JPH0213021B2 - - Google Patents

Info

Publication number
JPH0213021B2
JPH0213021B2 JP55042180A JP4218080A JPH0213021B2 JP H0213021 B2 JPH0213021 B2 JP H0213021B2 JP 55042180 A JP55042180 A JP 55042180A JP 4218080 A JP4218080 A JP 4218080A JP H0213021 B2 JPH0213021 B2 JP H0213021B2
Authority
JP
Japan
Prior art keywords
powder
sintering
alloy
less
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55042180A
Other languages
Japanese (ja)
Other versions
JPS56139657A (en
Inventor
Michio Yamashita
Tsutomu Toyoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4218080A priority Critical patent/JPS56139657A/en
Publication of JPS56139657A publication Critical patent/JPS56139657A/en
Publication of JPH0213021B2 publication Critical patent/JPH0213021B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、工業的量産に適したFe−Cr−Co
系磁石合金の製造方法に係り、高密度、高磁石特
性を有するFe−Cr−Co系焼結磁石合金を安価に
提供できる製造方法に関する。 背景技術 Fe−Cr−Co系磁石合金は、アルニコ5磁石合
金に匹敵するすぐれた磁石特性を有し、かつ熱間
並びに冷間における加工が可能な材料として開発
され、多方面に利用されている。 この磁性材料を工業的に製造する方法として
は、圧延法、鋳造法、焼結法が考えられる。 まず、圧延法は、アルニコ系やフエライト系磁
石合金では不可能な方法であり、Fe−Cr−Co系
の特有の性質を利用した方法として、多種の製造
方法並びに添加成分の提案がなされてきた。 通常、圧延法では鍛造、圧延、焼鈍等の複雑な
工程を経て製造するため、量産性に欠けコスト高
となりやすく、一般に板状、線状等の特殊な形状
を主目的に適用されている。 さらに、製造工程中の溶解時におけるCrの酸
化、窒化を防止するために各種の添加成分を必要
とする。 この圧延法として、次の技術が知られている。
特公昭53−35536号、特開昭50−101217号、特公
昭54−20934号、特開昭51−38221号。 次に鋳造法は、一般にアルニコ系のように材質
の硬く脆いものに対して適用されており、Fe−
Cr−Co系の場合には、その高い加工性のため湯
道から鋳物をはずすのが困難な問題があり、鋳造
欠陥も避けがたい問題となつている。 また、作業性、能率の点さらには溶解時におけ
るCrの酸化、窒化を防止するための各種添加成
分の選定等により、経済性にも問題がある。 例えば、特開昭52−49925号のように添加成分
の選定によりすぐれた磁石特性を示す場合でも上
記の問題点を含んでいる。 一方、焼結法は上述の圧延法、鋳造法の問題点
はなく、工業的に大量のFe−Cr−Co系磁石を製
造するには適している。 しかし、焼結密度と磁石特性に問題があること
が知られている。例えば、特開昭54−33205号、
特開昭53−43006号に見られるように、B、Si、
C等を添加することにより密度は向上させること
ができるが、磁石特性は(BH)max5.0MGOe以
下の値を得るのみである。 また、従来の焼結法においては、Co含有量は
押並べて20%以上で価格も高くついていた。 発明の目的 この発明は、工業的量産に適した低廉なFe−
Cr−Co系焼結磁石であつても高密度な焼結体を
有し、かつ(BH)max5.5MGOe以上の磁石特性
をもつFe−Cr−Co系焼結磁石合金の製造方法の
提供を目的としている。 発明の概要 この発明は、Cr22〜30%、Co6〜15%、残部
Feおよび不可避的不純物とからなるFe−Cr−Co
系焼結磁石合金であり、理論密度比97%以上、 (BH)max5.5MGOe以上の磁石特性を得るため
の製造方法である。 すなわち、この発明は、 カーボニル鉄粉に200メツシユ以下の粒度分を
主体とするFe−Cr−Co系シグマ粉を配合混合し
て、Cr22〜30%、Co6〜15%、残部Feからなる
混合粉となし、 その後、加圧成型後、真空中または非酸化性雰
囲気中にて、1250℃〜1450℃で焼結することを特
徴とするFe−Cr−Co系焼結磁石合金の製造方法
であり、 さらに、 カーボニル鉄粉に200メツシユ以下の粒度分を
主体とするFe−Cr−Co系シグマ粉にCo粉を配合
混合して、 Cr22〜30%、Co6〜15%、残部Feからなる混
合粉となし、 その後、加圧成型後、真空中または非酸化性雰
囲気中にて、1250℃〜1450℃で焼結するとを特徴
とするFe−Cr−Co系焼結磁石合金の製造方法で
ある。 発明の構成 この発明の原料混合粉組成において、Cr22〜
30%とするのは、22%未満、30%を超える場合の
いずれも磁石合金として要求される磁束密度と保
磁力を得ることができないためである。 また、Co6〜15%とするのは、Co量が6%未満
であると磁石合金として必要とされる磁束密度と
保磁力が得られないためであり、15%を超えると
必要とする磁石特性を得るための熱処理条件、例
えば、溶体化処理等が困難となり、高密度化も図
ることができず、さらには価格も勢い高価となり
実用的でないためである。 この発明の原料混合粉組成において、残部は
Feであり、得られるこの発明合金では、理論密
度比97%以上、(BH)max5.5MGOe以上を得る
のには何らの添加成分を必要としない。 次に、この発明合金の製造方法において原料粉
末を限定するのは、以下の由による。 焼結法によつてFe−Cr−Co系合金を得る場合
に、その原料粉としてアトマイズ法で作製した
Fe−Cr−Co系合金粉末があるが、200メツシユ
以下の微粉を得ることが困難である上、粉末が酸
化する。 さらには、目的とする高密度の焼結体を得るに
は、C、B等の添加元素を必要とするために原料
粉として好ましくない。 原料粉として機械的に粉砕したFe−Cr−Co系
合金粉末を用いることができるが、微粉末化する
ために多大のコストを要し実用的な方法ではな
い。 また、機械的に粉砕したフエロクロム粉(約60
%がCr−Fe)を、Co粉末、カーボニル鉄粉以外
の鉄粉と混合して用いる場合がある。しかし、こ
の場合も上述した原料粉と同様の問題点も含んで
いる。 次に、機械的に粉砕したシグマ粉を用いる場合
は、シグマ粉はFe−Cr−Co系合金で45%Crを中
心に幅広いCrの含有量で生成する脆いo相を主
体とする合金であり、例えば、45%Cr−Co−Fe
であるため、容易に機械的な微粉砕ができ、上記
他の原料粉にくらべて酸化が少なく、高密度の焼
結体を得るのに添加元素を全く必要としない。 さらに、カーボニル鉄粉に、Fe−Cr−Co系シ
グマ粉、必要に応じてFe−Cr−Co系シグマ粉に
Co粉を混合した混合粉を原料粉とすると、その
成形性、圧縮性、流動性のいずれもがすぐれてお
り、実用上高能率でプレス成形することができ
る。 すなわち、Cr22〜30%、Co6〜15%とすること
により、他製法において必要な脱酸、脱窒あるい
は熱処理を容易にするための添加元素を全く必要
とせず、また、製造において微粉砕の容易なシグ
マ粉とカーボニル鉄粉、必要に応じて更にCo粉
を混合した混合粉を用いるため、真空中または非
酸化性雰囲気中で焼結し、高密度の焼結体を得る
のに何らの添加元素を必要としない。 この発明において、焼結条件は、酸化を防ぐた
め真空中または不活性ガスやH2等の雰囲気中の
ような非酸化性雰囲気中で焼結するものとし、真
空度は1×10-3Torr程度でよい。 焼結温度は、高密度、高磁石特性を得るために
1250℃〜1450℃で行う。焼結温度は1250℃未満で
は高密度のものが得られず、1450℃を超えると変
形を生じたり、熱効率が悪くなるので好ましくな
い。 実施例 以下にこの発明による実施例を示しその効果を
明らかにする。 実施例 1 Cr48%、Co18%、残部Feよりなるシグマ粉
を、機械的粉砕により200メツシユ以下とし、前
記シグマ粉に400メツシユ以下のCo粉と平均粒度
5μmのカーボニル鉄粉とを混合し、Cr25%、
Co9.5%、残部Feの組成の混合粉末に調整した。 得られた混合粉末を、5000Kg/cm2の圧力で13φ
×10mmの形状に加圧成形した。 次に、成型体を1×10-3Torrの真空中にて
1280℃〜1380℃で2時間の焼結を施した。 得られた焼結体を1250℃で30分間の溶体化処理
したのち、640℃、3000Oeで1時間の磁場中等温
処理し、さらに620℃より500℃まで3℃/hrの速
度で冷却保持した。 焼結条件の異なる各試料の磁石特性を第1表に
示す。 すなわち、第1表より、この発明の製造方法に
よるFe−Cr−Co系磁石合金は、すぐれた特性を
示し、従来の焼結製造法による同系合金と比較し
て、理論密度比98%以上、磁気エネルギー積
(BH)max5.5MGOe以上という、著しく高密度
と高磁石特性のFe−Cr−Co系焼結磁石合金が得
られたことが分る。
Application industrial field This invention is a Fe-Cr-Co material suitable for industrial mass production.
