JPH02128155A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH02128155A
JPH02128155A JP63281050A JP28105088A JPH02128155A JP H02128155 A JPH02128155 A JP H02128155A JP 63281050 A JP63281050 A JP 63281050A JP 28105088 A JP28105088 A JP 28105088A JP H02128155 A JPH02128155 A JP H02128155A
Authority
JP
Japan
Prior art keywords
oxygen
circuit
space
solid electrolyte
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63281050A
Other languages
Japanese (ja)
Inventor
Kenji Nuri
塗 健治
Yoichi Kurumiya
洋一 久留宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63281050A priority Critical patent/JPH02128155A/en
Publication of JPH02128155A publication Critical patent/JPH02128155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To obtain a measured value of high reliability without lowering sensitivity in spite of long-time use by discharging the oxygen in a reference space to the outside by the oxygen pumping action of a solid electrolyte in a reference circuit. CONSTITUTION:In measuring the concn. of oxygen, voltage is applied to a solid electrolyte 1 at first by a DC power supply in a reference circuit A and the oxygen in a reference space 6 is discharged to the outside by the oxygen pumping action of the electrolyte 1. Thereafter, a switching element S is changed over to set a measuring circuit B to finish the application of voltage to the electrolyte B. Next, in the circuit B, since the concn. of oxygen in the space 6 is zero%, the difference in the concn. of oxygen with sample gas is generated and, therefore, the electrolyte 1 generates conc. cell action to generate electromotive force. This electromotive force is measured by a voltmeter V. The magnitude of this electromotive force is proportional to that of the concn. cell action and, since this cell action is proportional to the difference in the concn. of oxygen between the space 6 and the outside space, the concn. of oxygen in the outside space can be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、安定化ジルコニアの濃淡電池作用と酸素ボ
ンピング作用とを利用することにより、長時間にわたっ
て感度の低下がなく、安定した測定が可能な酸素センサ
に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention utilizes the concentration cell action and oxygen bombing action of stabilized zirconia to enable stable measurement without loss of sensitivity over a long period of time. related to oxygen sensors.

[従来技術およびその課題] 従来、酸素濃度が既知の基準ガスと試料ガスとの間にジ
ルコニア固体電解質を置き、その両側での酸素濃度の濃
淡による固体電解質の起電力を測定して、酸素濃度測定
を行う濃淡電池作用を利用した酸素センサが知られてい
る。ところが、この濃淡電池作用を利用した酸素センサ
では、測定時に基準ガスが不可欠であり、特に試料ガス
の酸素濃度が大気中の酸素濃度に近い場合には測定精度
が低いという問題があった。
[Prior art and its problems] Conventionally, a zirconia solid electrolyte is placed between a reference gas with a known oxygen concentration and a sample gas, and the electromotive force of the solid electrolyte is measured depending on the concentration of oxygen on both sides to determine the oxygen concentration. Oxygen sensors that utilize concentration cell action for measurement are known. However, oxygen sensors that utilize this concentration cell function require a reference gas during measurement, and have a problem in that measurement accuracy is low, especially when the oxygen concentration of the sample gas is close to the oxygen concentration in the atmosphere.

このような問題を解決し、基準ガスを不要とした酸素セ
ンサとして、ジルコニア固体電解質の酸素ボンピング作
用を利用した酸素センサが知られている。この種の酸素
センサは、固体電解質中を移動する酸素イオンに伴う電
流変化から気体中の酸素濃度を測定するものであって、
測定時に基準ガスが不要となり、試料ガスの酸素濃度が
大気中の酸素濃度に近い場合であっても測定誤差が小さ
いものである。
As an oxygen sensor that solves this problem and eliminates the need for a reference gas, an oxygen sensor that utilizes the oxygen bombing effect of a zirconia solid electrolyte is known. This type of oxygen sensor measures the oxygen concentration in a gas from changes in current accompanying oxygen ions moving in a solid electrolyte.
No reference gas is required during measurement, and measurement errors are small even when the oxygen concentration of the sample gas is close to the oxygen concentration in the atmosphere.

