JPH02136989A - Paper measuring instrument - Google Patents

Paper measuring instrument

Info

Publication number
JPH02136989A
JPH02136989A JP29048788A JP29048788A JPH02136989A JP H02136989 A JPH02136989 A JP H02136989A JP 29048788 A JP29048788 A JP 29048788A JP 29048788 A JP29048788 A JP 29048788A JP H02136989 A JPH02136989 A JP H02136989A
Authority
JP
Japan
Prior art keywords
paper
light
measuring device
reflected
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29048788A
Other languages
Japanese (ja)
Other versions
JPH0576072B2 (en
Inventor
Yorihiko Maeno
前野 頼彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIPOOLE KK
Dipole Electronics Co Ltd
Original Assignee
DAIPOOLE KK
Dipole Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIPOOLE KK, Dipole Electronics Co Ltd filed Critical DAIPOOLE KK
Priority to JP29048788A priority Critical patent/JPH02136989A/en
Publication of JPH02136989A publication Critical patent/JPH02136989A/en
Publication of JPH0576072B2 publication Critical patent/JPH0576072B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately detect the fine shape of a side end of paper and its quantity by irradiating the flank of stacked sheets of paper with only the horizontally linear polarized component of laser light vertically, and detecting only the circular polarized component of its reflected light and measuring the light- dark variation of the reflected light. CONSTITUTION:The flank of the longitudinally stacked sheets of paper 3 on a straight moving table 11 is irradiated with the horizontally linear polarized component of the laser light and this straight moving table 11 is put in straight moving motion by a driving mechanism 12 to scan the laser light the flank of the paper stacked on this table from end to end. Only the circular polarized component of the light reflected by the side end part of paper 3 is converged by a convex lens 15 and focused on a photodetector 5, which measures the light and shade of the reflected light to measure the quantity of paper and the shape of the side end part of the paper. Consequently, the quantity of the paper and the shape of the side end of the paper are accurately detected by utilizing the laser light.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザ光を利用して紙の枚数と紙の側端の形
状を精度良く検知する紙測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a paper measuring device that uses laser light to accurately detect the number of sheets of paper and the shape of the side edges of the paper.

〔従来の技術〕[Conventional technology]

従来から、紙の枚数の計測には紙幣枚数カウンタ等に採
用されている方式が、多く使用されている。この方式は
、重ねた紙幣の中央部分を固定しておいて、その端を金
属片でさばき、そこに光を照射して、光のフリッカを光
電素子により検知することによって紙幣の枚数を計数す
るものである。
BACKGROUND ART Conventionally, methods used in banknote counters and the like have often been used to measure the number of sheets of paper. In this method, the central part of the stacked banknotes is fixed, the edges are separated with metal pieces, light is irradiated there, and the number of banknotes is counted by detecting the flicker of the light with a photoelectric element. It is something.

しかし、この方法は紙幣より薄い紙に使用することはで
きない。何故ならば、金属片によるさばきによって紙が
借れてしまうからである。一方、紙幣よりも厚い紙の場
合にも、金属片のさばきによって紙が折れてしまい満足
のいく計数は行えない。
However, this method cannot be used for paper thinner than banknotes. This is because the paper will be damaged by being handled by the metal pieces. On the other hand, even if the paper is thicker than banknotes, the paper will break when the metal pieces are handled, making it impossible to count satisfactorily.

これに対し、近年、これら従来の接触成紙枚数計の欠点
を解決するため、紙に物理的な接触を与えずに光学的方
法のみによって紙の枚数を計数する方法が採用されて来
ている。その−例が特公昭57−10475号に開示さ
れているが、これを第3図により説明する。
On the other hand, in recent years, in order to solve the drawbacks of these conventional contact paper sheet counting methods, methods have been adopted that count the number of paper sheets only by optical methods without making any physical contact with the paper. . An example of this is disclosed in Japanese Patent Publication No. 57-10475, which will be explained with reference to FIG.

印刷加工物3、例えば印刷され折られ製箱機によって糊
づけされた紙器の1包や印刷物の折り丁などの背の部分
を下にしたものを、スリットを有する架台4の上に縦方
向に載せる。電球1からの光をスリットを通して印刷加
工物3の底面に照射させる。ホトトランジスタ等の光電
変換素子5によりその反射光を受光して、デジタルカウ
ンタlOにより前記加工物3の数を計数する。この発明
に於いては、照射光線の反射が困難で計数のむずかしか
った印刷加工物を縦方向に並列すると共に光源の照射角
を変化させ、反射光を光電変換素子により捕らえ計数を
行っている。その最適な照射角は、印刷加工物の濃度に
応じて次の様に決定された。
A printed workpiece 3, such as a package of a paper carton that has been printed, folded, and glued by a box-making machine, or a signature of a printed matter, with its spine facing down, is placed vertically on a pedestal 4 having a slit. I'll put it on. Light from a light bulb 1 is irradiated onto the bottom surface of a printed workpiece 3 through a slit. The reflected light is received by a photoelectric conversion element 5 such as a phototransistor, and the number of the workpieces 3 is counted by a digital counter IO. In this invention, the printed products, which were difficult to count due to the difficulty of reflecting the irradiated light, are arranged in a vertical direction, and the irradiation angle of the light source is changed, and the reflected light is captured by a photoelectric conversion element and counted. The optimum irradiation angle was determined as follows depending on the density of the printed workpiece.

