JPH0212859A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPH0212859A
JPH0212859A JP16320988A JP16320988A JPH0212859A JP H0212859 A JPH0212859 A JP H0212859A JP 16320988 A JP16320988 A JP 16320988A JP 16320988 A JP16320988 A JP 16320988A JP H0212859 A JPH0212859 A JP H0212859A
Authority
JP
Japan
Prior art keywords
layer
melting point
wiring
aluminum alloy
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16320988A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamada
義明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16320988A priority Critical patent/JPH0212859A/en
Publication of JPH0212859A publication Critical patent/JPH0212859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the connection resistance between the first and the second layer metallic wirings for preventing the second layer wiring form disconnecting by a method wherein a high melting point metallic layer or a high melting point metallic compound layer in an opening part is removed by inverse sputtering process to deposit the second layer Al alloy on the first layer Al alloy wiring. CONSTITUTION:A high melting point metallic layer or a high melting point metallic compound layer 4 is formed on an aluminum alloy 3 to form the first metallic wiring in laminated layer structure and then an interlayer insulating film 5 is formed on the first layer metallic wiring. First, an opening part to expose a part of the first layer metallic wiring is selectively formed on the interlayer insulating film 5 by the anisotropical etching process. The high melting point metallic layer or the high melting point metallic compound layer 4 exposed to said opening is removed by inverse sputtering process using argon. Finally an aluminum alloy 6 is deposited on said interlayer film 5 to form the second metallic wiring directly connected to the aluminum alloy 5 as the first layer metallic wiring through the opening. For example, the stepped part of the interlayer insulating film 5 is etched away in oblique state by said inverse sputtering process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多層配線の形成方法に関し、特にアルミニウム
合金と高融点金属或いは高融点金属化合物とを積層した
構成の金属配線からなる多層配線の形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for forming multilayer wiring, and particularly to the formation of multilayer wiring consisting of metal wiring in which an aluminum alloy and a refractory metal or a refractory metal compound are laminated. Regarding the method.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路における金属配線層としてアルミ
ニウム合金が主に用いられているが、このアルミニウム
合金では、耐エレクトロマイグレーション性や、熱処理
により発生されるアルミニウム合金の突起物、いわゆる
ヒロック等が問題とされている。このため、アルミニウ
ム合金を高融点金属或いは高融点金属化合物に積層積層
させた金属配線構造とすることで、この問題点を解決す
ることが行われており、特に形成が容易で効果が大きい
方法として、アルミニウム合金層の上層に高融点金属層
或いは高融点金属化合物層を被着した2層構造の金属配
線が多用されている。
Conventionally, aluminum alloys have been mainly used as metal wiring layers in semiconductor integrated circuits, but this aluminum alloy has problems with electromigration resistance and protrusions of the aluminum alloy, so-called hillocks, that occur during heat treatment. ing. Therefore, this problem has been solved by creating a metal wiring structure in which aluminum alloy is laminated on a high-melting point metal or a high-melting point metal compound, and this method is particularly easy to form and highly effective. , metal wiring having a two-layer structure in which a refractory metal layer or a refractory metal compound layer is deposited on top of an aluminum alloy layer is often used.

このような2層の金属配線による多層配線の形成方法の
一例を、第3図(a)乃至第3図(c)に示す断面図で
説明する。なお、この例ではアルミニウム合金上にチタ
ンシリサイドを積層した2層配線の例を示している。
An example of a method for forming a multilayer wiring using two layers of metal wiring will be described with reference to cross-sectional views shown in FIGS. 3(a) to 3(c). Note that this example shows an example of a two-layer wiring in which titanium silicide is laminated on an aluminum alloy.

先ず、第3図(a)のように、表面がシリコン酸化膜2
2で覆われ、所定の位置に開口部を設けたシリコン基板
21上にアルミニウム合金23とチタンシリサイド24
を順次被着した後、通常のりソグラフィ技術を用いて所
要のパターンに形成し、1層目金属配線を形成する。
First, as shown in FIG. 3(a), the surface is covered with a silicon oxide film 2.
Aluminum alloy 23 and titanium silicide 24 are placed on a silicon substrate 21 covered with 2 and provided with openings at predetermined positions.
After sequentially depositing the layers, a desired pattern is formed using ordinary lithography technology to form the first layer metal wiring.