第4図はこの酸素ボンピング作用を利用1.た酸素セン
サの一例を示すものである。第4図中、符号Eはセンサ
エレメントであり、このセンサエレメントEは、2枚の
白金電極2.3間に挾着された固体電解質lと、この固
体電解質lの片面を覆うキャップ4とからなる。このキ
ャップ4には孔5が形成されており、この孔5によりキ
ャップ4内への酸素の流入が制限されるようになってい
る。
Figure 4 shows the use of this oxygen pumping effect in 1. This figure shows an example of an oxygen sensor. In FIG. 4, the symbol E is a sensor element, and this sensor element E is made up of a solid electrolyte l held between two platinum electrodes 2.3 and a cap 4 that covers one side of the solid electrolyte l. Become. A hole 5 is formed in the cap 4, and the hole 5 restricts the flow of oxygen into the cap 4.

そして白金電極2.3には、直流電源DCによって電圧
が印加され、この電圧は電圧計■によって検出されるよ
うになっている。また電圧の印加によって上記固体電解
質lを流れる電流が電流計Aに検出され、この電流計A
の出力が酸素濃度データとして出力されるようになって
いる。そして上記酸素センサにあっては、印加される電
圧にかかわらず固体電解質1を流れる電流が一定になる
場合のN流値(限界電流値)の値により、酸素濃度を4
11定できるようになっている。
A voltage is applied to the platinum electrode 2.3 by a direct current power source DC, and this voltage is detected by a voltmeter (2). In addition, the current flowing through the solid electrolyte 1 is detected by the ammeter A due to the application of voltage, and this ammeter A
The output is output as oxygen concentration data. In the above oxygen sensor, the oxygen concentration is determined by the N flow value (limit current value) when the current flowing through the solid electrolyte 1 is constant regardless of the applied voltage.
11 can be determined.

ところがこのような酸素センサを製造するにあたっては
、キャップ4の孔5に形成方法等の高度な技術が必要で
あった。
However, manufacturing such an oxygen sensor requires advanced technology such as a method for forming the hole 5 of the cap 4.

この発明は上記課題を解決するためになされたものであ
って、長時間の使用に際しても感度の低下がなく、信頼
性の高い測定値が得られるような酸素センサを提供する
ことを目的としている。
This invention was made to solve the above problems, and aims to provide an oxygen sensor that does not decrease in sensitivity even when used for a long time and can obtain highly reliable measurement values. .

[課題を解決するための手段] この発明の酸素センサは、2枚の白金電極間に挾着され
た固体電解質の片面上に、気密の基準空間を形成するよ
うにキャップを設けてなるセンサエレメントと、このセ
ンサエレメントに電圧を印加し、上記基準空間中の酸素
を外部へ放出させる直流電源とを接続してなる基準回路
と、上記センサエレメントと、上記基準空間中の酸素濃
度と測定雰囲気の酸素濃度との差によって発生する起電
圧を測定する電圧計とを接続してなる測定回路とを有し
、上記基準回路と測定回路とを切り替えるスイッチング
素子を設けたことを解決手段とした。
[Means for Solving the Problems] The oxygen sensor of the present invention includes a sensor element in which a cap is provided on one side of a solid electrolyte sandwiched between two platinum electrodes so as to form an airtight reference space. and a reference circuit connected to a DC power supply that applies a voltage to this sensor element and releases oxygen in the reference space to the outside, and a reference circuit that connects the sensor element, the oxygen concentration in the reference space, and the measurement atmosphere. The solution is to have a measuring circuit connected to a voltmeter that measures the electromotive force generated by the difference in oxygen concentration, and a switching element that switches between the reference circuit and the measuring circuit.

