JPH0213520A - Continuous loader - Google Patents

Continuous loader

Info

Publication number
JPH0213520A
JPH0213520A JP16267888A JP16267888A JPH0213520A JP H0213520 A JPH0213520 A JP H0213520A JP 16267888 A JP16267888 A JP 16267888A JP 16267888 A JP16267888 A JP 16267888A JP H0213520 A JPH0213520 A JP H0213520A
Authority
JP
Japan
Prior art keywords
speed
swing
turning
tip
travel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16267888A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ito
伊藤 義和
Tadayoshi Kamiwaki
上脇 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP16267888A priority Critical patent/JPH0213520A/en
Publication of JPH0213520A publication Critical patent/JPH0213520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ship Loading And Unloading (AREA)

Abstract

PURPOSE:To prevent misloading and to prevent collision of the digging section against other material, in a continuous unloader having no travel operation shaft, by controlling turning, elevating/lowering and swinging operation so that the leading end of the digging section travels straight. CONSTITUTION:A VSC tip co-ordinate operating unit 25 in an interlocked travel controller 41 operates the co-ordinates(x, y, z) of the tip of a VSC based on angles detected through an elevation angle detector 23, a turning angle detector 22 and a swing angle detector 24. The co-ordinate(y, z) at this time are stored in a tip co-ordinate memory 32 based on an interlock travel command provided by an operator. Furthermore, a turning speed operating unit 27 operates a turning speed for moving the tip of the VSC with a set speed based on a travel speed fed from a travel speed setter 26 and the detected angles. A swing speed operating unit 28 and an elevation speed operating unit 30 operate a swing speed and an elevating/lowering speed respectively in similar manner. Turning, elevating/lowering and swinging operation is controlled based on the operation results. By such arrangement, loading work is carried out with no misloading.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば、連続式アンローダのような連続式荷
役機械に関し、特に、走行動作軸を有さず、掘削部を旋
回、起伏、スイングさせるための3動作軸を有する連続
式荷役機械に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a continuous type cargo handling machine such as a continuous type unloader, and in particular, it does not have a traveling movement axis and can rotate, undulate, and swing the excavation part. This invention relates to a continuous cargo handling machine having three operating axes for the purpose of

[従来の技術] 第2図に、この種の荷役機械の一例としてV S C(
Vertical Screw Conveyor )
式連続アンローダを示ず。この780式連続アンロータ
は、j岸壁に接岸された船1よりバラ物を陸揚げするも
のである。ブーム3はアンロータ脚部2上に旋回装置4
を介して旋回支承され、かつ、起伏作動装W5が連結さ
れ、これによりブーム3は起伏可能とされている。VS
O4は、ブーム3の先端にピン連結され、スイング作動
装置7か連結され、これによりVSO4はスイング可能
とされている。
[Prior Art] Fig. 2 shows a V SC (
Vertical Screw Conveyor)
Formula continuous unloader not shown. This type 780 continuous unrotor is used to unload bulk goods from the ship 1 berthed at quay j. The boom 3 has a swivel device 4 on the unrotor leg 2.
The boom 3 is rotatably supported via the boom 3, and is connected to a hoisting device W5, so that the boom 3 can be hoisted. VS
The O4 is connected with a pin to the tip of the boom 3, and is connected to a swing actuating device 7, thereby allowing the VSO4 to swing.

駆動回転されるVSO4により、ブーム3の位置まで上
げられたバラ物は、ブーム3に内蔵されたコンベヤ(図
示せず)と、アンロータ脚部2に設置されているシュー
ト8とを介して陸揚げされ、地上コンベヤ9に受荷され
る。
The bulk material is lifted up to the position of the boom 3 by the driven and rotated VSO 4 and is unloaded via a conveyor (not shown) built into the boom 3 and a chute 8 installed in the unrotor leg 2. , and are received by the ground conveyor 9.