次に、第3図(b)のように、CVD法を用いて全面に
シリコン酸化膜25を形成した後、このシリコン酸化膜
25に1層目金属配線に達する開口部をリソグラフィ技
術を用いて形成する。
Next, as shown in FIG. 3(b), after forming a silicon oxide film 25 on the entire surface using the CVD method, an opening reaching the first layer metal wiring is formed in this silicon oxide film 25 using lithography technology. Form.

更に、第3図(c)のように、前記開口部を含むシリコ
ン酸化膜25上にアルミニウム合金26を被着した後、
これをリソグラフィ技術を用いて所要パターンに形成し
、2層目金属配線を形成する。
Furthermore, as shown in FIG. 3(c), after depositing an aluminum alloy 26 on the silicon oxide film 25 including the opening,
This is formed into a required pattern using lithography technology to form a second layer metal wiring.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の形成方法で形成される多層配線は、1層
目のアルミニウム合金23と2層目のアルミニウム合金
26とは、チタンシリサイド24を介在させて接続され
ることになる。通常、このチタンシリサイド等のような
高融点金属や高融点金属化合物はアルミニウム合金に比
較して抵抗が大きいため、1層目と2層目の各アルミニ
ウム合金間の接続抵抗が、このチタンシリサイド24に
よって増大されるという問題が生じる。
In the multilayer wiring formed by the conventional formation method described above, the first layer of aluminum alloy 23 and the second layer of aluminum alloy 26 are connected with titanium silicide 24 interposed therebetween. Normally, high-melting point metals and high-melting point metal compounds such as titanium silicide have higher resistance than aluminum alloys, so the connection resistance between each aluminum alloy in the first and second layers is the titanium silicide 24. The problem arises that it is increased by

また、1層目と2層目の金属配線を相互に絶縁している
シリコン酸化膜25に開口部を設ける際、微細化のため
にドライエツチングが用いられているが、シリコン酸化
膜の場合は等方性エツチングが困難なため、異方性エツ
チングが用いられる。
Furthermore, when forming an opening in the silicon oxide film 25 that insulates the first and second layer metal wiring from each other, dry etching is used for miniaturization, but in the case of a silicon oxide film, Since isotropic etching is difficult, anisotropic etching is used.

このため、図示のように開口部の断面は象、峻な形状と
なり2層目金属配線が開口部で断線しやすくなるという
問題も有している。
For this reason, as shown in the figure, the cross section of the opening has a steep shape, and there is also the problem that the second layer metal wiring is likely to be disconnected at the opening.

本発明は1層目と2層目の金属配線の接続抵抗を低減し
、かつ2層目配線の断線を防止した多層配線を容易に得
ることが可能な多層配線の形成方法を提供することを目
的としている。
It is an object of the present invention to provide a method for forming a multilayer wiring that can easily obtain a multilayer wiring that reduces the connection resistance between the first and second layer metal wiring and prevents disconnection of the second layer wiring. The purpose is

(課題を解決するための手段〕 本発明の多層配線の形成方法は、アルミニウム合金上に
高融点金属層或いは高融点金属化合物層を形成して積層
構造の1層目金属配線を形成する工程と、この1層目金
属配線上に層間絶縁膜を形成する工程と、この層間絶縁
膜に前記1層目の金属配線の一部を露呈させる開口部を
異方性エツチング法により選択的に形成する工程と、ア
ルゴンを用いた逆スパッタ法により前記開口部に露呈さ
れる高融点金属層或いは高融点金属化合物層を除去する
工程と、前記層間絶縁膜上にアルミニウム合金を堆積し
、開口部を通して前記1層目の金属配線のアルミニウム
合金に直接接続させる2層目の金属配線を形成する工程
とを含んでいる。
(Means for Solving the Problems) The method for forming a multilayer wiring according to the present invention includes the steps of forming a high melting point metal layer or a high melting point metal compound layer on an aluminum alloy to form a first layer metal wiring in a laminated structure. , a step of forming an interlayer insulating film on this first layer metal wiring, and selectively forming an opening in this interlayer insulating film to expose a part of the first layer metal wiring by an anisotropic etching method. step, removing the refractory metal layer or refractory metal compound layer exposed in the opening by reverse sputtering using argon, depositing an aluminum alloy on the interlayer insulating film, and depositing the aluminum alloy on the interlayer insulating film, The method includes a step of forming a second layer of metal wiring to be directly connected to the aluminum alloy of the first layer of metal wiring.