The present invention relates to a manufacturing method of a Fe-Cr-Co-based sintered magnet alloy having high density and high magnetic properties at a low cost. BACKGROUND ART Fe-Cr-Co magnet alloys have excellent magnetic properties comparable to Alnico 5 magnet alloys, and have been developed as materials that can be worked in hot and cold conditions, and are used in a wide variety of fields. . Possible methods for industrially manufacturing this magnetic material include rolling, casting, and sintering. First, the rolling method is not possible with alnico-based or ferrite-based magnetic alloys, and various manufacturing methods and additive components have been proposed as methods that take advantage of the unique properties of the Fe-Cr-Co system. . Normally, the rolling method is manufactured through complicated processes such as forging, rolling, and annealing, which makes it difficult to mass produce and tends to increase costs, and it is generally used mainly for producing special shapes such as plate shapes and wire shapes. Furthermore, various additive components are required to prevent oxidation and nitridation of Cr during melting during the manufacturing process. The following techniques are known as this rolling method.
JP 53-35536, JP 50-101217, JP 54-20934, JP 51-38221. Next, the casting method is generally applied to hard and brittle materials such as Alnico, and Fe-
In the case of Cr-Co, there is a problem in that it is difficult to remove the casting from the runner due to its high workability, and casting defects are also an unavoidable problem. In addition, there are problems in terms of workability and efficiency, as well as economic efficiency due to the selection of various additive components to prevent oxidation and nitridation of Cr during melting. For example, even in the case of JP-A No. 52-49925, which exhibits excellent magnetic properties due to the selection of additive components, the above-mentioned problems still exist. On the other hand, the sintering method does not have the problems of the above-mentioned rolling method and casting method, and is suitable for industrially producing large quantities of Fe-Cr-Co magnets. However, it is known that there are problems with sintered density and magnetic properties. For example, JP-A No. 54-33205,
As seen in JP-A No. 53-43006, B, Si,
Although the density can be improved by adding C or the like, the magnetic properties only obtain a value of (BH)max5.0MGOe or less. In addition, in conventional sintering methods, the Co content was 20% or more and the price was high. Purpose of the invention This invention is an inexpensive Fe-
To provide a method for producing a Fe-Cr-Co-based sintered magnet alloy that has a high-density sintered body even if it is a Cr-Co-based sintered magnet, and has magnetic properties of (BH) max 5.5 MGOe or more. The purpose is Summary of the Invention This invention consists of Cr22~30%, Co6~15%, balance
Fe−Cr−Co consisting of Fe and unavoidable impurities
This is a sintered magnet alloy based on the manufacturing method used to obtain magnetic properties with a theoretical density ratio of 97% or higher and (BH)max5.5MGOe or higher. That is, this invention combines carbonyl iron powder with Fe-Cr-Co sigma powder mainly having a particle size of 200 mesh or less to produce a mixed powder consisting of 22 to 30% Cr, 6 to 15% Co, and the balance Fe. A method for producing a Fe-Cr-Co-based sintered magnetic alloy, which is characterized in that it is then pressure-molded and then sintered at 1250°C to 1450°C in a vacuum or in a non-oxidizing atmosphere. , Furthermore, Co powder is mixed with carbonyl iron powder and Fe-Cr-Co sigma powder, which mainly has a particle size of 200 mesh or less, to create a mixed powder consisting of 22 to 30% Cr, 6 to 15% Co, and the balance Fe. This is a method for producing a Fe-Cr-Co-based sintered magnet alloy, which is characterized in that the alloy is press-molded and then sintered at 1250°C to 1450°C in a vacuum or in a non-oxidizing atmosphere. Structure of the invention In the raw material mixed powder composition of this invention, Cr22~
The reason why it is set at 30% is that if it is less than 22% or more than 30%, it is impossible to obtain the magnetic flux density and coercive force required for a magnetic alloy. The reason why the Co content is set at 6 to 15% is because if the Co content is less than 6%, the magnetic flux density and coercive force required for the magnet alloy cannot be obtained, whereas if it exceeds 15%, the required magnetic properties This is because the heat treatment conditions for obtaining, for example, solution treatment, etc., become difficult, making it impossible to achieve high density, and furthermore, the price becomes too high to be practical. In the raw material mixed powder composition of this invention, the remainder is