反射濃度  0.8〜1.0   θ:42゜1.0〜
1.2   θ:30’ 光沢物   θ:45゜ 〔発明が解決しようとする問題点〕 従来の光学式紙枚数計数装置による計数では、第6図に
示す様に、重ねた紙3a、3b、3c、3d。
Reflection density 0.8~1.0 θ: 42°1.0~
1.2 θ: 30' Glossy object θ: 45° [Problem to be solved by the invention] In counting using a conventional optical paper counting device, as shown in FIG. 6, stacked papers 3a, 3b, 3c, 3d.

3e・・・の側面の垂直方向に対して照射角θ(前記特
許公報に於いては、30°〜45°)を為す方向から光
を紙の側面に照射している。そして光が照射されている
明部と紙の影になって光が全く当たらない暗部(第6図
に於て斜線が付された表面部分)を、紙の側面の垂直方
向に設置した光電素子により検出し、その明暗の変化に
より紙の枚数を計数している。
The side surface of the paper is irradiated with light from a direction forming an irradiation angle θ (30° to 45° in the above patent publication) with respect to the vertical direction of the side surface of the paper 3e. Then, a photoelectric element is installed vertically to the side of the paper, with a bright area illuminated by light and a dark area (the surface area marked with diagonal lines in Figure 6) where no light hits due to the shadow of the paper. The number of sheets of paper is counted based on the change in brightness.

しかしながら、紙の側面の断面が角張っているる場合に
は、従来の枚数計によっても紙の枚数を計数する事は可
能であったが、紙の側面が円状である場合には、紙の側
端部の影が明瞭に発生しないので、実際上その計測は困
難であった。
However, if the side surface of the paper is angular in cross section, it is possible to count the number of sheets using a conventional sheet counter, but if the side surface of the paper is circular, the number of sheets of paper can be counted. Since the shadow of the side edge was not clearly generated, it was difficult to actually measure it.

更に、紙の側面の配列が第7図に示される様に不規則で
あって、紙3g及び3hの側端が紙3fの影になってし
まう場合、図に於て斜線が付された表面部分が示す様に
、これらの紙の側端部には光が当たらず、その結果これ
らの紙は計数されなかった。
Furthermore, if the arrangement of the sides of the paper is irregular as shown in Figure 7, and the side edges of papers 3g and 3h are in the shadow of paper 3f, the diagonally lined surface in the figure As shown in the section, the side edges of these papers were not illuminated and as a result these papers were not counted.

又、第8図に示す様に、紙31が紙3 i、3 j、3
にの側端部を覆っている様な状態の場合、従来の枚数計
では、明るい部分を検出するのみで、紙31が他の3枚
の紙の側端を覆っているという異常状態を検出すること
は不可能であった。
Also, as shown in FIG. 8, the paper 31 is paper 3 i, 3 j, 3
In the case of paper 31 covering the side edges of the other three sheets, conventional sheet counters only detect the bright areas, and detect an abnormal condition where paper 31 covers the side edges of the other three sheets. It was impossible to do so.

