相当の「基準となる感度に対して有している感度差
を所定の係数を乗じて(すなわちディジタルゲイン調節
を行なって)補償」しているものである。従って、L
X、DX共通のレンジ内の被写体に関しては従来公知の
RGBストライプ配列によって撮像したものと全く同一
のX(RGB)信号が得られる。
In the above X signal generation processing, the above item (1) or item (2) basically means “a predetermined imaging range (effective luminance range)” for each pixel of LX and DX.
Means that the information of the pixel is used as it is when the pixel value falls within the range, "and in that case, the sensitivity difference that each pixel has with respect to the reference sensitivity corresponding to X in the related art is determined by a predetermined coefficient. Multiplication (that is, by performing digital gain adjustment). Therefore, L
For a subject within the common range of X and DX, the same X (RGB) signal as that obtained by imaging using a conventionally known RGB stripe arrangement is obtained.

【0033】これに対して上記項目(1)(−A)
又は項目(2)(−A)は「自己の画素情報信号が
レンジを逸脱している場合、隣接の他方のXが逸脱して
いない場合はそれで補完する」ことを意味している。す
なわちどちらか一方の画素のレンジでのみカバーされる
高輝度や低輝度の被写体部分」に関しては、垂直画素密
度が半分になった状態でのX信号が得られることになる
が、あくまでも部分的に生じる現象であり、且つ水平方
向の画素密度に比較して特に低くなることはないことも
ありさほど大きな問題にはならない。
On the other hand, the above item (1) (-A)
Or, the item (2) (-A) means that "when the own pixel information signal deviates from the range, when the other adjacent X does not deviate, complement it with it." That is, for the "high-luminance or low-luminance subject portion covered by only one of the pixel ranges," an X signal in a state in which the vertical pixel density is reduced to half is obtained, but only partially. This is a phenomenon that occurs and may not be particularly low compared to the pixel density in the horizontal direction.

【0034】この場合従来のXを基準にとるとLXは2
倍、DXは1/2の感度であるから、それぞれ低輝度
側、高輝度側に1EV(6dB)ずつ撮像レンジがシフト
したことになり、合わせて2EV(12dB)撮像レンジ
が拡大したことになる。従来の撮像素子を用いた場合
に、ダイナミックレンジの限界が6EV(36dB)であ
ったとすれば、本発明の実施の形態によって8EV(4
8dB)の広ダイナミックレンジの撮像装置を得ることが
できることになる。なお、この場合上記共通レンジ(高
解像度の得られるレンジ)は4EVあるから、通常の撮
影において解像度の低下は無く、ただハイライト部分や
シャドウ部分で低下するのみである。
In this case, LX is 2 based on the conventional X.
Since DX and DX have a sensitivity of 1/2, the imaging range has been shifted by 1 EV (6 dB) to the low luminance side and the high luminance side, respectively, and the 2 EV (12 dB) imaging range has been expanded accordingly. . Assuming that the limit of the dynamic range is 6 EV (36 dB) when the conventional imaging device is used, 8 EV (4 dB) according to the embodiment of the present invention.
Thus, an imaging device having a wide dynamic range of 8 dB) can be obtained. In this case, since the common range (a range in which high resolution can be obtained) is 4 EV, there is no reduction in resolution in normal shooting, but only in highlights and shadows.

【0035】このような総合特性を図示したのが図4で
ある。上記ディジタルゲイン調節によって2つの特性が
上下に平行移動して一つに重なっている。EUL,EL
L等はそれぞれ拡大された高輝度、低輝度の限界レベル
である。
FIG. 4 illustrates such overall characteristics. Due to the above digital gain adjustment, the two characteristics are moved up and down in parallel and overlap one another. EUL, EL
L and the like are the expanded high luminance and low luminance limit levels, respectively.

【0036】上記のようにRGB各信号のダイナミック
レンジが拡大するから被写体撮像に関して直接的に効果
を発揮し、輝度再現域、色再現域が飛躍的に拡大すると
ともに低輝度部でのS/N向上の結果視覚的な色忠実度
も向上する。
As described above, the dynamic range of each of the R, G, and B signals is expanded, so that an effect is directly exerted on imaging of a subject. The luminance reproduction range and the color reproduction range are greatly expanded, and the S / N ratio in a low luminance portion is improved. As a result, the visual color fidelity also improves.