このように、この780式のアンロータは、アンロータ
脚部2か陸に間室されており、従って、この780式ア
ンロータは、このアンロータを船1の長手方向に平行に
移動させる(即ち、走行させる)走行動作軸を有してい
ない。しかし、この780式アンロータは、掘削部とし
てのVSO4を、矢印11の方向に旋回させるための旋
回軸12と、VSO4を矢印13の方向に起伏させるた
めの起伏軸14と、VSO4を矢印15の方向にスイン
グさせるためのスイング軸16とを有している。
In this way, the unrotor of the 780 type is installed between the unrotor legs 2 and the land, and therefore the 780 type unrotor moves the unrotor parallel to the longitudinal direction of the ship 1 (i.e., makes it travel). ) Does not have a travel axis. However, this 780 type unrotor has a turning shaft 12 for turning the VSO 4 as an excavation part in the direction of arrow 11, a undulating shaft 14 for undulating the VSO 4 in the direction of arrow 13, and It has a swing shaft 16 for swinging in the direction.

[発明が解決しようとする課題] 従来、このような走行動作軸を有さず、掘削部を旋回、
起伏、スイングさせるための3動作軸を有している連続
式荷役機械では、掘削部か第3図に示すような経路■、
■、■に沿って移動するように、荷役を行なっている。
[Problem to be solved by the invention] Conventionally, the excavation part was rotated without having such a traveling movement axis.
In a continuous cargo handling machine that has three operating axes for raising, lowering and swinging, the excavation section or the path shown in Figure 3 is
Cargo handling is carried out by moving along the lines ■ and ■.

このため、船1内に斜線部17にバラ物の取り残しが発
生するという欠点がある。また、掘削部の経路が円弧状
経路となるため、オペレータは、船1の海側壁への掘削
部の衝突に注意を払う必要があった。
For this reason, there is a drawback that loose items may be left behind in the shaded area 17 inside the ship 1. Furthermore, since the route of the excavation part is an arcuate route, the operator had to pay attention to the collision of the excavation part with the sea side wall of the ship 1.

本発明の目的は、上記に鑑み、荷の取り残しが発生しに
<<、掘削部か船舶壁等の他物へ衝突をおこすことのな
いように制御され得る連続式荷役機械を提供することに
ある。
In view of the above, an object of the present invention is to provide a continuous cargo handling machine that can be controlled to prevent cargo from being left behind and from colliding with other objects such as excavation parts or ship walls. be.

[課題を解決するための手段] 本発明によれば、走行動作軸を有さず、掘削部を、旋回
、起伏、スイングさせるための3動作軸を有する連続式
荷役機械において、前記掘削部の先端か直線走行するよ
うに、旋回、起伏、スイングの3動作を制御する制御部
を倫えたことを特徴とする連続式荷役機械が得られる。
[Means for Solving the Problems] According to the present invention, in a continuous material handling machine that does not have a traveling motion axis but has three motion axes for turning, undulating, and swinging the excavating section, A continuous cargo handling machine is obtained, which is equipped with a control unit that controls the three operations of turning, undulating, and swinging so that the tip of the machine travels in a straight line.

[作 用] 本発明では、前記制御部によって前記掘削部の先端が船
艙等の長手方向に平行に直線走行させられるので、荷の
取り残しが発生せず、また、掘削部の船舶壁への衝突も
ない。
[Function] In the present invention, the control section causes the tip of the excavation section to run in a straight line parallel to the longitudinal direction of the ship's hold, etc., so that no cargo is left behind and the excavation section does not collide with the ship wall. Nor.

[実施例コ 次に本発明の実施例について図面を参照して説明する。[Example code] Next, embodiments of the present invention will be described with reference to the drawings.