一方、これまで述べて来たように、従来の紙の枚数測定
は紙の側面に斜めから光を照射する事によって行われて
いる。しかしながら、−枚毎の紙の側端の形状をこの様
な方法で測定することは不可能であるので、従来、紙の
側端の形状や紙の厚さを測定する装置は存在していなか
った。
On the other hand, as described above, the conventional measurement of the number of sheets of paper is performed by irradiating light obliquely onto the side of the paper. However, it is impossible to measure the shape of the side edges of each sheet of paper using this method, so conventionally there has been no device that can measure the shape of the side edges of paper or the thickness of paper. Ta.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、レーザ光を発生させる光源、偏光ビームスプ
リッタ、4分の1波長補正部品、凸レンズ、及び光検出
器とを有し、 前記光源より発生し、前記偏光ビームスプリッタ、前記
4分の1波長補正部品及び前記凸レンズを通過したレー
ザ光を、重ねた紙の側端に照射させ、 その入射光と前記側端での反射光との軸が一致する様に
、前記光源、前記偏光ビームスプリッタ、前記4分の1
波長補正部品及び前記凸レンズを配置し、 前記反射光が前記軸に対して垂直の方向に反射する様に
、前記偏光ビームスプリッタを配置して、前記偏光ビー
ムスプリッタにより反射された光が前記光検出器に入射
する様に前記光検出器を配置し、 前記入射光と前記紙の側端部を相対的に移動させる機構
を設けた事を特徴とする紙測定装置により従来技術の問
題点を解決したものである。
The present invention includes a light source that generates a laser beam, a polarizing beam splitter, a quarter wavelength correction component, a convex lens, and a photodetector, the laser beam being generated from the light source, the polarizing beam splitter, the quarter wavelength correction component, and a photodetector. The light source and the polarizing beam splitter are arranged so that the laser beam that has passed through the wavelength correction component and the convex lens is irradiated onto the side edge of the stacked papers, and the axes of the incident light and the reflected light at the side edge are aligned. , said one-fourth
A wavelength correction component and the convex lens are arranged, the polarizing beam splitter is arranged so that the reflected light is reflected in a direction perpendicular to the axis, and the light reflected by the polarizing beam splitter is detected by the optical detection. The problems of the prior art are solved by a paper measuring device characterized in that the photodetector is arranged so that the light is incident on a container, and a mechanism is provided to relatively move the incident light and the side edge of the paper. This is what I did.

更に、本発明は、レーザ光を発生させる光源、ホログラ
フィックプレート、凸レンズ、及び光検出器とを有し、 重ねた紙の側端に前記光源、前記ホログラフィックプレ
ート及び前記凸レンズを通過したレーザ光を照射させ、 前記紙による反射光が前記ホログラフィックプレートを
通過して前記光検出器に到達する様に構成し、かつ 前記紙の側端と前記側端に入射する前記レーザ光の相対
位置を変化させる機構を設けた事を特徴とする紙測定装
置により、更に紙測定装置の小型化及び軽量化を計って
いる。
Furthermore, the present invention includes a light source that generates a laser beam, a holographic plate, a convex lens, and a photodetector, and the laser beam that has passed through the light source, the holographic plate, and the convex lens is applied to a side edge of the stacked paper. is configured so that the light reflected by the paper passes through the holographic plate and reaches the photodetector, and the relative positions of the side edges of the paper and the laser beam incident on the side edges are determined. The paper measuring device is characterized by being equipped with a changing mechanism, and the paper measuring device is further made smaller and lighter.

〔作用〕[Effect]

本発明の紙測定装置は、レーザ光の水平方向に直線偏光
させた成分のみを重ねた紙の側面に垂直に照射し、その
反射光の円偏光成分のみを検出し、反射光の明暗の変化
により紙の枚数や紙の側端の状態を検知するものである
The paper measurement device of the present invention vertically irradiates only the horizontally linearly polarized component of laser light onto the side surface of stacked papers, detects only the circularly polarized component of the reflected light, and detects changes in the brightness and darkness of the reflected light. This detects the number of sheets of paper and the condition of the side edges of the paper.

レーザ光は被測定物である重ねた紙の側面に垂直に照射
されるが、その照射面つまり紙の側端面が入射光に対し
て垂直となる場合に反射光が最大となり、その照射面が
入射光に対して傾いた状態で反射光は弱くなる。この為
、反射光の強度は紙の側端の形状に対応して変化するの
で、これを計測することに依って、紙の側端の微細な形
状や紙の枚数を正確に検知することが出来る。
The laser beam is irradiated perpendicularly to the side surface of the stacked sheets of paper that is the object to be measured, but when the irradiated surface, that is, the side edge surface of the paper, is perpendicular to the incident light, the reflected light is maximum, and the irradiated surface is The reflected light becomes weaker when it is tilted relative to the incident light. For this reason, the intensity of the reflected light changes depending on the shape of the side edge of the paper, so by measuring this, it is possible to accurately detect the minute shape of the side edge of the paper and the number of sheets of paper. I can do it.

この様に、本発明の紙測定装置は、斜めから光を照射さ
せて影を発生させる従来の紙測定装置とは異なり、反射
面の傾き量による反射量の大小を検知しているので、斜
めから光を当てたときに発生する影の部分に存在する紙
やその側端が円状で明確な影が発生しなかった紙なども
精度良く計測することが出来る。
In this way, the paper measuring device of the present invention is different from the conventional paper measuring device, which irradiates light obliquely to generate shadows, because it detects the amount of reflection depending on the amount of inclination of the reflective surface. It is possible to accurately measure paper that is in the shadow area that occurs when light is shined on it, or paper that has a circular side edge and does not have a clear shadow.