[作用 ] 基準回路と測定回路とを設け、基準回路では固体電解質
の酸素ボンピング作用によって基準空間中の酸素を外部
に放出し、測定回路では固体電解質の酸素濃淡電池作用
によって測定回路中に発生する起電圧を測定するように
したので、長時間に亙る測定で固体電解質表面の白金電
極が劣化して、その有効面積が減少しても、白金電極の
面積に依存しない起電圧の大きさによって酸素濃度を正
確に測定することができる。
[Function] A reference circuit and a measurement circuit are provided. In the reference circuit, oxygen in the reference space is released to the outside by the oxygen bombing action of the solid electrolyte, and in the measurement circuit, oxygen is released in the measurement circuit by the oxygen concentration battery action of the solid electrolyte. Since the electromotive force is measured, even if the platinum electrode on the surface of the solid electrolyte deteriorates and its effective area decreases over a long period of measurement, the electromotive force, which does not depend on the area of the platinum electrode, will reduce the oxygen concentration. Concentration can be measured accurately.

[実施例〕 以下、この発明の詳細な説明する。[Example〕 The present invention will be described in detail below.

第1図および第2図はいずれもこの発明の酸素センサの
一実施例を示したものである。第1図および第2図に示
した酸素センサが第4図に示した従来のものと異なると
ころは、キャップ4に孔5を設けずに固体電解質lとキ
ャップ4とで密閉された基準空間6を設けるとともに、
測定回路中にスイッチング素子Sを設け、基準回路Aと
測定回路Bとに切り替え可能なようにしたところであり
、第1図はこの発明の酸素センサの基準回路Aを示し、
第2図はこの発明の酸素センサの測定回路Bを示してい
る。第1図に示した基準回路Aは、センサエレメントE
と、このセンサエレメントEに電圧を印加する直流電源
DCと、回路中の電流量を測定する電流計Aと、この基
準回路Aを測定回路Bに切り替えるスイッチング素子S
とからなる。
Both FIG. 1 and FIG. 2 show an embodiment of the oxygen sensor of the present invention. The oxygen sensor shown in FIGS. 1 and 2 is different from the conventional one shown in FIG. In addition to establishing
A switching element S is provided in the measurement circuit so that it can be switched between a reference circuit A and a measurement circuit B. FIG. 1 shows the reference circuit A of the oxygen sensor of the present invention.
FIG. 2 shows the measurement circuit B of the oxygen sensor of the present invention. The reference circuit A shown in FIG.
, a DC power supply DC that applies voltage to this sensor element E, an ammeter A that measures the amount of current in the circuit, and a switching element S that switches this reference circuit A to a measurement circuit B.
It consists of

第2図に示した測定回路Bは、上記基準回路Aのスイッ
チング素子Sを切り替えたものであって、センサエレメ
ントEと、固体電解質1の濃淡電池作用により発生する
起電圧を測定する電圧計■と、回路中の電流量を測定す
る電流計Aと、スイッチング索子Sとからなるものであ
る。
The measurement circuit B shown in FIG. 2 is a circuit in which the switching element S of the reference circuit A is switched, and includes a sensor element E and a voltmeter that measures the electromotive force generated by the concentration cell action of the solid electrolyte 1. , an ammeter A that measures the amount of current in the circuit, and a switching cable S.

このような酸素センサにあっては、基準回路Aと測定回
路Bとはスイッチング素子Sによって容易に切り替え可
能であり、酸素濃度を測定する際には、第1図に示した
基準回路Aを一定時間駆動させ、スイッチング索子Sを
切り替えて測定回路Bを駆動させる。酸素濃度を測定す
る際には、まず初めに第1図に示した基準回路Aとし、
直流電源DCによって固体電解質1に電圧を印加し、キ
ャツブ4と固体電解質Iとの間に形成された基準空間6
内の酸素を固体電解質1の酸素ボンピング作用により外
部空間へ放出する。固体電解質lへの電圧印加時間は、
基準空間6内の酸素濃度が0%となるまでであって、基
準回路A内に設けられた電流計Aが一定値を示すように
なるまでである。
In such an oxygen sensor, the reference circuit A and the measurement circuit B can be easily switched by the switching element S, and when measuring the oxygen concentration, the reference circuit A shown in FIG. The measuring circuit B is driven by time-driving and switching the switching cable S. When measuring oxygen concentration, first use the reference circuit A shown in Figure 1,
A voltage is applied to the solid electrolyte 1 by a DC power source DC, and a reference space 6 is formed between the cap 4 and the solid electrolyte I.
Oxygen inside is released to the outside space by the oxygen bombing action of the solid electrolyte 1. The voltage application time to the solid electrolyte l is
This is until the oxygen concentration in the reference space 6 becomes 0% and until the ammeter A provided in the reference circuit A shows a constant value.

こののちスイッチング素子Sを切り替えて駆動回路を基
準回路Aから測定回路Bにして、固体電解質1への印加
を終了させる。次に測定回路Bでは、基準空間6内の酸
素濃度が0%となっているので、試料ガスとの間に酸素
濃度差が生じ、これにより固体電解質lが濃淡電池作用
を起こし、起電圧を生じる。この起電圧を測定回路B中
に設けられた電圧計Vによって測定する。電圧計Vによ
って測定された起電圧の大きさは、固体電解質lの濃淡
電池作用の大きさに比例し、固体電解質lの濃淡電池作
用は基準空間6内と外部空間の酸素濃度差に比例するの
で、予め基準空間6内の酸素濃度は0%としであるので
、外部空間の酸素濃度を測定することができる。
Thereafter, the switching element S is switched to change the drive circuit from the reference circuit A to the measurement circuit B, and the application to the solid electrolyte 1 is ended. Next, in measurement circuit B, since the oxygen concentration in the reference space 6 is 0%, a difference in oxygen concentration occurs between the sample gas and the solid electrolyte 1, which causes the solid electrolyte 1 to act as a concentration cell and generates an electromotive force. arise. This electromotive voltage is measured by a voltmeter V provided in the measurement circuit B. The magnitude of the electromotive force measured by the voltmeter V is proportional to the concentration cell effect of the solid electrolyte 1, and the concentration cell effect of the solid electrolyte 1 is proportional to the difference in oxygen concentration between the reference space 6 and the external space. Therefore, since the oxygen concentration in the reference space 6 is set to 0% in advance, the oxygen concentration in the external space can be measured.

第3図にこの発明の酸素センサの基準回路Aと測定回路
Bの各回路での印加電圧の変化と、基準空間6内の酸素
濃度の変化と、電流量の変化と、濃淡電池作用による起
電圧の変化とを共に示した。
FIG. 3 shows changes in the applied voltage in the reference circuit A and measurement circuit B of the oxygen sensor of the present invention, changes in the oxygen concentration in the reference space 6, changes in the amount of current, and the effects caused by the concentration cell action. Changes in voltage are also shown.

基準回路Aでは、直流電圧DCによって固体電解質1に
電圧が印加されると、固体電解質1の酸素ボンピング作
用により基準空間6内の酸素が酸素イオンとして固体電
解質!内を移動し、外部空間へ放出され基準空間6内の
酸素濃度が徐々に減少する。固体電解質lの酸素ボンピ
ング作用は基準空間6中の酸素濃度に依存し、固体電解
質1中を移動する酸素イオン濃度によって電流量が変化
するので、基準空間6内の酸素濃度が減少すると共に電
流量は減少する。そして基準空間6内の酸素濃度が0%
となると、固体電解質1中を移動する酸素イオンがなく
なるので、印加電圧に対応した一定値を示すようになる
。よって逆に電流量が一定値を示すことにより基準空間
6内の酸素濃度が一定となったこと、即ち0%となった
ことが確認できる。このように電流量が一定となったの
ちに、スイッチング素子Sを切り替え、測定回路Bを駆
動させろ。測定回路Bでは基準空間6内の酸素濃度が先
の基準回路Aの駆動により0%にされているので、外部
空間となる試料ガスとの間に酸素濃度差が生じる。一固
体電解質Iはこの酸素濃度差によって濃淡電池作用を起
こして起電圧を生じる。
In the reference circuit A, when a voltage is applied to the solid electrolyte 1 using a direct current voltage DC, oxygen in the reference space 6 is converted to oxygen ions and transferred to the solid electrolyte due to the oxygen bombing action of the solid electrolyte 1! The oxygen concentration in the reference space 6 gradually decreases as the oxygen moves inside the reference space 6 and is released to the outside space. The oxygen bombing effect of the solid electrolyte 1 depends on the oxygen concentration in the reference space 6, and the amount of current changes depending on the concentration of oxygen ions moving in the solid electrolyte 1. Therefore, as the oxygen concentration in the reference space 6 decreases, the amount of current increases. decreases. And the oxygen concentration in the reference space 6 is 0%
In this case, there are no oxygen ions moving in the solid electrolyte 1, so that the voltage exhibits a constant value corresponding to the applied voltage. Therefore, when the amount of current shows a constant value, it can be confirmed that the oxygen concentration in the reference space 6 has become constant, that is, 0%. After the amount of current becomes constant in this way, switch the switching element S and drive the measuring circuit B. In the measuring circuit B, since the oxygen concentration in the reference space 6 is set to 0% by the previous driving of the reference circuit A, a difference in oxygen concentration occurs between the measurement circuit B and the sample gas in the external space. The solid electrolyte I causes a concentration cell action due to this oxygen concentration difference, and generates an electromotive voltage.

この起電圧の大きさは測定回路B中に設けられた電圧計
Vによって測定され、上記基準回路Aにおける起電圧と
の差を検出することにより、基準空間6と外部空間との
酸素濃度差である試料ガス中の酸素濃度の測定を行うこ
とができる。
The magnitude of this electromotive voltage is measured by a voltmeter V installed in the measurement circuit B, and by detecting the difference with the electromotive voltage in the reference circuit A, it is possible to determine the difference in oxygen concentration between the reference space 6 and the external space. It is possible to measure the oxygen concentration in a certain sample gas.

このようにこの発明の酸素センサでは、基準回路Aと測
定回路Bとを設けたことにより、固体電解質1の濃淡電
池作用による起電圧を測定する従来の酸素セ°ンサのよ
うに基準ガスを必要としなくなるので、測定が容易に行
うことができる。さらにこの発明の酸素センサで測定デ
ータとして用いられる濃淡電池作用による起電圧の大き
さは、固体電解質lの化学特性に依存しているので、白
金電極2.3の劣化などの外部要因によって変化しにく
い。よって電流値によって酸素濃度の測定を行う従来の
酸素センサに比へて信頼性および耐久性の高いものとな
る。
In this way, the oxygen sensor of the present invention, by providing the reference circuit A and the measurement circuit B, does not require a reference gas unlike the conventional oxygen sensor which measures the electromotive force due to the concentration cell action of the solid electrolyte 1. Therefore, measurements can be easily performed. Furthermore, the magnitude of the electromotive force due to the concentration cell action used as measurement data in the oxygen sensor of the present invention depends on the chemical properties of the solid electrolyte 1, so it may change due to external factors such as deterioration of the platinum electrode 2.3. Hateful. Therefore, it has higher reliability and durability than conventional oxygen sensors that measure oxygen concentration based on current values.

[発明の効果] 以上説明したように、この発明の酸素センサは、2枚の
白金電極間に挾着された固体電解質の片面上に、気密の
基準空間を形成するようにキャップを設けてなるセンサ
エレメントと、このセンサエレメントに電圧を印加し、
上記基準空間中の酸素を外部へ放出させる直流電源とを
接続してなる基準回路と、上記センサエレメントと、上
記基準空間中の酸素濃度と測定雰囲気の酸素濃度との差
によって発生する起電圧を測定する電圧計とを接続して
なる測定回路とを有し、上記基準回路と測定回路とを切
り替えるスイッチング素子を設けたちので、基準回路で
は直流電圧を固体電解質に印加することにより基準空間
中の酸素を外部空間へ放出し、測定回路では基準空間と
外部空間との間に生じた酸素濃度差で固体電解質が濃淡
電池作用を起こす際に生じる起電圧を測定するものであ
るので、長時間に亙る測定で白金電極が劣化しても、電
極面積に依存しない起電圧により測定を行うので、信頼
性と耐久性とが向上する。
[Effects of the Invention] As explained above, the oxygen sensor of the present invention includes a cap provided on one side of a solid electrolyte sandwiched between two platinum electrodes so as to form an airtight reference space. Apply voltage to the sensor element and this sensor element,
A reference circuit is connected to a DC power source that releases oxygen in the reference space to the outside, and the sensor element is connected to an electromotive force generated by the difference between the oxygen concentration in the reference space and the oxygen concentration in the measurement atmosphere. It has a measurement circuit connected to a voltmeter to be measured, and a switching element for switching between the reference circuit and the measurement circuit. Oxygen is released into the external space, and the measurement circuit measures the electromotive force generated when the solid electrolyte acts as a concentration cell due to the oxygen concentration difference between the reference space and the external space. Even if the platinum electrode deteriorates during repeated measurements, the measurement is performed using an electromotive force that does not depend on the electrode area, improving reliability and durability.

さらに従来の酸素センサのようにキャップに孔を設ける
必要がなくなったので、製造が容易であり、安価で酸素
センサを提供することができるようになる。
Furthermore, unlike conventional oxygen sensors, there is no need to provide a hole in the cap, so manufacturing is easy and the oxygen sensor can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれもこの発明の酸素センサの
一実施例を示したしので、第1図はこの発明の酸素セン
サの基帛回路を示した概略構成図、第2図はこの発明の
酸素センサの測定回路を示した概略構成図、第3図は第
1図および第2図に示したこの発明の酸素センサの基準
回路と測定回路での印加電圧、基準空間中の酸素濃度、
電流量、起電圧を併せて示したグラフ、第4図は従来の
酸素センサを示した概略構成図である。 1・・固体電解質、 2.3・・白金電極、 4・・キャップ、 6・・・基準空間、 E・・・センサエレメント、 A・・・基準回路、 B・・・測定回路、 DC・・直流電圧、 ■・・・電圧計、 S・・スイッチング素子。
Both FIG. 1 and FIG. 2 show one embodiment of the oxygen sensor of the present invention, so FIG. 1 is a schematic configuration diagram showing the basic circuit of the oxygen sensor of the present invention, and FIG. A schematic configuration diagram showing the measurement circuit of the oxygen sensor of the invention, FIG. 3 shows the applied voltage in the reference circuit and measurement circuit of the oxygen sensor of the invention shown in FIGS. 1 and 2, and the oxygen concentration in the reference space. ,
A graph showing both the amount of current and the electromotive force, and FIG. 4 is a schematic configuration diagram showing a conventional oxygen sensor. 1...Solid electrolyte, 2.3...Platinum electrode, 4...Cap, 6...Reference space, E...Sensor element, A...Reference circuit, B...Measuring circuit, DC... DC voltage, ■...Voltmeter, S...Switching element.

Claims (1)

【特許請求の範囲】 2枚の白金電極間に挾着された固体電解質の片面上に、
気密の基準空間を形成するようにキャップを設けてなる
センサエレメントと、このセンサエレメントに電圧を印
加し、上記基準空間中の酸素を外部へ放出させる直流電
源とを接続してなる基準回路と、 上記センサエレメントと、上記基準空間中の酸素濃度と
測定雰囲気の酸素濃度との差によって発生する起電圧を
測定する電圧計とを接続してなる測定回路とを有し、 上記基準回路と測定回路とを切り替えるスイッチング素
子を設けたことを特徴とする酸素センサ
[Claims] On one side of a solid electrolyte sandwiched between two platinum electrodes,
a reference circuit that connects a sensor element provided with a cap to form an airtight reference space and a DC power supply that applies voltage to the sensor element and releases oxygen in the reference space to the outside; The sensor element has a measurement circuit connected to a voltmeter that measures an electromotive force generated due to the difference between the oxygen concentration in the reference space and the oxygen concentration in the measurement atmosphere, the reference circuit and the measurement circuit. An oxygen sensor characterized by being provided with a switching element that switches between
JP63281050A 1988-11-07 1988-11-07 Oxygen sensor Pending JPH02128155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281050A JPH02128155A (en) 1988-11-07 1988-11-07 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281050A JPH02128155A (en) 1988-11-07 1988-11-07 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPH02128155A true JPH02128155A (en) 1990-05-16

Family

ID=17633609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281050A Pending JPH02128155A (en) 1988-11-07 1988-11-07 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPH02128155A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009683A (en) * 1998-06-12 2000-01-14 Panametrics Inc Method and apparatus for internally calibrated oxygen sensor
JP2002303602A (en) * 2001-04-03 2002-10-18 Tokyo Yogyo Co Ltd Method and instrument for solid electrolytic hydrogen/ steam measurement utilizing hydrogen pump
US6559341B2 (en) 1997-11-25 2003-05-06 Nihon Nohyaku Co., Ltd. Phthalic acid diamide derivatives, fluorine-containing aniline compounds as starting material, agricultural and horticultural insecticides, and a method for application of the insecticides
JP2007522454A (en) * 2004-02-10 2007-08-09 ゼネラル・エレクトリック・カンパニイ Diagnostic and control method for an internal calibration oxygen sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559341B2 (en) 1997-11-25 2003-05-06 Nihon Nohyaku Co., Ltd. Phthalic acid diamide derivatives, fluorine-containing aniline compounds as starting material, agricultural and horticultural insecticides, and a method for application of the insecticides
JP2000009683A (en) * 1998-06-12 2000-01-14 Panametrics Inc Method and apparatus for internally calibrated oxygen sensor
JP2002303602A (en) * 2001-04-03 2002-10-18 Tokyo Yogyo Co Ltd Method and instrument for solid electrolytic hydrogen/ steam measurement utilizing hydrogen pump
JP2007522454A (en) * 2004-02-10 2007-08-09 ゼネラル・エレクトリック・カンパニイ Diagnostic and control method for an internal calibration oxygen sensor
US7862703B2 (en) 2004-02-10 2011-01-04 General Electric Company Diagnostic and control methods for internally calibrated oxygen sensor
JP4815357B2 (en) * 2004-02-10 2011-11-16 ゼネラル・エレクトリック・カンパニイ Diagnostic and control method for an internal calibration oxygen sensor

Similar Documents

Publication Publication Date Title
US6551497B1 (en) Measuring NOx concentration
US7537684B2 (en) Sample analyzing method and sample analyzing device
US20060232278A1 (en) method and apparatus for providing stable voltage to analytical system
US10036721B2 (en) Method for operating a solid electrolyte sensor element containing a pump cell
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US5653858A (en) Limit current sensor for determining the lambda value in gas mixtures
JPH09318594A (en) Gas sensor and method for measuring quantity of specific component in gas to be measured
US9546976B2 (en) Method and apparatus for measurement of the oxygen content or the oxygen partial pressure in a measurement gas
Fischer et al. Pulsed polarization of platinum electrodes on YSZ
JPH02128155A (en) Oxygen sensor
US20060231422A1 (en) Switched gas sensor
Donker et al. Influence of polarization time and polarization current of Pt| YSZ-based NO sensors utilizing the pulsed polarization when applying constant charge
JP4014058B2 (en) Gas sensor
JPH07167833A (en) Gas sensor
JP4141098B2 (en) Gas sensor
JPS61241647A (en) Method for diagnosing deterioration of oxygen sensor
JPH0232242A (en) Method of diagnosing deterioration gas concentration sensor
JP3774059B2 (en) Hydrocarbon sensor
SU1125535A1 (en) Method of measuring partial pressure of nitrogen oxides in gas mixture
HU194407B (en) Device for detecting end point of titration
JPS6338155A (en) Oxygen concentration measuring instrument
RU2094794C1 (en) Gas generator
SU1453301A1 (en) Method of analyzing gas composition
JP3842875B2 (en) Polarographic gas sensor
KR100402417B1 (en) Electric Ion Pumping type YSZ Oxygen Sensor