第1図を参照すると、本発明の一実施例による連続式荷
役機械は、連動走行制御装置41を有している。この連
動走行制御装置41は、第2図のVSC式連続アンロー
タに備えられ、該780式連続アンロータの先端が水平
に等速直線走行するように、旋回、起伏、スイングの3
軸動作の連動制御を行う。
Referring to FIG. 1, a continuous cargo handling machine according to an embodiment of the present invention has an interlocking travel control device 41. As shown in FIG. This interlocking travel control device 41 is installed in the VSC type continuous unrotor shown in FIG.
Performs interlocking control of axis operations.

連動走行制御装置41は、旋回装置4(第2図)に内蔵
された旋回速度検出器21と、旋回角検出器22と、ブ
ーム3(第2図)の枢着部14に設置された起伏角検出
器23と、VSO4(第2図)の枢着部16に設置され
たスイング角検出器24とに接続されている。
The interlocking travel control device 41 includes a swing speed detector 21 built into the swing device 4 (FIG. 2), a swing angle detector 22, and an undulation sensor installed in the pivot joint 14 of the boom 3 (FIG. 2). It is connected to an angle detector 23 and a swing angle detector 24 installed at the pivot joint 16 of the VSO 4 (FIG. 2).

連動走行制御装置41は、vSC先端座標演算器25と
、走行速度設定器26と、連動走行開始時のVSC先端
座標記憶器32と、旋回速度演算器27と、スイング速
度演算器28と、スイング・フィードバック制御ゲイン
回路2つと、起伏速度演算器30と、起伏フィードバッ
ク制御ゲイン回路31とを有している。
The linked travel control device 41 includes a vSC tip coordinate calculator 25, a travel speed setter 26, a VSC tip coordinate memory 32 at the time of starting linked travel, a turning speed calculator 27, a swing speed calculator 28, and a swing speed calculator 25. - It has two feedback control gain circuits, a heave speed calculator 30, and a heave feedback control gain circuit 31.

なお、33は旋回制御装置、34はスイング制御装置、
35は起伏制御装置、36は旋回アクチュエータ、37
はスイング・アクチュエータ、38は起伏アクチュエー
タである。
In addition, 33 is a swing control device, 34 is a swing control device,
35 is a luffing control device, 36 is a swing actuator, 37
is a swing actuator, and 38 is a undulation actuator.

次に、第1図に加えて、第4図をも参照して、第1図の
連動走行制御装置41を備えた、本発明の一実施例によ
る780式連続アンロータの動作について説明する。
Next, with reference to FIG. 4 in addition to FIG. 1, the operation of the Type 780 continuous unrotor according to an embodiment of the present invention, which is equipped with the interlocking travel control device 41 of FIG. 1, will be described.

まず、オペレータ操作にてVSO4を船艙1′の位置5
1に移動させる。この間、■SC先端座標演算器25は
、起伏角検出器23の検出角θ0、旋回角検出器22の
検出角θ2、スイング角検出器24の検出角θ3より、 x=LBcosθ+  sinθ2 十LVsinfθ、」−θ3)sinθ2(1)y=L
Bcosθ、  COSθ2 +LVsin(θ、+θ、 )cosθ2(2)z =
 L B Sinθ、−Lvcos(θ1+θ3 ) 
(3)に基づき、VSC先端座標(x、y、z)を、常
時、演算している。ここで、LBは、第2図の軸14と
軸16との間の距離を示し、LVは第2図の軸16から
VSO4の先端までの距離を示している。
First, the operator operates VSO4 at position 5 of hold 1'.
Move it to 1. During this time, the SC tip coordinate calculator 25 calculates from the detection angle θ0 of the heave angle detector 23, the detection angle θ2 of the turning angle detector 22, and the detection angle θ3 of the swing angle detector 24, x=LB cos θ + sin θ2 + LV sinf θ. -θ3) sinθ2(1)y=L
Bcosθ, COSθ2 +LVsin(θ, +θ, )cosθ2(2)z =
L B Sinθ, -Lvcos(θ1+θ3)
Based on (3), the VSC tip coordinates (x, y, z) are constantly calculated. Here, LB indicates the distance between the shafts 14 and 16 in FIG. 2, and LV indicates the distance from the shaft 16 in FIG. 2 to the tip of the VSO 4.