【0037】一方、上記上記項目(1)(−B)又
は項目(2)(−B)は「LG、DGいずれの撮像
レンジも逸脱している場合は、本来の画素の情報をその
まま(ゲイン調節は行ない)使用する」ことを意味して
いる。従って、拡大された総合レンジをも逸脱する被写
体に対しては再び本来の高解像度が得られることにな
る。これは通常の被写体に対しては特に効果は無いが、
完全な白黒パターン、例えば解像度チャートなどの特殊
な絵柄に対して解像度が低下する不具合を防止するもの
である。
On the other hand, when the above item (1) (-B) or item (2) (-B) is out of the imaging range of either LG or DG, the information of the original pixel is directly used (gain Adjustments are made) use. Therefore, the original high resolution can be obtained again for a subject that also deviates from the enlarged overall range. This has no effect on normal subjects,
This is to prevent a problem that the resolution is reduced for a complete picture pattern such as a complete black and white pattern, for example, a special pattern such as a resolution chart.

【0038】なお、上記において、各LXの透過率は従
来のXの2倍としたが(以下これを第1実施例とす
る)、この他にも様々な実施例が考えられる。
In the above description, the transmittance of each LX is set to twice that of the conventional X (hereinafter, this is referred to as a first embodiment), but various other embodiments are also conceivable.

【0039】従来のXフィルタのピーク波長における透
過率が50%以上の場合は上記第1実施例では実現不可
能である。この問題に対する解決を示すために仮想的に
従来のXのピーク波長透過率が100%であった場合を
想定して、他の実施例例を挙げておく。
In the case where the transmittance at the peak wavelength of the conventional X filter is 50% or more, it cannot be realized in the first embodiment. In order to show a solution to this problem, another embodiment will be described on the assumption that the conventional peak wavelength transmittance of X is 100%.

【0040】すなわち、LXを従来のXと同じ透過率と
し、DXを1/4の透過率とする第2実施例である。
(ゲイン補正の数値も対応して変えることはいうまでも
ない。以下の実施例でも同じ。)この場合X信号の撮像
レンジは高輝度側にのみ2EV拡大することになる。
That is, in the second embodiment, LX is set to have the same transmittance as the conventional X, and DX is set to 1/4 of the transmittance.
(It goes without saying that the numerical value of the gain correction also changes correspondingly. The same applies to the following embodiments.) In this case, the imaging range of the X signal is expanded by 2 EV only on the high luminance side.

【0041】上記第1実施例と第2実施例に従って、各
Xのピーク波長透過率に関してこれら2つの実施例の中
間の値はもちろん任意の値に対して本発明を自明的容易
に適用することができる。また上記実施例1,2では各
X(RGB)に対してLおよびDの相対的透過率設定は
同じ値としたが、RGB毎に異なる値を用いても良いこ
とは明らかで、任意の値に対して本発明を自明的容易に
適用することができる。
According to the first and second embodiments, the present invention can be easily and easily applied to any value of the peak wavelength transmittance of each X as well as an intermediate value between these two embodiments. Can be. In the first and second embodiments, the relative transmittance settings of L and D are set to the same value for each X (RGB). However, it is apparent that different values may be used for each of RGB, and any value may be used. Therefore, the present invention can be easily and obviously applied.

【0042】一方、これらとは異なる観点からの第3実
施例として、上記第1実施例におけるLLのレベル設定
を下げて、よりノイズレベルNLに近付けた値あるいは
等しい値にすることが挙げられる。この場合、上記第1
実施例に比較して一部の輝度域でS/Nの劣化等の画質
劣化が生じるが、より共通輝度域すなわち高解像度領域
が広くなる。なお、この際のLLの設定値を図3の特性
曲線の下方の非直線部分にまで下げた時は一部の輝度域
ではS/Nの劣化に加えてLG画素とDG画素にレベル
差を生じ新たな画質劣化要因となるが、これはこの領域
のDG画素情報信号に対して特性曲線の非直線性を考慮
したゲイン補正を施せば取り除ける。
On the other hand, as a third embodiment from a different viewpoint, the LL level setting in the first embodiment is reduced to a value closer to or equal to the noise level NL. In this case, the first
Although image quality degradation such as S / N degradation occurs in some luminance regions as compared with the embodiment, the common luminance region, that is, the high-resolution region becomes wider. When the set value of LL at this time is lowered to a non-linear portion below the characteristic curve in FIG. 3, in some luminance regions, a level difference between the LG pixel and the DG pixel is caused in addition to the deterioration of S / N. This causes a new image quality deterioration factor, which can be removed by performing a gain correction on the DG pixel information signal in this area in consideration of the nonlinearity of the characteristic curve.