〔実施例〕〔Example〕

第1図に基づいて本発明の第一実施例を説明する。 A first embodiment of the present invention will be described based on FIG.

光源であるHe−Neレーザ6(波長633nm 、出
力1mw)から直線偏光のレーザ光を発生させ、偏光子
Glan−thomsonプリズム7により正確に水平
方向に直線偏光させる。次に、このレーザ光を偏光ビー
ムスプリッタ8に当てて水平方向の偏光成分のみを透過
させる。この透過光の位相を、マイカ又は水晶により形
成された4分の1波長板9により45°回転させて円偏
光にする。そしてこのレーザ光を凸レンズ2により焦点
を紋り、直進テーブル11上に縦に重ねた紙3の側面に
照射する。この直進テーブル11を駆動機構12により
直進運動させることにより、このテーブルの上に載せら
れた紙の側面を端から端までレーザ光により走査させる
ことが可能になる。
Linearly polarized laser light is generated from a He-Ne laser 6 (wavelength: 633 nm, output: 1 mw) as a light source, and is linearly polarized accurately in the horizontal direction by a polarizer Glan-thomson prism 7. Next, this laser light is applied to a polarizing beam splitter 8 to transmit only the horizontally polarized component. The phase of this transmitted light is rotated by 45° by a quarter-wave plate 9 made of mica or quartz, thereby turning it into circularly polarized light. The laser beam is focused by a convex lens 2 and irradiated onto the side surface of the paper 3 stacked vertically on a rectilinear table 11. By moving the rectilinear table 11 in a rectilinear manner by the drive mechanism 12, it becomes possible to scan the side surface of the paper placed on the table from end to end with a laser beam.

紙3の側端部で反射した光は再びレンズ2によって集光
され、4分の1波長板9に当てられる。
The light reflected from the side edges of the paper 3 is again focused by the lens 2 and applied to the quarter-wave plate 9.

これによフて光の位相が更に45°回転してその偏光が
垂直方向の直線偏光となる。次に、この光が偏光ビーム
スプリッタ8を通過する際、垂直方向の偏光成分は直角
に曲げられる。そしてこの光が凸レンズ15により集光
されて、光検出器5に焦点を結ぶ。この光検出器5が反
射光の明暗を測定し、これにより紙の枚数や紙の側端部
の形状が計測される。
As a result, the phase of the light is further rotated by 45 degrees, and the polarized light becomes vertically linearly polarized light. Then, when this light passes through the polarizing beam splitter 8, the vertically polarized component is bent at right angles. This light is then condensed by the convex lens 15 and focused on the photodetector 5. This photodetector 5 measures the brightness and darkness of the reflected light, thereby measuring the number of sheets of paper and the shape of the side edges of the paper.

この実施例に於いては、4分の1波長補正部品には4分
の1波長板を用いたが、フレスネルローブ等の使用も可
能である。
In this embodiment, a quarter wavelength plate is used as the quarter wavelength correction component, but a Fresnel lobe or the like may also be used.

又、偏光子7を用いてレーザ光を正確に水平に直線偏光
させているが、半導体レーザなどにより発生される直線
偏光特性の良好なレーザ光を用いる場合には、偏光子7
は省略することも出来る。
In addition, the polarizer 7 is used to accurately linearly polarize the laser beam horizontally, but when using a laser beam with good linear polarization characteristics generated by a semiconductor laser, etc., the polarizer 7 is used.
can also be omitted.

この方法により、重ねた名刺を測定した結果の一部が第
3図に示されている。この図で、縦軸は光検出器の出力
(V)を示し、横軸は重ねた紙の側端に沿った距離を示
す。これによると名刺と名刺の隙間及び0.15r++
mの一枚の名刺の厚さがきわめて明瞭に観察され、その
結果名刺の枚数が正確に計数される。更に左から数えて
1〜5枚目の紙について示されるように、−枚毎の名刺
の側面の形状も明瞭に示されている。一方左から数えて
6.7及び8枚目の紙には、第8図のような紙の並びの
異常があることが判る。この紙の並びの異常を正常に並
び替えて再度測定した結果が第9図に示されている。こ
の場合には1〜8枚目までの紙の形状が正確に示されて
いて、当然に紙の枚数も正確に計数される。
A portion of the results of measuring stacked business cards using this method are shown in FIG. In this figure, the vertical axis shows the output (V) of the photodetector, and the horizontal axis shows the distance along the side edges of the stacked papers. According to this, the gap between business cards and 0.15r++
The thickness of one business card m can be observed very clearly, and as a result, the number of business cards can be accurately counted. Furthermore, as shown for the first to fifth sheets of paper counting from the left, the shape of the side of each business card is also clearly shown. On the other hand, it can be seen that the 6.7th and 8th sheets of paper counting from the left have an abnormal arrangement of the sheets as shown in FIG. FIG. 9 shows the results of re-measurement after the abnormal arrangement of the papers was rearranged to normal. In this case, the shapes of the first to eighth sheets of paper are accurately shown, and the number of sheets of paper is also accurately counted.