The resulting invention alloy does not require any additional components to obtain a theoretical density ratio of 97% or more and a (BH)max of 5.5MGOe or more. Next, the reason why the raw material powder is limited in the method for manufacturing the invention alloy is as follows. When obtaining a Fe-Cr-Co alloy by the sintering method, it is used as a raw material powder produced by the atomization method.
Although there is Fe-Cr-Co alloy powder, it is difficult to obtain a fine powder of 200 mesh or less, and the powder oxidizes. Furthermore, in order to obtain the desired high-density sintered body, additional elements such as C and B are required, which makes it undesirable as a raw material powder. Mechanically pulverized Fe-Cr-Co alloy powder can be used as the raw material powder, but this is not a practical method because it requires a great deal of cost to make it into a fine powder. In addition, mechanically crushed ferrochrome powder (approximately 60
% Cr-Fe) may be used in combination with Co powder and iron powder other than carbonyl iron powder. However, this case also includes the same problems as the raw material powder described above. Next, when using mechanically crushed sigma powder, sigma powder is an Fe-Cr-Co alloy mainly consisting of a brittle o-phase that is produced with a wide range of Cr content around 45% Cr. , for example, 45% Cr-Co-Fe
Therefore, it can be easily mechanically pulverized, has less oxidation than the other raw material powders mentioned above, and does not require any additional elements to obtain a high-density sintered body. Furthermore, carbonyl iron powder, Fe-Cr-Co sigma powder, and Fe-Cr-Co sigma powder as needed.
When a mixed powder containing Co powder is used as a raw material powder, it has excellent moldability, compressibility, and fluidity, and can be press-molded with high efficiency in practice. In other words, by setting Cr22 to 30% and Co6 to 15%, there is no need for any additional elements to facilitate deoxidation, denitrification, or heat treatment that are required in other manufacturing methods, and it is also easy to pulverize during manufacturing. Because we use a mixed powder of sigma powder, carbonyl iron powder, and Co powder if necessary, it is sintered in a vacuum or in a non-oxidizing atmosphere, and no additives are required to obtain a high-density sintered body. No elements required. In this invention, the sintering conditions are that sintering is performed in a non-oxidizing atmosphere such as vacuum or an atmosphere of inert gas or H 2 to prevent oxidation, and the degree of vacuum is 1 × 10 -3 Torr. A certain amount is enough. Sintering temperature to obtain high density and high magnetic properties
Perform at 1250°C to 1450°C. If the sintering temperature is less than 1250°C, a high-density product cannot be obtained, and if it exceeds 1450°C, deformation may occur or thermal efficiency may deteriorate, which is not preferable. Examples Examples according to the present invention will be shown below to clarify its effects. Example 1 A sigma powder consisting of 48% Cr, 18% Co, and the balance Fe was mechanically crushed to a particle size of 200 mesh or less, and the sigma powder was combined with a Co powder of 400 mesh or less with an average particle size.
Mixed with 5μm carbonyl iron powder, Cr25%,
The mixed powder was adjusted to have a composition of 9.5% Co and the balance Fe. The obtained mixed powder was heated to 13φ at a pressure of 5000Kg/ cm2 .
It was pressure molded into a shape of 10 mm. Next, the molded body was placed in a vacuum of 1×10 -3 Torr.
Sintering was performed at 1280°C to 1380°C for 2 hours. The obtained sintered body was solution-treated at 1250°C for 30 minutes, then subjected to isothermal treatment in a magnetic field at 640°C and 3000 Oe for 1 hour, and then cooled and maintained at a rate of 3°C/hr from 620°C to 500°C. . Table 1 shows the magnetic properties of each sample under different sintering conditions. That is, from Table 1, the Fe-Cr-Co based magnetic alloy manufactured by the manufacturing method of the present invention exhibits excellent properties, and has a theoretical density ratio of 98% or more compared to similar alloys manufactured by the conventional sintering manufacturing method. It can be seen that a Fe-Cr-Co-based sintered magnet alloy with extremely high density and high magnetic properties, with a magnetic energy product (BH) max of 5.5 MGOe or more, was obtained.