〔作用〕[Effect]

上述した形成方法では、逆スパッタ法により開口部内の
高融点金属層或いは高融点金属化合物層が除去され、I
N目の金属配線と2層目の金属配線の各アルミニウム合
金が直接接続され、両者間での接続抵抗を低減する。ま
た、逆スパッタ法により、層間絶縁膜の段部が傾斜状態
でエツチングされ、段部の段差を緩和して2N目金属配
線の断線を防止する。
In the above-described formation method, the high melting point metal layer or high melting point metal compound layer within the opening is removed by reverse sputtering, and the I
The aluminum alloys of the N-th metal wiring and the second-layer metal wiring are directly connected to reduce the connection resistance between them. Further, by the reverse sputtering method, the stepped portion of the interlayer insulating film is etched in an inclined state, and the difference in level of the stepped portion is alleviated to prevent disconnection of the 2Nth metal wiring.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)乃至第1図(d)は本発明の第1実施例の
主要工程を工程順に示す断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views showing the main steps of the first embodiment of the present invention in order of process.

先ず、第1図(a)のように、表面がシリコン酸化膜2
で覆われ所定の位置に開口部を設けたシリコン基板1上
にアルミニウム合金3を0.5μm、窒化チタン4を0
.1μmの厚さに順次スパッタリング法により被着した
後、通常のりソグラフィ技術を用いて所要パターンに形
成し、1層目金属配線を形成する。
First, as shown in FIG. 1(a), the surface is covered with a silicon oxide film 2.
0.5 μm of aluminum alloy 3 and 0.5 μm of titanium nitride 4 on a silicon substrate 1 covered with
.. After sequentially depositing the film to a thickness of 1 μm by sputtering, it is formed into a desired pattern using normal gluing lithography to form the first layer metal wiring.

次に、第1図(b)のように、プラズマCVD法により
形成したシリコン酸化膜、つまりプラズマシリコン酸化
膜5を全面に1.0μmの厚さに被着した後、このプラ
ズマシリコン酸化膜5に前記1層目金属配線に達する開
口部をリソグラフィ技術及び異方性のドライエツチング
技術を用いて形成する。
Next, as shown in FIG. 1(b), a silicon oxide film formed by plasma CVD, that is, a plasma silicon oxide film 5, is deposited on the entire surface to a thickness of 1.0 μm. Then, an opening reaching the first layer metal wiring is formed using lithography technology and anisotropic dry etching technology.

次に、第1図(C)のように、アルゴンガスを真空中に
導入し、かつシリコン基板に高周波電圧を印加してアル
ゴンの高周波プラズマを発生させ、このプラズマにより
エツチングする方法、換言すればアルゴンを用いた逆ス
パッタ法により開口部内に露呈されている窒化チタン4
を除去する。このとき、プラズマシリコン酸化膜5も0
.2〜0.3μm程度エツチングされ、特に開口縁5a
或いは1層目金属配線の段部のエツチング速度は大きく
、これらの部分では基板に対して40〜506の傾斜を
持つ断面形状となる。
Next, as shown in FIG. 1(C), argon gas is introduced into a vacuum and a high frequency voltage is applied to the silicon substrate to generate high frequency plasma of argon, and etching is performed using this plasma. Titanium nitride 4 exposed in the opening by reverse sputtering using argon
remove. At this time, the plasma silicon oxide film 5 is also zero.
.. It is etched by about 2 to 0.3 μm, especially the opening edge 5a.
Alternatively, the etching rate of the stepped portions of the first layer metal wiring is high, and these portions have a cross-sectional shape having an inclination of 40 to 506 degrees with respect to the substrate.