同様な方法によりコピー用紙を四つ折りにして重ねたも
のを測定した結果が、第4図に示されている。この図に
於いても、縦軸と横軸の単位は第3図の場合と同様であ
る。この場合に於いては、紙の側端が円上であるにも拘
らず紙と紙との間の隙間及び−枚毎の紙の形状が明瞭に
示されている。
FIG. 4 shows the measurement results of copy sheets folded in four and stacked in a similar manner. In this figure as well, the units of the vertical and horizontal axes are the same as in FIG. 3. In this case, even though the side edges of the papers are on a circle, the gaps between the papers and the shape of each sheet of paper are clearly shown.

しかもその分解能は1μmにも達している。Moreover, its resolution has reached 1 μm.

次に、第2図に基づいて本発明の第二実施例を説明する
Next, a second embodiment of the present invention will be described based on FIG.

この実施例に於いては、第一実施例に於ける偏光子7、
偏光ビームスプリッタ8及び4分の1波長板9がホログ
ラフィックプレート13に置き換えられている。更にH
e−Neレーザ6は半導体レーザ16に置き換えられ、
光検出器5は半導体レーザ16からI mmfiれた位
置に配置され半導体レーザ16と一体にマウントされて
いる。
In this embodiment, the polarizer 7 in the first embodiment,
The polarizing beam splitter 8 and the quarter wave plate 9 are replaced by a holographic plate 13. Further H
The e-Ne laser 6 is replaced with a semiconductor laser 16,
The photodetector 5 is placed at a position I mm away from the semiconductor laser 16 and is mounted integrally with the semiconductor laser 16.

第一実施例に於けるこれらの構成部分が一枚のホログラ
フィックプレートにより置換されているので、この第二
実施例に於ける計数装置は極めてコンパクトに構成され
ている。
Since these components in the first embodiment are replaced by a single holographic plate, the counting device in this second embodiment is extremely compact.

以上第一 第三回れの実施例の計数装置に於いても、入
射レーザ光と紙の側端部の相対位置を変化させるために
9紙を載せた直進テーブルを移動させたが、その代わり
にレーザ光源を移動させてもよい。
In the counting device of the first and third embodiments described above, the linear table on which nine pieces of paper were placed was moved in order to change the relative position between the incident laser beam and the side edge of the paper. The laser light source may be moved.

又、レーザ光をフィルタに透過させて単一波長のみを測
定に使用することによって測定のSハ比を向上させるこ
とも可能である。
It is also possible to improve the S/C ratio of measurement by transmitting laser light through a filter and using only a single wavelength for measurement.

更に、オートフォーカシング素子を用いて、スポットサ
イズが1μmの径で絶えず紙の側面に照射されるように
して、焦点のずれを自動的に補正する様にすれば測定精
度は更に向上する。
Furthermore, the measurement accuracy can be further improved by using an autofocusing element to constantly irradiate the side of the paper with a spot size of 1 μm to automatically correct the focus shift.

〔発明の効果〕〔Effect of the invention〕

本発明の紙測定装置は次のような効果を有する。 The paper measuring device of the present invention has the following effects.

(1)第一実施例の測定結果(第3図及び第4図)から
も判る様に、紙側端の形状が正確に検出できるので、正
規のエツジ断面形状を有していない不良品や、第7図や
第8図に示すような紙が正しく並んでいない異常状態が
容易に検出される。
(1) As can be seen from the measurement results of the first example (Figures 3 and 4), the shape of the paper side edge can be detected accurately, so it is possible to detect defective products that do not have a regular edge cross-sectional shape. , an abnormal state in which the sheets are not lined up correctly as shown in FIGS. 7 and 8 can be easily detected.

この時アラーム等によってこの異常状態を警告し、作業
者が異常配列にある紙を正しく並び替え再度枚数計測を
行うことが出来るようにすることも可能である。
At this time, it is also possible to warn of this abnormal state by an alarm or the like so that the operator can correctly rearrange the sheets in the abnormal arrangement and count the number of sheets again.

加えて、−枚毎の紙の厚さも正確に測定できる。In addition, the thickness of each sheet of paper can be accurately measured.

又、紙側端の断面が円形状である場合、またそれが折れ
曲がっている場合でも、確実にその状態が検出されるの
で、紙の枚数を数え間違えることなく正確に計数する事
ができる。しかも、従来の紙枚数計によって計数可能な
紙の厚さの範囲が極めて狭い範囲であったり、紙の厚さ
毎に種類の異なった紙枚数計を必要としたのとは異なり
、本発明の紙測定装置は一台で広範囲の厚さ(0,1,
mm以上であれば如何なる厚さでも)の紙の枚数を正確
に計数する事が出来る。
Furthermore, even if the cross section of the side edge of the paper is circular or bent, this condition is reliably detected, so the number of sheets of paper can be counted accurately without making a mistake. Furthermore, unlike conventional paper sheet counters that can only count paper thickness within an extremely narrow range or require different types of paper sheet counters for each thickness of paper, the present invention One paper measuring device can handle a wide range of thicknesses (0, 1,
It is possible to accurately count the number of sheets of paper of any thickness (as long as it is 1 mm or more).

(2)レーザ光の直線偏向と円偏向の関係を利用したた
めに従来の紙枚数計に比較して、測定感度及び測定分解
能が格段に向上した。さらにそのレーザ光源に固体レー
ザを用いた場合には紙測定装置の小型化も実現できる。
(2) Since the relationship between linear polarization and circular polarization of laser light is utilized, measurement sensitivity and measurement resolution are significantly improved compared to conventional paper counting counters. Furthermore, if a solid-state laser is used as the laser light source, it is possible to downsize the paper measuring device.

(3)レーザ光源から紙の側面に照射させる入射光とそ
こからの反射光との軸を共通に保った状態で計測を行う
ので、光を斜めに入射させ又その入射角を変化させる機
構が不必要となり、紙測定装置の構造が簡単になる。
(3) Measurement is performed with the axis of the incident light irradiated from the laser light source on the side of the paper and the reflected light from it kept the same, so there is no mechanism for making the light incident obliquely and changing the angle of incidence. This becomes unnecessary and the structure of the paper measuring device becomes simpler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第一実施例を示す。 第2図は、本発明の第二実施例を示す。 第3及び4図は、第一実施例の測定結果を示す。 第5図は、従来の紙枚数計を示す。 第6図は、従来の紙枚数計による紙枚数測定の原理を説
明する図である。 第7及び8図は、束ねた紙の側端面の断面図である。 第9図は、本発明の紙枚数計による紙の測定結果である
。 1−・・電球      2,14.15・・・レンズ
3・・・束ねた紙    3a〜31・・・紙4・・・
架台      5・・・光電変換素子6・・・He−
Neレーザ  7・・・偏光子8・・・偏光ビームスプ
リッタ 9・・・4分の1波長板 10・・・デジタルカウンタ
11・・・直進テーブル     12・・・送り機構
13・・・ホログラフィックプレート 16・・・半導体レーザ 特許出願人 株式会社ダイポール 第2図 第3図 第4 図 第 図 第 図 第 図 第 図 第 図
FIG. 1 shows a first embodiment of the invention. FIG. 2 shows a second embodiment of the invention. 3 and 4 show the measurement results of the first example. FIG. 5 shows a conventional paper counter. FIG. 6 is a diagram illustrating the principle of measuring the number of paper sheets using a conventional paper counter. FIGS. 7 and 8 are cross-sectional views of the side end surfaces of the bundled papers. FIG. 9 shows the results of paper measurement using the paper count meter of the present invention. 1-...Light bulb 2,14.15...Lens 3...Bundled paper 3a-31...Paper 4...
Frame 5...Photoelectric conversion element 6...He-
Ne laser 7... Polarizer 8... Polarizing beam splitter 9... Quarter wavelength plate 10... Digital counter 11... Straight table 12... Feeding mechanism 13... Holographic plate 16... Semiconductor laser patent applicant Dipol Co., Ltd. Figure 2 Figure 3 Figure 4 Figure Figure Figure Figure Figure Figure Figure

Claims (10)