この後、オペレータ操作にて、VSO4を駆動回転させ
、連動走行指令を発すると、■SC先端座標記憶器32
にて、そのときのy+Zか記憶される。さらに、旋回速
度演算器27には、走行速度設定器26からの走行速度
VTL及びθ1.θ2゜θ3か入力され、■SC先端か
VTLにて等速走行するような旋回速度θ1を演算する
After that, when the VSO 4 is driven and rotated by the operator and an interlocking travel command is issued, ■SC tip coordinate memory 32
Then, y+Z at that time is stored. Furthermore, the turning speed calculator 27 receives the traveling speed VTL from the traveling speed setting device 26 and θ1. θ2° and θ3 are input, and the turning speed θ1 is calculated so that the vehicle travels at a constant speed at the tip of SC or VTL.

スイング制御に関しては、スイング速度演算器28にお
いてθ1.θ2.θ3及び旋回速度検出器21の検出速
度θ2′から、yを一定とするようなスイング速度θ3
を演算し、さらに、yをフィードバックして■SC先端
座標記憶器32にて記憶したyと比較してスイング・フ
ィードバック制御ゲイン回路29にてフィードバック制
御を行う。スイング速度演算器28の出力とスイング・
フィードバック制御ゲイン回路29の出力とは、互に加
算器39で加算され、スイング速度指令とされる。
Regarding swing control, in the swing speed calculator 28, θ1. θ2. From θ3 and the detected speed θ2' of the swing speed detector 21, the swing speed θ3 is such that y is kept constant.
Further, y is fed back and compared with y stored in the SC tip coordinate storage unit 32, and the swing feedback control gain circuit 29 performs feedback control. The output of the swing speed calculator 28 and the swing speed
The output of the feedback control gain circuit 29 is added together in an adder 39 to obtain a swing speed command.

起伏制御に関しては、起伏速度演算器30において、θ
1.θ2.θ3及びb2′から、Zを一定とする起伏速
度θ、を演算し、さらにZをフィードバックして■SC
先端座標記憶器32にて記憶したZと比較して起伏フィ
ードバック制御ゲイン回路31にてフィードバック制御
を行う。起伏速度演算器30の出力と起伏フィードバッ
ク制御ゲイン回IJ@31の出力とは、互に加算器40
で加算され、起伏速度指令とされる。
Regarding the heave control, in the heave speed calculator 30, θ
1. θ2. From θ3 and b2', calculate the ups and downs speed θ, keeping Z constant, and further feed back Z to ■SC
The undulation feedback control gain circuit 31 performs feedback control by comparing with Z stored in the tip coordinate storage 32. The output of the heave speed calculator 30 and the output of the heave feedback control gain circuit IJ@31 are mutually connected to the adder 40.
is added and used as the heave speed command.

旋回アクチュエータ36は、旋回制御装置33により旋
回速度演算器27の出力量に応じた速度で駆動され、ス
イングアクチュエータ37はスイング制御装置34によ
り加算器3つの出力量に応じた速度で駆動され、起伏ア
クチュエータ38は起伏制御装置35により加算器40
の出力量に応じた速度で駆動される。
The swing actuator 36 is driven by the swing control device 33 at a speed that corresponds to the output amount of the swing speed calculator 27, and the swing actuator 37 is driven by the swing control device 34 at a speed that corresponds to the output amount of the three adders. The actuator 38 is connected to the adder 40 by the elevation control device 35.
is driven at a speed that corresponds to the amount of output.