【0043】また、上記全ての実施例に関して透過率等
の数字はあくまでも一例であり、必要に応じて任意に変
更し得ることは言うまでもなく、それによってレンジの
拡大効果と一部輝度域に対する解像度低下のトレードオ
フをはかることができる。
The numerical values of the transmittance and the like in all of the above embodiments are merely examples, and it is needless to say that the numerical values can be arbitrarily changed as needed. Trade-offs.

【0044】ここで、上記本発明の実施の形態における
問題解決の本質について考察すれば、2つの大きな新規
要素が挙げられる。一つは単位配列の画素数の拡大で
あり、他の一つは同色異濃度のフィルタを用いた情報
の取得およびそれによる色信号の生成である。につい
ては従来いわゆる面順次(すなわち時分割)撮像または
多板撮像での試みはあったが、これを点順次の画素配列
レベルで具体的に構成したものはなかった。それはの
単位配列画素数を大きくするという発想が無かったこと
によるところが大きいと思われる。
Here, considering the essence of the problem solving in the embodiment of the present invention, there are two major novel elements. One is to increase the number of pixels in the unit array, and the other is to acquire information using filters of the same color and different densities and generate color signals accordingly. In the past, attempts have been made in so-called plane-sequential (that is, time-division) imaging or multi-plate imaging, but none of these has been specifically configured at the point-sequential pixel array level. This is probably because there was no idea to increase the number of unit array pixels.

【0045】すなわち、従来の単板撮像素子におけるコ
ーディングの単位配列の画素数は解像度を確保するとい
う観点から4画素以下であった。これに対して本発明で
は5画素以上の単位配列を用いるという新しい技術を開
示したものであって、この場合でも、上記本発明の実施
の形態(6画素単位配列)では実質的な解像度を従来
(3画素単位配列)と同様に確保できることも示した。
このような従来と同等の解像度確保はもちろん必須では
無く、解像度の劣化を許容することでさらに大きな別の
効果を引出すことも考えられるから5画素以上の単位配
列という新技術は撮像技術に対して大きな効果をもたら
すものである。
That is, the number of pixels of the coding unit array in the conventional single-chip image pickup device is 4 pixels or less from the viewpoint of securing the resolution. On the other hand, the present invention discloses a new technique of using a unit array of five or more pixels. Even in this case, the embodiment of the present invention (six pixel unit array) can reduce the substantial resolution. (3 pixel unit array) can also be secured.
It is, of course, not necessary to ensure such a resolution equivalent to the conventional one, and it is conceivable that a further great effect can be obtained by allowing the degradation of the resolution. It has a great effect.

【0046】より具体的に、5画素以上の単位配列を用
いれば上記実施例以外にも、以下に示すような様々な実
施例を実現することができる。
More specifically, if a unit array of 5 pixels or more is used, various embodiments other than the above-described embodiment can be realized as follows.

【0047】(1)5画素:R,G,g,B,W RGBに、Gよりも侠帯域の緑であるgと、全透過フィ
ルタ(すなわちフィルタ無し)であるWを加えたもの
で、緑の色再現を改善し、且つ低照度対応(高感度)を
実現できる。 (2)7画素:LR,DR,LG,DG,LB,DB,
W 上記第1実施例にWを加えたもので、ダイナミックレン
ジを拡大し、且つ低照度対応(高感度)を実現できる。 (3)8画素:LYe,DYe,LMg,DMg,LC
y,DCy,LG,DG 従来のG+補色(Ye,Mg,Cy)のいわゆる補色4
色フィルタに対してL,D2濃度による上記実施例と同
様のダイナミックレンジ拡大対応を実現する。 (4)9画素:LR,MR,DR,LG,MG,DG,
LB,MB,DB 上記実施例の発展型で、RGB3原色に対してL,M,
Dの3濃度を適用して、更なるダイナミックレンジ拡大
を実現する。等を挙げることができる。
(1) 5 pixels: R, G, g, B, WR RGB is added with g, which is a green band in a band wider than G, and W, which is a total transmission filter (ie, no filter). The green color reproduction can be improved and low illuminance can be handled (high sensitivity). (2) 7 pixels: LR, DR, LG, DG, LB, DB,
W By adding W to the first embodiment, it is possible to expand the dynamic range and realize low illuminance (high sensitivity). (3) 8 pixels: LYe, DYe, LMg, DMg, LC
y, DCy, LG, DG So-called complementary color 4 of conventional G + complementary color (Ye, Mg, Cy)
For the color filters, the same dynamic range expansion support as in the above embodiment is realized by the L and D2 densities. (4) 9 pixels: LR, MR, DR, LG, MG, DG,
LB, MB, DB This is an extension of the above-described embodiment, in which L, M,
By applying three densities of D, the dynamic range is further expanded. And the like.