【表】 比較例 1 実施例1と同じ混合粉末を原料粉とし、これに
TiH2粉末(250メツシユ以下)を添加し、実施例
1と同じ条件で、焼結並びに熱処理を施し焼結磁
石合金とした。その磁石特性を第1表に示す。な
おTi量は0.8%であつた。 この発明合金である実施No.1の試料にTiを添
加したた実施No.4の試料は、第1表から明らかな
ように、特性は向上せずに逆に大きく低下してい
る。 実施例 2 実施例1と同一のシグマ粉カーボニル鉄粉、お
よび200メツシユ以下のアトマイズ鉄粉を使用し
て、第2表に示す原料粉を用い、Cr25%、Co9.4
%、Fe残部の混合粉末とし、加圧成型し、H2
ス雰囲気で1330℃の温度で承結した。さらに実施
例1と同方法により熱処理を施した。得られた試
料の磁石特性を第2表に示す。
[Table] Comparative example 1 The same mixed powder as in Example 1 was used as the raw material powder, and this
TiH 2 powder (250 mesh or less) was added and sintered and heat treated under the same conditions as in Example 1 to obtain a sintered magnet alloy. The magnetic properties are shown in Table 1. Note that the amount of Ti was 0.8%. As is clear from Table 1, the properties of the sample of Example No. 4, which was obtained by adding Ti to the sample of Example No. 1, which is an alloy of the present invention, did not improve but were significantly decreased. Example 2 Using the same sigma powder carbonyl iron powder as in Example 1 and atomized iron powder of 200 mesh or less, raw material powder shown in Table 2 was used, Cr25%, Co9.4
% and the remainder of Fe was made into a mixed powder, pressure molded, and sealed at a temperature of 1330°C in an H 2 gas atmosphere. Furthermore, heat treatment was performed in the same manner as in Example 1. The magnetic properties of the obtained samples are shown in Table 2.