このようにして、第4図に示したように51→52→5
3と、■SC先端を水平に直線走行運転する。第4図の
51から52までの間は、旋回を右とし、スイングを人
としく即ち、VSO4をアンロータ脚部2側に引く方向
とし)、起伏を上方向とする連動制御となり、52から
53までの間は旋回を右とし、スイングを出としく即ち
、VSO4をアンローダ脚部2から離す方向とし)、起
伏を下方向とする連動制御となる。
In this way, as shown in Figure 4, 51→52→5
3. ■Drive the SC tip horizontally in a straight line. Between 51 and 52 in Fig. 4, the turning is to the right, the swing is human-like (that is, the direction of pulling the VSO4 toward the unrotor leg 2 side), and the undulation is upward (52 to 53). Until then, interlock control is performed in which the turn is to the right, the swing is to be made (in other words, the direction is to move the VSO 4 away from the unloader leg 2), and the undulation is made to be downward.

次に、旋回速度演算器27、スイング速度演算器28、
起伏速度演算器30による演算方法について説明する。
Next, the turning speed calculator 27, the swing speed calculator 28,
The calculation method by the heave speed calculator 30 will be explained.

VSO4の先端を水平に等速直線走行させるための条件
は 交−VTL 夛−0 ン−0 となる。ここで、・は1階微分を示す。
The conditions for causing the tip of the VSO4 to travel horizontally at a constant speed are as follows. Here, * indicates the first-order differential.

上述の(1)、 (2)、 (3)式を微分し、これら
を交−Ai、 十Bθ2+Cθ3=D    (4)交
−Eれ+Fδ2+Gδ、=O(5) ン=Ha、 + I tj3=O(6)とおき、これら
を連立方程式として解く。
Differentiate the above equations (1), (2), and (3) and convert them into the following equations: -Ai, 1Bθ2+Cθ3=D (4) Intersection -E+Fδ2+Gδ, =O(5) N=Ha, +I tj3= O(6) and solve these as simultaneous equations.

Δ=AP I+BGH−CFH−BE Iとおくと δ2−(DGH−DB I )/Δ    (7)とな
り、この式か旋回速度演算器27の演算式となる。
If we set Δ=AP I+BGH-CFH-BE I, we get δ2-(DGH-DB I)/Δ (7), and this equation becomes the calculation equation of the turning speed calculator 27.

−つ − スイング、起伏の制御は、旋回速度検出器21より速度
を検出して行なうため、(5)及び(6)式%式%) となる。上式においてθ2を旋回速度検出値θ2′とお
くと、 θs ”’ F Hθ2′/ (E I/GH)   
 (8)θ+ = F Iθ2 ′/(GH/EI) 
   (9)となり、(8)式かスイング速度演算器2
8の演算式となり、(9)式か起伏速度演算器30の演
算式となる。
- Since the swing and ups and downs are controlled by detecting the speed from the swing speed detector 21, the formulas (5) and (6) are as follows. In the above equation, if θ2 is the detected turning speed value θ2', then θs ''' F Hθ2'/ (E I/GH)
(8) θ+ = F Iθ2 ′/(GH/EI)
(9), then the equation (8) or the swing speed calculator 2
8, which is the equation (9) or the equation of the heave speed calculator 30.

本vSC式連続アンローダの掘削部の移動経路を第5図
に■→■→■→■→■で示す。このように、本VSC式
連続アンロータは、掘削部の先端が水平に等速直線走行
するように、旋回、起伏、スイングの3動作を制御する
連動走行制御装置41を備えることによって、第5図に
示すように、オペレータが連動走行操作をするだけで掘
削部の先端が船1の長手方向に平行となるように、旋回
、スイング、起伏が自動的に連動制御されるため、走行
動作軸を有するアンロータと同様の荷役ができ、第3図
の17のようなバラ物の取り残しか発生しに<<、荷役
効率を向上できる。また、オペレータ操作は、掘削部の
船舶壁等の他物への衝突をおこすことのない、安全かつ
容易な操作となる。
The movement path of the excavation part of this vSC type continuous unloader is shown in Fig. 5 as ■→■→■→■→■. In this way, this VSC type continuous unrotor is equipped with the interlocking travel control device 41 that controls the three operations of turning, undulating, and swinging so that the tip of the excavation portion travels horizontally and at a constant speed. As shown in Figure 2, turning, swinging, and undulation are automatically controlled in a linked manner so that the tip of the excavation section is parallel to the longitudinal direction of the ship 1 simply by the operator's interlocking operation. It is possible to carry out cargo handling similar to that of the unrotor equipped with the present invention, and the cargo handling efficiency can be improved because only bulk materials such as 17 in FIG. 3 are left behind. In addition, the operator's operation is safe and easy without causing the excavation part to collide with other objects such as a ship wall.

なお、上述した実施例では、旋回をマスク、スイング及
び起伏をスレーブとする追従制御であって、スイング及
び起伏の制御は速度指令にフィードバック指令を加算す
るアドバンスト制御としている。しかし、本発明はそれ
に限定されず、スイングをマスク、旋回及び起伏をスレ
ーブとした追従制御方式や、起伏をマスク、旋回及びス
イングをスレーブとした追従制御方式でも実現可能であ
る。
In the above-described embodiment, follow-up control is used in which turning is a mask and swing and undulation are slaves, and swing and undulation control is performed as advanced control in which a feedback command is added to a speed command. However, the present invention is not limited thereto, and can also be realized by a follow-up control method in which the swing is a mask and turning and undulation are slaves, or a follow-up control method in which the undulation is a mask and turning and swing are slaves.

また、上述の実施例では、掘削部先端を水平に等速直線
走行させる場合を説明したが、掘削部先端を水平に等速
で移動させることは必要条件ではなく、掘削部先端を直
線走行させるたけでも、第3図に17で示したようなバ
ラ物の取り残しや掘割部の船舶壁への衝突を生ぜしめず
に、荷役を行なうことがてきる。
In addition, in the above embodiment, the case where the tip of the excavation part is moved horizontally at a constant speed is explained, but it is not a necessary condition that the tip of the excavation part is moved horizontally at a constant speed, and the tip of the excavation part is made to travel in a straight line. Cargo handling can be carried out without leaving bulk materials behind or causing the excavation to collide with the ship's wall as shown at 17 in FIG. 3.

[発明の効果] 以上説明したように、本発明によれば、掘削部の先端か
直線走行するように、旋回、起伏、スイングの3動作を
制御する制御部を備えることによって、前記掘削部の先
端が船舶等の長手方向に平行に直線走行させられるので
、荷の取り残しが発生ぜず、しかも、掘削部の船舶壁へ
の衝突もない6
[Effects of the Invention] As explained above, according to the present invention, by providing a control unit that controls the three operations of turning, undulating, and swinging so that the tip of the excavation part travels in a straight line, the excavation part can be moved in a straight line. Since the tip runs in a straight line parallel to the longitudinal direction of the ship, no cargo is left behind, and the excavation part does not collide with the ship's wall6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実繕例による連続式荷役機械の制御
回路のブロック図、第2図は本発明か適用可能な780
式連続アンローダの概略図、第3図は従来の連続式荷役
機械の動作を説明するだめの図、第4図及び第5図は上
記実施例による連続式荷役機械の動作を説明するための
図である。 1・・・船、2・・・アンローダ脚部、3・・・ブーム
、4・・・旋回装置、5・・・起伏作動装置、6・・・
■5C17・・・スイング作動装置、8・・・シュート
、9・・・地上コンベヤ、41・・・連動走行制御装置
。 第1図 39及び40:加算器 第2図 7(イング作動装置 −−一−=、U≦1112/1 
−1A 第4図
Fig. 1 is a block diagram of a control circuit of a continuous cargo handling machine according to an example of the present invention, and Fig. 2 is a block diagram of a control circuit of a continuous cargo handling machine according to an example of the present invention.
FIG. 3 is a diagram for explaining the operation of a conventional continuous type cargo handling machine, and FIGS. 4 and 5 are diagrams for explaining the operation of the continuous type cargo handling machine according to the above embodiment. It is. DESCRIPTION OF SYMBOLS 1... Ship, 2... Unloader leg, 3... Boom, 4... Swivel device, 5... Lifting actuation device, 6...
■5C17... Swing actuating device, 8... Chute, 9... Ground conveyor, 41... Interlocking travel control device. Fig. 1 39 and 40: adder Fig. 2 7 (ing actuator --1-=, U≦1112/1
-1A Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、走行動作軸を有さず、掘削部を、旋回、起伏、スイ
ングさせるための3動作軸を有する連続式荷役機械にお
いて、前記掘削部の先端が直線走行するように、旋回、
起伏、スイングの3動作を制御する制御部を備えたこと
を特徴とする連続式荷役機械。
1. In a continuous material handling machine that does not have a traveling operation axis but has three operation axes for turning, undulating, and swinging the excavation part, the tip of the excavation part can rotate,
A continuous cargo handling machine characterized by being equipped with a control unit that controls three operations: uphill and swinging.
JP16267888A 1988-07-01 1988-07-01 Continuous loader Pending JPH0213520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16267888A JPH0213520A (en) 1988-07-01 1988-07-01 Continuous loader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16267888A JPH0213520A (en) 1988-07-01 1988-07-01 Continuous loader