【0048】これらの各実施例の単位配列の配列例を図
5に示す。(なお、各配列の基本配列内で各フィルタの
配置を入れ替えれば異なる配列が生じるが、配列自体の
形状例えば6画素基本配列を3×2とするか2×3、1
×6、6×1とするか等については、基本配列を周期的
に並べるときの周期配置パターンの変更と上記基本配列
内での各フィルタ配置の入れ替えで全く同じ物を得るこ
とができるので、いずれか一つの形状を示せば足りるこ
とを付言する。)
FIG. 5 shows an example of the unit arrangement in each of these embodiments. (Note that, if the arrangement of each filter is exchanged within the basic array of each array, a different array will occur. However, the shape of the array itself, for example, a 6-pixel basic array is set to 3 × 2 or
Regarding whether to be × 6, 6 × 1, etc., exactly the same thing can be obtained by changing the periodic arrangement pattern when arranging the basic array periodically and exchanging each filter arrangement in the basic array, It is necessary to show one of the shapes. )

【0049】このように、本発明は上記のように様々な
フィルタを用いた様々な配列に応用して効果のあるもの
である。無論、上記例にとどまらず、任意のフィルタを
5以上の任意の画素数の単位配列を持つコーディングに
応用することができ、単位配列の中の配置も任意の配置
を採り得る。さらにいわゆる光学的なフィルタを使用せ
ず、撮像素子自体の素子構造で分光特性を異ならしめ、
色コーディングを施したものであっても良い。
As described above, the present invention is effective when applied to various arrangements using various filters as described above. Of course, the present invention is not limited to the above example, and an arbitrary filter can be applied to coding having a unit array having an arbitrary number of pixels of 5 or more, and the arrangement in the unit array can also take an arbitrary arrangement. Furthermore, without using a so-called optical filter, the spectral characteristics differ depending on the element structure of the image sensor itself,
It may be color-coded.

【0050】[0050]