【表】 この発明による製造法で得たFe−Cr−Co系焼
結磁石合金(No.6)はH2中の非酸化性雰囲気中
における焼結によつて高密度かつ高特性が得られ
ている。 実施例 3 機械的粉砕によつて製造した200メツシユ以下
のシグマ粉(Cr48%、Co18%、Fe残部)と下記
第3表に示す種々の鉄粉、Co粉とを混合し、
Cr25%、Co9.5%、Fe残部の組成に調整し、実施
例1と同方法で成形したのち、1×10-3Torrの
真空中において、1280℃、1330℃、1380℃で2時
間の焼結を行ない、続いて実施例1の熱処理を施
した。 得られた試料の理論密度比(%)を第3表に示
す。
[Table] The Fe-Cr-Co based sintered magnet alloy (No. 6) obtained by the manufacturing method according to the present invention has high density and high properties by sintering in a non-oxidizing atmosphere of H2 . ing. Example 3 Sigma powder (48% Cr, 18% Co, remainder Fe) of 200 mesh or less produced by mechanical pulverization and various iron powders and Co powders shown in Table 3 below were mixed,
After adjusting the composition to 25% Cr, 9.5% Co, and the remainder of Fe, and molding in the same manner as in Example 1, it was molded at 1280°C, 1330°C, and 1380°C for 2 hours in a vacuum of 1 × 10 -3 Torr. Sintering was performed, followed by the heat treatment of Example 1. Table 3 shows the theoretical density ratio (%) of the obtained samples.