Publications (1)

Publication Number Publication Date
JPH0213520A true JPH0213520A (en) 1990-01-17

Family

ID=15759214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16267888A Pending JPH0213520A (en) 1988-07-01 1988-07-01 Continuous loader

Country Status (1)

Country Link
JP (1) JPH0213520A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323118A (en) * 1991-04-19 1992-11-12 Ishikawajima Harima Heavy Ind Co Ltd Cargo handling by unloader

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264130A (en) * 1986-05-09 1987-11-17 Kobe Steel Ltd Method of controlling continuous unloader

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264130A (en) * 1986-05-09 1987-11-17 Kobe Steel Ltd Method of controlling continuous unloader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323118A (en) * 1991-04-19 1992-11-12 Ishikawajima Harima Heavy Ind Co Ltd Cargo handling by unloader

Similar Documents

Publication Publication Date Title
KR100191391B1 (en) Area limiting excavation control system for construction machines
WO1996030815A1 (en) Method and device for preparing running course data for an unmanned dump truck
WO2020075457A1 (en) System and method for controlling work machine for loading material into transport vehicle
US20220098835A1 (en) Track following system, track following method, and computer readable medium
CN111498698B (en) Method and device for judging safety of boom rotation direction and engineering machinery
JPH0213520A (en) Continuous loader
KR101494771B1 (en) Apparatus for controlling continuous ship unloader
WO2022186215A1 (en) Work machine
JP3686750B2 (en) Automatic driving excavator
JP2922726B2 (en) Excavator bucket guidance system
CN116194639A (en) Target track setting system of accessory equipment
CN110217607A (en) A kind of bucket-wheel stacker reclaimer
JP3065599B1 (en) Control device for continuous unloader
US20240183123A1 (en) Work machine
JP2002265065A (en) Jib crane hatch collision-preventing method for grain unloader
WO2023190388A1 (en) Work machine
JPH0330342Y2 (en)
WO2023106265A1 (en) Work machine
JPH0446861B2 (en)
JPH0330337Y2 (en)
JPH10120394A (en) Operation regulating device of vehicle for high lift work
CN115748879A (en) Excavator control method and device, excavator and storage medium
JPH03284545A (en) Continuous loading machine
JP2023081480A (en) Construction support system, construction support method, and arithmetic unit
CN110106931A (en) A kind of working method of excavating gear