【発明の効果】上記したように、本発明によれば従来と
同等の撮像素子を用いつつ、必要に応じて従来の配列の
持つ特長を基本的に有したまま撮像レンジや色再現ある
いは感度などの基本性能を飛躍的に向上した高画質な撮
像装置と、それに適した撮像素子を提供することができ
る。請求項1の発明によれば、従来の4画素以下の単位
配列では到底為し得ない多様な撮像画質の向上が可能な
撮像素子が得られる。請求項2の発明によれば、6画素
単位配列であるから例えば従来の3画素単位配列を元に
した2濃度型などへの応用が極めて簡単に実現できる。
請求項3の発明によれば、従来の3画素単位配列の持つ
特長を基本的に有したまま撮像レンジを飛躍的に拡大可
能な撮像素子が得られる。請求項4の発明によれば、従
来のRGBストライプ配列の持つ特長を基本的に有した
まま撮像レンジを飛躍的に拡大可能な撮像素子が得られ
る。請求項5の発明によれば、特に中輝度領域の被写体
に対しては従来の3画素単位配列(例えばRGBストラ
イプ配列)の撮像素子を用いた撮像装置と全く同性能を
保ちつつ、極めて広い撮像レンジを持つ高画質な撮像装
置が得られる。請求項6の発明によれば本発明の撮像素
子を使用して高画質な撮像を行なう際に生じる画素の感
度差を補償して映像信号を生成する実用的な撮像装置が
得られる。請求項7の発明によれば、高輝度や低輝度に
おいても一定条件を満たす被写体に関しては従来の3画
素単位配列(例えばRGBストライプ配列)の撮像素子
を用いた撮像装置と全く同性能を有する撮像装置が得ら
れる。
As described above, according to the present invention, the image pickup range, color reproduction, sensitivity, etc. are used while using the image pickup element equivalent to the conventional one and maintaining the features of the conventional arrangement as necessary. It is possible to provide a high-quality image pickup device having a drastically improved basic performance and an image pickup device suitable for the image pickup device. According to the first aspect of the present invention, it is possible to obtain an image sensor capable of improving various image quality, which cannot be achieved by the conventional unit arrangement of four pixels or less. According to the second aspect of the present invention, since the six pixel unit array is used, for example, application to a two density type based on a conventional three pixel unit array can be realized very easily.
According to the third aspect of the present invention, it is possible to obtain an imaging device capable of dramatically expanding an imaging range while basically having the features of the conventional three-pixel unit array. According to the fourth aspect of the present invention, it is possible to obtain an image pickup device capable of dramatically expanding the image pickup range while basically having the features of the conventional RGB stripe arrangement. According to the fifth aspect of the present invention, particularly for a subject in a middle luminance area, an extremely wide range of image pickup is achieved while maintaining exactly the same performance as an image pickup apparatus using a conventional image pickup device of a three-pixel unit arrangement (for example, an RGB stripe arrangement). A high-quality imaging device having a range can be obtained. According to the sixth aspect of the present invention, it is possible to obtain a practical imaging device that generates a video signal by compensating for a difference in pixel sensitivity that occurs when performing high-quality imaging using the imaging device of the present invention. According to the seventh aspect of the present invention, for an object which satisfies certain conditions even at high luminance and low luminance, an image pickup having exactly the same performance as an image pickup apparatus using an image pickup device of a conventional three-pixel unit arrangement (for example, RGB stripe arrangement). A device is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の撮像装置の全体の構成を示すブロック
FIG. 1 is a block diagram showing the overall configuration of an imaging apparatus according to the present invention.

【図2】本発明の撮像素子のフィルタ配列を示す図FIG. 2 is a diagram showing a filter arrangement of the image sensor of the present invention.

【図3】本発明の撮像素子のLG,DG画素の特性曲線FIG. 3 is a characteristic curve of LG and DG pixels of the image sensor according to the present invention.

【図4】本発明の撮像装置の総合特性曲線FIG. 4 is an overall characteristic curve of the imaging device of the present invention.

【図5】本発明の撮像素子のフィルタ配列(単位配列の
配列例)を示す図
FIG. 5 is a diagram showing a filter array (an example of a unit array) of the image sensor according to the present invention.

【図6】従来の撮像素子のフィルタ配列(RGBベイヤ
配列)を示す図
FIG. 6 is a diagram showing a filter array (RGB Bayer array) of a conventional image sensor.

【図7】従来の撮像素子のフィルタ配列(RGBストラ
イプ配列)を示す図
FIG. 7 is a diagram showing a filter array (RGB stripe array) of a conventional image sensor.

【図8】従来の撮像素子の特性曲線FIG. 8 is a characteristic curve of a conventional image sensor.

【符号の説明】[Explanation of symbols]

101・・・・撮影レンズ系 102・・・・撮影レンズ駆動機構 103・・・・露出制御機構 104・・・・フィルタ系 105・・・・撮像素子(CCD) 106・・・・CCDドライバ 107・・・・プリプロセス 108・・・・ディジタルプロセス 109・・・・カードインターフェース 110・・・・メモリカード 111・・・・LCD画像表示系 112・・・・システムコントローラ 113・・・・操作スイッチ系 114・・・・操作表示系 115・・・・ストロボ 116・・・・レンズドライバ 117・・・・露出制御ドライバ 101 imaging lens system 102 imaging lens driving mechanism 103 exposure control mechanism 104 filter system 105 image sensor (CCD) 106 CCD driver 107 ····· Preprocess 108 ··· Digital process 109 ··· Card interface 110 ··· Memory card 111 ··· LCD image display system 112 ··· System controller 113 ··· Operation switch System 114 ··· Operation display system 115 ··· Strobe 116 ··· Lens driver 117 ··· Exposure control driver