しかる上で、第1図(d)のように、プラズマシリコン
酸化膜5上にアルミニウム合金6と窒化チタン7を順次
スパッタリング法により被着した後、これをリソグラフ
ィ技術を用いて所要パターンに形成し、開口部において
前記1層目金属配線に接続される2N目金属配線を形成
する。
Then, as shown in FIG. 1(d), aluminum alloy 6 and titanium nitride 7 are sequentially deposited on plasma silicon oxide film 5 by sputtering, and then formed into a desired pattern using lithography. , forming a 2Nth metal wiring connected to the first layer metal wiring in the opening.

このようにして形成された多層配線は、1層目のアルミ
ニウム合金3上の窒化チタン4を開口部において逆スパ
ッタ法により除去しているので、1層目のアルミニウム
合金3と2N目のアルミニウム合金6の間に窒化チタン
4が存在することはなく、両アルミニウム合金3.6の
接続抵抗を十分低いものにできる。また、プラズマシリ
コン酸化膜5は、逆スパッタ法によりエツチングされる
ので、開口部の開口縁5aは基板に対して50°程度の
傾斜となり、開口部における2N目のアルミニウム合金
6の被覆性は良好となり、断線を防止できる。
In the multilayer wiring formed in this way, since the titanium nitride 4 on the first layer aluminum alloy 3 is removed by reverse sputtering at the opening, the first layer aluminum alloy 3 and the 2N-th aluminum alloy Since titanium nitride 4 does not exist between aluminum alloys 3 and 6, the connection resistance between both aluminum alloys 3 and 6 can be made sufficiently low. Furthermore, since the plasma silicon oxide film 5 is etched by reverse sputtering, the opening edge 5a of the opening is inclined at an angle of about 50° with respect to the substrate, and the coverage of the 2N-th aluminum alloy 6 in the opening is good. This prevents wire breakage.

これにより、アルミニウム合金と窒化チタンの2層構造
で耐エレクトロマイグレーション性や耐ヒロック性を向
上するとともに、低抵抗化を図り、かつ開口部や段部で
の断線を防止した高信頼度の多層配線を得ることができ
る。
As a result, the two-layer structure of aluminum alloy and titanium nitride improves electromigration resistance and hillock resistance, while also achieving low resistance and highly reliable multilayer wiring that prevents disconnection at openings and steps. can be obtained.

第2図(a)乃至第2図(e)は本発明の第2実施例の
主要工程を工程順に示す断面図である。
FIGS. 2(a) to 2(e) are cross-sectional views showing the main steps of the second embodiment of the present invention in order of process.

先ず、第2図(a)のように、表面がシリコン酸化膜1
2で覆われ所定の位置に開口部を設けたシリコン基板1
1上にアルミニウム合金13を堆積し、かつこれをリソ
グラフィ技術で所要のパターンに形成し、1層目金属配
線を形成する。
First, as shown in FIG. 2(a), the surface is covered with a silicon oxide film 1.
A silicon substrate 1 covered with 2 and having an opening at a predetermined position.
An aluminum alloy 13 is deposited on top of the aluminum alloy 13 and formed into a desired pattern using lithography technology to form a first layer metal wiring.

次に、第2図(b)のように、六弗化タングステンを用
いたCVD法によりアルミニウム合金配線13の表面に
選択的にタングステン14を0.1μm被着する。
Next, as shown in FIG. 2(b), tungsten 14 is selectively deposited to a thickness of 0.1 μm on the surface of the aluminum alloy wiring 13 by CVD using tungsten hexafluoride.

その後の工程は第1実施例と同様であり、第2図(C)
のように、全面にプラズマシリコン酸化膜15を被着し
た後、異方性ドライエツチングにより開口部を形成する
The subsequent steps are the same as those in the first embodiment, and are shown in FIG. 2(C).
After a plasma silicon oxide film 15 is deposited on the entire surface, openings are formed by anisotropic dry etching.

更に、第2図(d)のようにアルゴンを用いた逆スパッ
タリングにより、開口部内のタングステン14を除去す
ると同時にプラズマシリコン酸化膜15を0.2〜0.
3μmエツチングし、開口部の開口縁15aが傾斜を持
った断面形状とする。
Furthermore, as shown in FIG. 2(d), by reverse sputtering using argon, the tungsten 14 in the opening is removed and at the same time the plasma silicon oxide film 15 is sputtered by 0.2 to 0.2 mm.
Etching is performed by 3 μm, and the opening edge 15a of the opening has a sloped cross-sectional shape.

その後、第2図(e)のように、アルミニウム合金16
を全面に堆積し、これを所要パターンに形成することに
より2層目金属配線を形成する。
After that, as shown in FIG. 2(e), the aluminum alloy 16
A second layer of metal wiring is formed by depositing this on the entire surface and forming it into a desired pattern.

この第2実施例においても、形成された多層配線は、1
N目のアルミニウム合金13上の六弗化タングステン1
4を開口部において逆スパッタ法により除去しているの
で、1層目のアルミニウム合金13と2層目のアルミニ
ウム合金16を直接接続させてその接続抵抗を十分低い
ものにできる。
In this second embodiment as well, the formed multilayer wiring has 1
Tungsten hexafluoride 1 on N-th aluminum alloy 13
4 is removed at the opening by reverse sputtering, the first layer of aluminum alloy 13 and the second layer of aluminum alloy 16 can be directly connected and the connection resistance can be made sufficiently low.

また、プラズマシリコン酸化膜15の開口部の開口縁を
傾斜させ、開口部における2層目のアルミニウム合金1
6の被覆性は良好となり、断線を防止できる。
In addition, the opening edge of the opening of the plasma silicon oxide film 15 is inclined, and the second layer of aluminum alloy 1 in the opening is
The coverage of No. 6 is good, and disconnection can be prevented.

なお、上述した以外の高融点金属や高融点化合物を用い
た金属配線においても本発明を同様に適用することがで
きる。
Note that the present invention can be similarly applied to metal wiring using high-melting point metals and high-melting point compounds other than those described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、層間絶縁膜に開口部を開
設した後に、逆スパッタ法により開口部内の高融点金属
層或いは高融点金属化合物層を除去しているので、1層
目の金属配線と2層目の金属配線の各アルミニウム合金
が直接接続され、両者間での接続抵抗を低減することが
できる。また、この際の逆スパッタ法により層間絶縁膜
の段部が傾斜状態でエツチングされて段部の段差を緩和
するので、この上に形成する2層目金属配線の断線を防
止することができる。これにより、本発明方法で形成さ
れる多層配線は、アルミニウム合金に高融点金属層や高
融点金属化合物層を重ねた構成とすることにより耐エレ
クトロマイグレーション性や耐ヒロック性を向上する一
方で、低抵抗化しかつ開口部や段部での断線を無くした
高信頼性の微細多層配線を形成することができる効果が
ある。
As explained above, in the present invention, after an opening is formed in an interlayer insulating film, the high melting point metal layer or high melting point metal compound layer inside the opening is removed by reverse sputtering, so that the first layer of metal wiring is removed. and each aluminum alloy of the second layer metal wiring are directly connected, and connection resistance between the two can be reduced. Furthermore, by the reverse sputtering method at this time, the stepped portion of the interlayer insulating film is etched in an inclined manner, thereby reducing the level difference in the stepped portion, so that disconnection of the second layer metal wiring formed thereon can be prevented. As a result, the multilayer wiring formed by the method of the present invention has a structure in which a high melting point metal layer or a high melting point metal compound layer is stacked on an aluminum alloy, which improves electromigration resistance and hillock resistance, while reducing This has the effect of forming highly reliable fine multilayer wiring that is resistive and free from disconnections at openings and step portions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至第1図(d)は本発明の第1実施例を
工程順に示す断面図、第2図(a)乃至第2図(e)は
本発明の第2実施例を工程順に示す断面図、第3図(a
)乃至第3図(C)は従来の形成方法を工程順に示す断
面図である。 1.11.21・・・シリコン基板、2,12.22・
・・シリコン酸化膜、3,13.23・・・アルミニウ
ム合金(1層目)、4.7・・・窒化チタン(高融点金
属化合物)、14・・・タングステン(高融点金属)2
4・・・チタンシリサイド(高融点金属化合物)、5.
15.25・・・プラズマシリコン酸化膜、6゜16.
26・・・アルミニウム合金(2層目)。 第2 図 第 図
FIGS. 1(a) to 1(d) are sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to 2(e) are sectional views showing the second embodiment of the present invention. Cross-sectional diagrams shown in the order of steps, Figure 3 (a
) to FIG. 3(C) are cross-sectional views showing the conventional forming method in the order of steps. 1.11.21...Silicon substrate, 2,12.22.
... Silicon oxide film, 3, 13.23 ... Aluminum alloy (first layer), 4.7 ... Titanium nitride (high melting point metal compound), 14 ... Tungsten (high melting point metal) 2
4...Titanium silicide (high melting point metal compound), 5.
15.25...Plasma silicon oxide film, 6°16.
26...Aluminum alloy (second layer). Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、アルミニウム合金上に高融点金属層或いは高融点金
属化合物層を形成して積層構造の1層目金属配線を形成
する工程と、この1層目金属配線上に層間絶縁膜を形成
する工程と、この層間絶縁膜に前記1層目の金属配線の
一部を露呈させる開口部を異方性エッチング法により選
択的に形成する工程と、アルゴンを用いた逆スパッタ法
により前記開口部に露呈される高融点金属層或いは高融
点金属化合物層を除去する工程と、前記層間絶縁膜上に
アルミニウム合金を堆積し、開口部を通して前記1層目
の金属配線のアルミニウム合金に直接接続させる2層目
の金属配線を形成する工程とを含むことを特徴とする多
層配線の形成方法。
1. A step of forming a high melting point metal layer or a refractory metal compound layer on an aluminum alloy to form a first layer metal wiring of a laminated structure, and a step of forming an interlayer insulating film on this first layer metal wiring. , a step of selectively forming an opening in this interlayer insulating film to expose a part of the first layer metal wiring by an anisotropic etching method; a step of removing a high melting point metal layer or a high melting point metal compound layer; and a step of depositing an aluminum alloy on the interlayer insulating film and directly connecting the aluminum alloy of the first layer metal wiring through the opening. 1. A method for forming a multilayer wiring, the method comprising the step of forming a metal wiring.
JP16320988A 1988-06-30 1988-06-30 Formation of multilayer interconnection Pending JPH0212859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16320988A JPH0212859A (en) 1988-06-30 1988-06-30 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16320988A JPH0212859A (en) 1988-06-30 1988-06-30 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPH0212859A true JPH0212859A (en) 1990-01-17

Family

ID=15769365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16320988A Pending JPH0212859A (en) 1988-06-30 1988-06-30 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPH0212859A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084404A (en) * 1988-03-31 1992-01-28 Advanced Micro Devices Gate array structure and process to allow optioning at second metal mask only
US5162261A (en) * 1990-12-05 1992-11-10 Texas Instruments Incorporated Method of forming a via having sloped sidewalls
US5313100A (en) * 1991-04-26 1994-05-17 Mitsubishi Denki Kabushiki Kaisha Multilayer interconnection structure for a semiconductor device
US5627345A (en) * 1991-10-24 1997-05-06 Kawasaki Steel Corporation Multilevel interconnect structure
JP2006135359A (en) * 1998-12-18 2006-05-25 Semiconductor Energy Lab Co Ltd Semiconductor device
US7312515B2 (en) 2003-06-11 2007-12-25 Ricoh Company, Ltd. Semiconductor apparatus including a thin-metal-film resistor element and a method of manufacturing the same
US7358592B2 (en) 2004-03-02 2008-04-15 Ricoh Company, Ltd. Semiconductor device
JP2008147233A (en) * 2006-12-06 2008-06-26 Seiko Epson Corp Manufacturing method of actuator device and liquid jetting head
US7420211B2 (en) 1998-12-18 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Wiring line and manufacture process thereof, and semiconductor device and manufacturing process thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084404A (en) * 1988-03-31 1992-01-28 Advanced Micro Devices Gate array structure and process to allow optioning at second metal mask only
US5162261A (en) * 1990-12-05 1992-11-10 Texas Instruments Incorporated Method of forming a via having sloped sidewalls
US5712140A (en) * 1991-04-19 1998-01-27 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing interconnection structure of a semiconductor device
US5313100A (en) * 1991-04-26 1994-05-17 Mitsubishi Denki Kabushiki Kaisha Multilayer interconnection structure for a semiconductor device
US5475267A (en) * 1991-04-26 1995-12-12 Mitsubishi Denki Kabushiki Kaisha Multilayer interconnection structure for a semiconductor device
US5946799A (en) * 1991-10-24 1999-09-07 Kawasaki Steel Corporation Multilevel interconnect method of manufacturing
US5627345A (en) * 1991-10-24 1997-05-06 Kawasaki Steel Corporation Multilevel interconnect structure
JP2006135359A (en) * 1998-12-18 2006-05-25 Semiconductor Energy Lab Co Ltd Semiconductor device
US7420211B2 (en) 1998-12-18 2008-09-02 Semiconductor Energy Laboratory Co., Ltd. Wiring line and manufacture process thereof, and semiconductor device and manufacturing process thereof
US7312515B2 (en) 2003-06-11 2007-12-25 Ricoh Company, Ltd. Semiconductor apparatus including a thin-metal-film resistor element and a method of manufacturing the same
US7718502B2 (en) 2003-06-11 2010-05-18 Ricoh Company, Ltd. Semiconductor apparatus including a thin-metal-film resistor element and a method of manufacturing the same
US7358592B2 (en) 2004-03-02 2008-04-15 Ricoh Company, Ltd. Semiconductor device
JP2008147233A (en) * 2006-12-06 2008-06-26 Seiko Epson Corp Manufacturing method of actuator device and liquid jetting head

Similar Documents

Publication Publication Date Title
JP2511892B2 (en) Multilayer thin film wiring and method for forming the same
JPH0212859A (en) Formation of multilayer interconnection
JP3133842B2 (en) Method of manufacturing multilayer wiring structure
JPH01255249A (en) Semiconductor integrated circuit device
JP2655504B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3137719B2 (en) Method for manufacturing semiconductor device
JPH09199593A (en) Semiconductor device and manufacture thereof
JP2819640B2 (en) Semiconductor device
JPH0695516B2 (en) Semiconductor device
JP3237917B2 (en) Method for manufacturing semiconductor device
JP3096551B2 (en) Method for manufacturing semiconductor device
JPH0851153A (en) Semiconductor device with multilayer interconnection
JP2674473B2 (en) Wiring structure
JPH11297699A (en) Diffusion barrier layer and its manufacture
JPS62291948A (en) Metal thin film miring and manufacture thereof
JPS63147346A (en) Semiconductor integrated circuit device
JPH0888227A (en) Wiring and its formation
JPH08213395A (en) Manufacture of semiconductor device
JPH08222629A (en) Wiring structure and manufacture thereof
JPH05243229A (en) Semiconductor integrated circuit device
JPH08250495A (en) Formation of laminated wiring film
JPH1056022A (en) Semiconductor device and manufacture thereof
JPH09115906A (en) Manufacture of semiconductor device
JPH06163705A (en) Semiconductor device having structure of conductive-film laminated wiring
JPH04348548A (en) Semiconductor device and its production