【表】【table】

【表】 第3表から明らかなように、この発明方法によ
る原料粉の組合せによる混合粉末を焼結し、得ら
れた焼結体に熱処理を施し、Fe−Cr−Co系焼結
磁石合金としたものは(実施No.8)、理論密度比
が97%以上の高密度化が達成されている。 発明の効果 この発明は、前記実施例に示した如く、従来の
圧延法、鋳造法、焼結法において必要とされた脱
酸、脱窒、熱処理の容易化等のための添加元素を
全く必要とせず、原料粉末として特定のFe粉、
Cr源粉、及びCo源粉を用いた成形体を、1×
10-3Torr程度の真空中もしくは非酸化性雰囲気
中で1250〜1450℃で焼結することによつて、容易
に高密度の焼結体が得られ、かつ磁石合金の磁石
特性も極めてすぐれたFe−Cr−Co系焼結磁石合
金を効率よくに安価に提供できる製造方法であ
る。
[Table] As is clear from Table 3, the mixed powder obtained by combining the raw material powders according to the method of this invention is sintered, the obtained sintered body is heat-treated, and a Fe-Cr-Co based sintered magnet alloy is produced. In the case of this method (Execution No. 8), a high density with a theoretical density ratio of 97% or more was achieved. Effects of the Invention As shown in the above embodiments, the present invention does not require any additional elements for deoxidation, denitrification, facilitation of heat treatment, etc. that are required in the conventional rolling method, casting method, and sintering method. Specific Fe powder as raw material powder, without
A molded body using Cr source powder and Co source powder was
By sintering at 1250 to 1450℃ in a vacuum of about 10 -3 Torr or in a non-oxidizing atmosphere, a high-density sintered body can be easily obtained, and the magnetic alloy has extremely excellent magnetic properties. This is a manufacturing method that can efficiently provide Fe-Cr-Co based sintered magnet alloy at low cost.

Claims (1)

【特許請求の範囲】 1 カーボニル鉄粉に200メツシユ以下の粒度分
を主体とするFe−Cr−Co系シグマ粉を配合混合
して、Cr22〜30%、Co6〜15%、残部Feからな
る混合粉となし、その後、加圧成型後、真空中ま
たは非酸化性雰囲気中にて、1250℃〜1450℃で焼
結することを特徴とするFe−Cr−Co系焼結磁石
合金の製造方法。 2 カーボニル鉄粉に200メツシユ以下の粒度分
を主体とするFe−Cr−Co系シグマ粉にCo粉を配
合混合して、Cr22〜30%、Co6〜15%、残部Fe
からなる混合粉となし、その後、加圧成型後、真
空中または非酸化性雰囲気中にて、1250℃〜1450
℃で焼結することを特徴とするFe−Cr−Co系焼
結磁石合金の製造方法。
[Scope of Claims] 1. A mixture consisting of 22 to 30% Cr, 6 to 15% Co, and the balance Fe by blending carbonyl iron powder with Fe-Cr-Co sigma powder mainly having a particle size of 200 mesh or less. A method for producing a Fe-Cr-Co based sintered magnet alloy, which comprises grinding it into powder, then pressure molding, and sintering it at 1250°C to 1450°C in vacuum or in a non-oxidizing atmosphere. 2 Co powder is mixed with carbonyl iron powder and Fe-Cr-Co sigma powder mainly composed of particle size of 200 mesh or less to produce a mixture of 22 to 30% Cr, 6 to 15% Co, and the balance Fe.
After that, after pressure molding, in vacuum or non-oxidizing atmosphere, 1250℃ ~ 1450℃
A method for producing a Fe-Cr-Co based sintered magnet alloy, characterized by sintering at °C.
JP4218080A 1980-03-31 1980-03-31 Sintered fe-cr-co magnet alloy and its manufacture Granted JPS56139657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4218080A JPS56139657A (en) 1980-03-31 1980-03-31 Sintered fe-cr-co magnet alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4218080A JPS56139657A (en) 1980-03-31 1980-03-31 Sintered fe-cr-co magnet alloy and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59253725A Division JPS60149745A (en) 1984-11-29 1984-11-29 Fe-cr-co type sintered magnet alloy

Publications (2)

Publication Number Publication Date
JPS56139657A JPS56139657A (en) 1981-10-31
JPH0213021B2 true JPH0213021B2 (en) 1990-04-03

Family

ID=12628783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4218080A Granted JPS56139657A (en) 1980-03-31 1980-03-31 Sintered fe-cr-co magnet alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS56139657A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22
JPS5343006A (en) * 1976-10-01 1978-04-18 Warabi Tokushiyu Seikou Kk Process for production of permanently magnetic alloy
JPS5433205A (en) * 1977-08-19 1979-03-10 Mitsubishi Metal Corp Sinered magnetic material of spinodal decomposition type of fe-cr-co system having high density

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920451A (en) * 1972-06-23 1974-02-22
JPS5343006A (en) * 1976-10-01 1978-04-18 Warabi Tokushiyu Seikou Kk Process for production of permanently magnetic alloy
JPS5433205A (en) * 1977-08-19 1979-03-10 Mitsubishi Metal Corp Sinered magnetic material of spinodal decomposition type of fe-cr-co system having high density

Also Published As

Publication number Publication date
JPS56139657A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
JPH01219143A (en) Sintered permanent magnet material and its production
US5993732A (en) Method for manufacturing a rare earth magnetic powder having high magnetic anisotropy
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
US4601876A (en) Sintered Fe-Cr-Co type magnetic alloy and method for producing article made thereof
US3769100A (en) Method for manufacturing semi-hard magnetic material
JP2001524604A (en) Manufacturing method of magnetic alloy powder
JPH0213021B2 (en)
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
US5520748A (en) Process for manufacturing Alnico system permanent magnet
JPH0146575B2 (en)
JPS6320411A (en) Production of material for permanent magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS5952822A (en) Manufacture of permanent magnet
JPH0142342B2 (en)
JPH0146574B2 (en)
JPS6180805A (en) Permanent magnet material
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPH0142341B2 (en)
JP3300420B2 (en) Alloy for sintered sealing material
US3519502A (en) Method of manufacturing sintered metallic magnets
JPS5819406A (en) Manufacture of sintered fe-cr-co magnet alloy
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JPH0543989A (en) Hard magnetic material and its production