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 N画素配列(ただしNは5以上の自然
数)を単位配列とする2次元の周期配列として構成され
た撮像画素配列を有したことを特徴とする撮像素子。
1. An imaging device comprising an imaging pixel array configured as a two-dimensional periodic array having an N pixel array (where N is a natural number of 5 or more) as a unit array.
【請求項2】 上記Nは6であることを特徴とする請求
項1記載の撮像素子。
2. The imaging device according to claim 1, wherein said N is 6.
【請求項3】 上記単位配列を構成する第1〜第6の6
画素のうち第1〜第3画素は相異なる3つの色特性(相
対分光感度特性)を有し、第4画素は上記第1画素と、
第5画素は上記第2画素と、第6画素は上記第3画素
と、それぞれ感度(絶対感度)が異なる同一の色特性を
有したものであることを特徴とする請求項2記載の撮像
素子。
3. The first to sixth sixth elements constituting the unit array.
Among the pixels, the first to third pixels have three different color characteristics (relative spectral sensitivity characteristics), and the fourth pixel has the first pixel and
3. The image sensor according to claim 2, wherein the fifth pixel has the same color characteristic as the second pixel, and the sixth pixel has the same color characteristic as that of the third pixel. .
【請求項4】 上記相異なる3つの色特性は、加色混合
の3原色RGBであることを特徴とする請求項3記載の
撮像素子。
4. The image pickup device according to claim 3, wherein the three different color characteristics are three primary colors RGB of additive color mixture.
【請求項5】 第1〜第6の6画素のうち第1〜第3画
素は相異なる3つの色特性(相対分光感度特性)を有
し、第4画素は上記第1画素と、第5画素は上記第2画
素と、第6画素は上記第3画素と、それぞれ感度(絶対
感度)が異なる同一の色特性を有する6画素からなる単
位配列を2次元の周期配列として構成された撮像素子
と、上記撮像素子の上記第1〜第6の各画素に対応して
得られる第1〜第6の各画素情報信号に基づいて所定の
態様の映像信号を生成する映像信号生成手段とを有した
撮像装置であって、 上記撮像素子の上記第1と第4(第2と第5、第3と第
6)の画素の相異なる感度は、上記第1(第2、第3)
の画素情報信号の有効輝度域と上記第4(第5、第6)
の画素情報信号の有効輝度域とが共通領域を有するよう
に設定されたものであることを特徴とする撮像装置。
5. The first to third pixels among the first to sixth pixels have three different color characteristics (relative spectral sensitivity characteristics), and the fourth pixel has the first pixel and the fifth pixel. An image sensor in which a unit array composed of six pixels having the same color characteristic and having different sensitivities (absolute sensitivities) from the second pixel and the third pixel is a two-dimensional periodic array. And video signal generating means for generating a video signal in a predetermined mode based on the first to sixth pixel information signals obtained corresponding to the first to sixth pixels of the image sensor. Wherein the different sensitivities of the first and fourth (second and fifth, third and sixth) pixels of the image sensor are the first (second and third).
And the fourth (fifth, sixth) effective luminance range of the pixel information signal of FIG.
An imaging apparatus characterized in that an effective luminance area of the pixel information signal is set to have a common area.
【請求項6】 上記映像信号生成手段は、上記第1(第
2、第3)の画素情報信号と第4(第5、第6)の画素
情報信号の同一輝度被写体に対する信号レベル差を補償
するレベル補償手段を有したものであることを特徴とす
る請求項5記載の撮像装置。
6. The video signal generating means compensates for a signal level difference between the first (second and third) pixel information signals and the fourth (fifth and sixth) pixel information signals for the same luminance subject. 6. The image pickup apparatus according to claim 5, further comprising a level compensating means for performing the operation.
【請求項7】 上記映像信号生成手段は、上記各画素情
報信号の処理に際して有効輝度域からの逸脱が生じてお
り、且つ隣接する異感度同一色の画素情報信号が逸脱を
生じていない場合には、上記隣接する異感度同一色の画
素情報信号によって補完する画素情報補完手段を有した
ものであることを特徴とする請求項5記載の撮像装置。
7. The video signal generating means according to claim 1, wherein a deviation from an effective luminance range occurs during processing of each of said pixel information signals, and adjacent pixel information signals of different sensitivity and same color do not deviate. 6. The imaging apparatus according to claim 5, further comprising a pixel information complementing unit that complements the adjacent pixel information signals of different sensitivity and the same color.
JP05593999A 1999-03-03 1999-03-03 Imaging device and imaging apparatus Expired - Fee Related JP4309505B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP05593999A JP4309505B2 (en) 1999-03-03 1999-03-03 Imaging device and imaging apparatus
US09/518,706 US6803955B1 (en) 1999-03-03 2000-03-03 Imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05593999A JP4309505B2 (en) 1999-03-03 1999-03-03 Imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2000253412A true JP2000253412A (en) 2000-09-14
JP4309505B2 JP4309505B2 (en) 2009-08-05