【特許請求の範囲】[Claims] (1)レーザ光を発生させる光源、偏光ビームスプリッ
タ、4分の1波長補正部品、凸レンズ、及び光検出器と
を有し、 前記光源より発生し、前記偏光ビームスプリッタ、前記
4分の1波長補正部品及び前記凸レンズを通過したレー
ザ光を、重ねた紙の側端に照射させ、 その入射光と前記側端での反射光との軸が一致する様に
、前記光源、前記偏光ビームスプリッタ、前記4分の1
波長補正部品及び前記凸レンズを配置し、 前記反射光が前記軸に対して垂直の方向に反射する様に
、前記偏光ビームスプリッタを配置して、 前記偏光ビームスプリッタにより反射された光が前記光
検出器に入射する様に前記光検出器を配置し、 前記入射光と前記紙の側端部を相対的に移動させる機構
を設けた 事を特徴とする紙測定装置。
(1) A light source that generates a laser beam, a polarizing beam splitter, a quarter wavelength correction component, a convex lens, and a photodetector; The light source, the polarizing beam splitter, irradiating the side edge of the stacked papers with the laser beam that has passed through the correction component and the convex lens, and aligning the axes of the incident light and the reflected light at the side edge. one fourth of the said
a wavelength correction component and the convex lens are arranged, the polarization beam splitter is arranged so that the reflected light is reflected in a direction perpendicular to the axis, and the light reflected by the polarization beam splitter is detected by the light detection. A paper measuring device, characterized in that the photodetector is arranged so that the light is incident on a container, and a mechanism is provided for relatively moving the incident light and a side edge of the paper.
(2)偏光子を備えた事を特徴とする請求項(1)項記
載の紙測定装置。
(2) The paper measuring device according to claim (1), further comprising a polarizer.
(3)前記偏光ビームスプリッタにより反射された前記
反射光を凸レンズにより前記光検出器に集光させた事を
特徴とする請求項(1)又は(2)項記載の紙測定装置
(3) The paper measuring device according to claim (1) or (2), wherein the reflected light reflected by the polarizing beam splitter is focused on the photodetector by a convex lens.
(4)フィルタを透過させて選択した単一の波長光のみ
を紙の側面に入射させた事を特徴とする請求項(1)、
(2)、(3)又は(4)項記載の紙測定装置。
(4) Claim (1), characterized in that only the selected single wavelength light is transmitted through the filter and incident on the side surface of the paper;
The paper measuring device described in (2), (3) or (4).
(5)オートフォーカシング素子を備えた事を特徴とす
る前記何れかの請求項に記載の紙測定装置。
(5) The paper measuring device according to any one of the preceding claims, characterized by comprising an autofocusing element.
(6)レーザ光源が半導体レーザである事を特徴とする
前記何れかの請求項に記載の紙測定装置。
(6) The paper measuring device according to any one of the preceding claims, wherein the laser light source is a semiconductor laser.
(7)レーザ光を発生させる光源、ホログラフィックプ
レート、凸レンズ、及び光検出器とを有し、重ねた紙の
側端に前記光源、前記ホログラフィックプレート及び前
記凸レンズを通過したレーザ光を照射させ、 前記紙による反射光が前記ホログラフィックプレートを
通過して前記光検出器に到達する様に構成し、かつ 前記紙の側端と前記側端に入射する前記レーザ光の相対
位置を変化させる機構を設けた 事を特徴とする紙測定装置。
(7) It has a light source that generates a laser beam, a holographic plate, a convex lens, and a photodetector, and the side edges of the stacked papers are irradiated with the laser beam that has passed through the light source, the holographic plate, and the convex lens. , a mechanism configured such that the light reflected by the paper passes through the holographic plate and reaches the photodetector, and changes the relative position of the side edge of the paper and the laser beam incident on the side edge. A paper measuring device characterized by being provided with.
(8)フィルタにより単一波長光のみを利用する様にさ
せた事を特徴とする請求項(7)項記載の紙測定装置。
(8) The paper measuring device according to claim (7), characterized in that a filter is used to use only a single wavelength light.
(9)オートフォーカシング素子を備えた事を特徴とす
る請求項(7)又は(8)項記載の紙測定装置。
(9) The paper measuring device according to claim (7) or (8), further comprising an autofocusing element.
(10)レーザ光源が半導体レーザである事を特徴とす
る請求項(7)、(8)又は(9)項記載の紙測定装置
(10) The paper measuring device according to claim (7), (8) or (9), wherein the laser light source is a semiconductor laser.
JP29048788A 1988-11-17 1988-11-17 Paper measuring instrument Granted JPH02136989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29048788A JPH02136989A (en) 1988-11-17 1988-11-17 Paper measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29048788A JPH02136989A (en) 1988-11-17 1988-11-17 Paper measuring instrument

Publications (2)

Publication Number Publication Date
JPH02136989A true JPH02136989A (en) 1990-05-25
JPH0576072B2 JPH0576072B2 (en) 1993-10-21

Family

ID=17756659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29048788A Granted JPH02136989A (en) 1988-11-17 1988-11-17 Paper measuring instrument

Country Status (1)

Country Link
JP (1) JPH02136989A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466313A2 (en) * 1990-06-01 1992-01-15 De La Rue Systems Limited Method of detecting sheets within a stack
JPH0571971U (en) * 1992-03-03 1993-09-28 金剛株式会社 Optical detector
US5653607A (en) * 1994-07-27 1997-08-05 Sumitomo Wiring Systems, Ltd. Electric connection casing
US5718598A (en) * 1994-12-29 1998-02-17 Sumitomo Wiring Systems, Ltd. Electrical connection box and contact bonding terminal used therefor
US5920034A (en) * 1994-12-28 1999-07-06 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5928004A (en) * 1995-12-28 1999-07-27 Sumitomo Wiring Systems, Ltd. Electrical connection box for an automotive vehicle
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box
JP2012190432A (en) * 2011-03-09 2012-10-04 Samsung Electro-Mechanics Co Ltd Component quantity measuring device
JP5492351B1 (en) * 2012-05-11 2014-05-14 パナソニック株式会社 Winding device, winding method, inspection device, and structure manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097204A (en) * 1983-11-01 1985-05-31 Senjiyou Seiki Kk Count outputting method of number of bodies to be checked using relative output system of input level in light reflection type
JPS6087075U (en) * 1983-11-15 1985-06-15 先生精機株式会社 Quantity count output device for light-reflecting inspected objects

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097204A (en) * 1983-11-01 1985-05-31 Senjiyou Seiki Kk Count outputting method of number of bodies to be checked using relative output system of input level in light reflection type
JPS6087075U (en) * 1983-11-15 1985-06-15 先生精機株式会社 Quantity count output device for light-reflecting inspected objects

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0466313A3 (en) * 1990-06-01 1992-05-20 De La Rue Systems Limited Improvements relating to sheet handling
EP0466313A2 (en) * 1990-06-01 1992-01-15 De La Rue Systems Limited Method of detecting sheets within a stack
JPH0571971U (en) * 1992-03-03 1993-09-28 金剛株式会社 Optical detector
US6168456B1 (en) 1994-07-15 2001-01-02 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5934929A (en) * 1994-07-15 1999-08-10 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5653607A (en) * 1994-07-27 1997-08-05 Sumitomo Wiring Systems, Ltd. Electric connection casing
US5920034A (en) * 1994-12-28 1999-07-06 Sumitomo Wiring Systems, Ltd. Electrical connection box
US5718598A (en) * 1994-12-29 1998-02-17 Sumitomo Wiring Systems, Ltd. Electrical connection box and contact bonding terminal used therefor
US5928004A (en) * 1995-12-28 1999-07-27 Sumitomo Wiring Systems, Ltd. Electrical connection box for an automotive vehicle
JP2012190432A (en) * 2011-03-09 2012-10-04 Samsung Electro-Mechanics Co Ltd Component quantity measuring device
JP5492351B1 (en) * 2012-05-11 2014-05-14 パナソニック株式会社 Winding device, winding method, inspection device, and structure manufacturing method
US9404733B2 (en) 2012-05-11 2016-08-02 Panasonic Intellectual Property Management Co., Ltd. Winding device, winding method, inspection device and structure manufacturing method
US9859584B2 (en) 2012-05-11 2018-01-02 Panasonic Intellectual Property Management Co., Ltd. Winding device, winding method, inspection device and structure manufacturing method in which a position of stuck together first and second wound sheets are detected via interference light generated using reflected reference light from a reference surface

Also Published As

Publication number Publication date
JPH0576072B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
US4669875A (en) Foreign particle detecting method and apparatus
JP2514037B2 (en) Detection optical system
US8441627B2 (en) Surface inspection apparatus and surface inspection method
JPH0915163A (en) Method and equipment for inspecting foreign substance
JPH06508683A (en) smoothness detector
JPH073344B2 (en) Encoder
JPH07123108B2 (en) Proximity alignment system using polarized light and double conjugate projection lens
JP2629948B2 (en) encoder
JPH02136989A (en) Paper measuring instrument
JPS63275912A (en) Detecting device of surface displacement
JPS6249562B2 (en)
USRE33991E (en) Foreign particle detecting method and apparatus
JP2016205972A (en) Scan type glossy cylindrical-surface-shape inspection device
GB2266366A (en) Light beam angle detection
JPH046884B2 (en)
US4105335A (en) Interferometric optical phase discrimination apparatus
JPH09105724A (en) Surface inspection device
JP2004245634A (en) Rotation angle measuring device
EP0162973A1 (en) Distance measuring device
JP3739121B2 (en) Laser measuring machine
JPH1137740A (en) Damage detecting device for paper sheets
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JP2952284B2 (en) X-ray optical system evaluation method
JP3003671B2 (en) Method and apparatus for detecting height of sample surface
JPS6269104A (en) Edge detecting device