Family

ID=13013058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05593999A Expired - Fee Related JP4309505B2 (en) 1999-03-03 1999-03-03 Imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP4309505B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166432A (en) * 2005-12-15 2007-06-28 Konica Minolta Photo Imaging Inc Imaging unit and imaging device
JP2008125117A (en) * 2001-01-09 2008-05-29 Sony Corp Apparatus and method for processing image
US7479998B2 (en) 2001-01-09 2009-01-20 Sony Corporation Image pickup and conversion apparatus
US7978240B2 (en) 2005-10-03 2011-07-12 Konica Minolta Photo Imaging, Inc. Enhancing image quality imaging unit and image sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008125117A (en) * 2001-01-09 2008-05-29 Sony Corp Apparatus and method for processing image
US7479998B2 (en) 2001-01-09 2009-01-20 Sony Corporation Image pickup and conversion apparatus
US7847829B2 (en) 2001-01-09 2010-12-07 Sony Corporation Image processing apparatus restoring color image signals
JP4674607B2 (en) * 2001-01-09 2011-04-20 ソニー株式会社 Image processing apparatus and method
JP2011087317A (en) * 2001-01-09 2011-04-28 Sony Corp Apparatus and method for processing image
US7986360B2 (en) 2001-01-09 2011-07-26 Sony Corporation Image processing apparatus and method for generating a restoration image
USRE46557E1 (en) 2001-01-09 2017-09-19 Sony Semiconductor Solutions Corporation Image processing apparatus and method for generating a restoration image
USRE47062E1 (en) 2001-01-09 2018-09-25 Sony Semiconductor Solutions Corporation Image processing apparatus and method for generating a restoration image
US7978240B2 (en) 2005-10-03 2011-07-12 Konica Minolta Photo Imaging, Inc. Enhancing image quality imaging unit and image sensor
JP2007166432A (en) * 2005-12-15 2007-06-28 Konica Minolta Photo Imaging Inc Imaging unit and imaging device

Also Published As

Publication number Publication date
JP4309505B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP4195169B2 (en) Solid-state imaging device and signal processing method
US6803955B1 (en) Imaging device and imaging apparatus
JP2002010276A (en) Imaging apparatus
JP4600315B2 (en) Camera device control method and camera device using the same
US9060159B2 (en) Image processing device and method, and imaging device
US8111298B2 (en) Imaging circuit and image pickup device
US9160999B2 (en) Image processing device and imaging device
JP4725520B2 (en) Image processing device, non-imaging color signal calculation device, and image processing method
JP4077161B2 (en) Imaging apparatus, luminance correction method, and program for executing the method on a computer
JP4460751B2 (en) Imaging device and imaging apparatus
JP4309505B2 (en) Imaging device and imaging apparatus
JP2006333113A (en) Imaging device
US7470881B2 (en) Solid-state imaging device including plural groups of photoelectric conversion devices with plural microlenses being shifted in a peripheral portion of the imaging device, and imaging apparatus including the imaging device
JP5411390B2 (en) Color image sensor
JP4119566B2 (en) Color imaging device and color imaging device
JP4309506B2 (en) Imaging device and imaging apparatus
JP4309618B2 (en) Driving method of solid-state imaging device
JP2004194248A (en) Image pickup element and image pickup device
JP4307862B2 (en) Signal processing method, signal processing circuit, and imaging apparatus
JP4119565B2 (en) Color imaging device and color imaging device
WO2022178684A1 (en) Camera system, method for hdr composition, and computer usable medium storing software for implementing method
JP2004336468A (en) Imaging apparatus and image processing method
JP2002010273A (en) Imaging device
JP2006148591A (en) Solid-state imaging apparatus and driving method of solid-state imaging element
JP3490832B2 (en) Imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees