JPH02128126A - Light frequency encoder - Google Patents

Light frequency encoder

Info

Publication number
JPH02128126A
JPH02128126A JP28040488A JP28040488A JPH02128126A JP H02128126 A JPH02128126 A JP H02128126A JP 28040488 A JP28040488 A JP 28040488A JP 28040488 A JP28040488 A JP 28040488A JP H02128126 A JPH02128126 A JP H02128126A
Authority
JP
Japan
Prior art keywords
light
polarization
optical frequency
quartz
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28040488A
Other languages
Japanese (ja)
Other versions
JPH076845B2 (en
Inventor
Masaru Kobayashi
勝 小林
Kazumasa Takada
和正 高田
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28040488A priority Critical patent/JPH076845B2/en
Publication of JPH02128126A publication Critical patent/JPH02128126A/en
Publication of JPH076845B2 publication Critical patent/JPH076845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PURPOSE:To detect a variation of a light frequency with a handy construction by arranging a light splitting means, a polarization mode setting means, a double refractive substance, a polarization splitting means, first-third photo detector, an arithmetic processing section and a pulse generating section. CONSTITUTION:A beam splitter (light splitting means) 13 splits a light source light into a measuring light and a reference light. A polarizer (polarization mode setting means) 14 sets the measuring light to a specified polarization mode and a crystal 1/8 wavelength plate (double refractive substance) 15 with a quartz spacer excites tow polarizaiton modes from the measuring light to set a length thereof so that a phase difference between these polarization modes reaches a specified value. A polarization beam splitter (polarization splitting means) 16 divides an output light of the substance 15 in two and first and second photo detectors 17a and 17b convert intensities of polarization into electrical signals while a third photo detector 17c an intensity of the reference light into an electrical signal. An arithmetic processing section 18 removes a light intensity change portion of the light source light from polarization signals from the detectors 17a and 17b based on a reference signal from the detector 17c and a pulse generating section 19 generates a pulse corresponding to a phase difference between both the polarization signals being processed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光計測分野に属し、光干渉を利用して光源光
の光周波数の変化量を検出する光周波数エンコーダに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention belongs to the field of optical measurement and relates to an optical frequency encoder that detects the amount of change in the optical frequency of light source light using optical interference.

(従来の技術) 第2図は、光干渉を利用して光周波数の変化量を検出す
る光周波数エンコーダの第1の従来例を示す構成図であ
る。第2図において、1は光源、2は対物レンズ、3a
、3bはくさび形ガラスブロックで、それぞれ片面の反
射率を高めてあり、その二つの面が平行に正対し、フィ
ネスの高いファブリ・ベロ干渉計3を構成している。な
お、くさび形ガラスブロック3aは、くさび形ガラスブ
ロック3bとの前記平行状態を保持しながら光軸方向に
移動可能となっている。また、4はファブリ・ベロ干渉
計3の出力光強度を電気信号に変換する光検出器である
(Prior Art) FIG. 2 is a block diagram showing a first conventional example of an optical frequency encoder that detects the amount of change in optical frequency using optical interference. In Fig. 2, 1 is a light source, 2 is an objective lens, and 3a
, 3b are wedge-shaped glass blocks, each of which has a high reflectance on one side, and the two faces are parallel and face each other, forming a Fabry-Bello interferometer 3 with high finesse. Note that the wedge-shaped glass block 3a is movable in the optical axis direction while maintaining the parallel state with the wedge-shaped glass block 3b. Further, 4 is a photodetector that converts the output light intensity of the Fabry-Bello interferometer 3 into an electrical signal.

このような構成を有する第1の従来例では、光11iX
1からの光を対物レンズ2で平行光にし、この平行光を
くさび形ガラスブロック3a、3bからなるファブリ・
ベロ干渉計3に入射させる。そして、くさび形ガラスブ
ロック3aを第3図(a)に示すように、光軸方向に対
して鋸状に変位させる。
In the first conventional example having such a configuration, the optical 11iX
The light from 1 is made into parallel light by objective lens 2, and this parallel light is passed through a Fabry lens consisting of wedge-shaped glass blocks 3a and 3b.
Inject it into the Belo interferometer 3. Then, the wedge-shaped glass block 3a is displaced in a sawtooth manner with respect to the optical axis direction, as shown in FIG. 3(a).

その結果、第3図(b)に示すように、光周波数および
くさび形ガラスブロック3aと3b間の距離に対応して
、ファブリーベロ干渉計3の出力光の極大値位置が、理
想的には破線■、■、■で示すように時間変化する。こ
の時間変化は、出力光強度を光検出器4で電気信号に変
換し、これを図示しない処理器等で検出していた。
As a result, as shown in FIG. 3(b), depending on the optical frequency and the distance between the wedge-shaped glass blocks 3a and 3b, the maximum position of the output light of the Fabry-Bello interferometer 3 is ideally It changes over time as shown by the broken lines ■, ■, ■. This time change is determined by converting the output light intensity into an electrical signal by the photodetector 4, which is detected by a processor or the like (not shown).

第4図は、光干渉を利用して光周波数の変化量を検出す
る光周波数エンコーダの第2の従来例を示す構成図であ
る。この第2の従来例と前記第1の従来例と異なる点は
、二つのくさび形ガラスブロック3a、3bからなるフ
ァブリ壷ベロ干渉計3の代わりに、両端面が平行なガラ
スブロックからなるフィネスの低いファブリ・ベロ干渉
計5を用いた点にある。
FIG. 4 is a configuration diagram showing a second conventional example of an optical frequency encoder that detects the amount of change in optical frequency using optical interference. The difference between this second conventional example and the first conventional example is that instead of the Fabry Urn-Bello interferometer 3 consisting of two wedge-shaped glass blocks 3a and 3b, a finesse interferometer consisting of a glass block whose both end surfaces are parallel is used. The point is that a low Fabry-Bello interferometer 5 is used.

このような構成を有する第2の従来例では、前記第1の
従来例と同様に、光源1からの光を対物レンズ2で平行
光にし、この平行光をファブリ・ベロ干渉計5に入射さ
せると、第5図(a)に示すような、光源1からの光周
波数の変化によるファブリ・ベロ干渉計5の出力光の強
度変化が検出される。
In the second conventional example having such a configuration, similarly to the first conventional example, the light from the light source 1 is made into parallel light by the objective lens 2, and this parallel light is made to enter the Fabry-Bello interferometer 5. Then, as shown in FIG. 5(a), a change in the intensity of the output light of the Fabry-Bello interferometer 5 due to a change in the optical frequency from the light source 1 is detected.

(発明が解決しようとする課題) しかしながら、上記第1の従来例によれば、第3図(C
)の実線Aで示すように、例えば光源1による光の光周
波数が増加している場合には、第3図(b)に示す破線
■、■、■の位置から同図の実線a、b、cで示す位置
にずれることになるが、実線aを例にとると、これが破
線■による位置の波形がずれたものなのか、破線■によ
る位置の波形がずれたものなのか判断できず、同様に実
線すで示す波形も破線■による位置の波形がずれたもの
なのか、破線■による位置の波形がずれたものなのか、
判断できず、結局、実線Cによって漸く光源1による光
の光周波数が増加していると判断できる、といったよう
に、光周波数の増減方向の判断が困難であるという問題
点があった。
(Problem to be Solved by the Invention) However, according to the first conventional example, as shown in FIG.
), if the optical frequency of the light emitted by the light source 1 is increasing, for example, if the optical frequency of the light from the light source 1 is increasing, the solid lines a, b in the figure will change from the positions of the broken lines ■, ■, ■ shown in FIG. , c, but if we take the solid line a as an example, it cannot be determined whether this is the waveform at the position indicated by the broken line ■ or the waveform at the position indicated by the broken line ■. Similarly, for the waveform shown by the solid line, is the waveform at the position indicated by the broken line ■ shifted, or is the waveform at the position indicated by the broken line ■ shifted?
There was a problem in that it was difficult to determine the direction of increase or decrease in the optical frequency, as in the case where it could be determined from the solid line C that the optical frequency of the light emitted by the light source 1 was finally increasing.

また、くさび形ガラスブロック3aの変位速度と光周波
数の変化速度との関係で、第3図(d)に示すように、
破線■、■、■による位置の波形が、実線d、eのよう
に、破線■、■、■間のほぼ中央にずれた場合等は、第
3図(e)の実線Bに示すように、光周波数が増加して
いるのか、あるいは同図中、実線Cに示すように、光周
波数が減少しているのかを判断することは極めて困難で
あるという問題点があった。
Furthermore, as shown in FIG. 3(d), the relationship between the displacement speed of the wedge-shaped glass block 3a and the change speed of the optical frequency is as follows.
If the waveform at the position indicated by the dashed lines ■, ■, ■ is shifted to the approximate center between the dashed lines ■, ■, ■, as shown by the solid lines d and e, the waveform at the position indicated by the dashed lines However, there is a problem in that it is extremely difficult to determine whether the optical frequency is increasing or decreasing as shown by the solid line C in the figure.

同様に、第2の従来例の場合も、第5図(a)に示す検
出波形からは、光源1による光の光周波数が、第5図(
b)に示す実線りのように変化しているのか、あるいは
実線Eのように変化しているのか判断できず、光周波数
の増減方向の判断が極めて困難であるという問題点があ
った。
Similarly, in the case of the second conventional example, the detected waveform shown in FIG. 5(a) indicates that the optical frequency of the light emitted by the light source 1 is
There was a problem in that it was not possible to determine whether the optical frequency was changing as shown by the solid line shown in b) or as shown by the solid line E, and it was extremely difficult to determine the direction in which the optical frequency increased or decreased.

また、この光周波数の増減方向が判断できないという問
題点を解決するために、二つのファブリ・ベロ干渉計を
独立して用い、これらの二つの出力光の強度変化に位相
差をもたせ、光周波数変化を検出する場合、その構成が
複雑となり、温度による影響を独立に受けるため、不安
定となる問題点がある。
In addition, in order to solve the problem of not being able to determine the direction of increase or decrease in the optical frequency, we used two Fabry-Bérot interferometers independently and created a phase difference in the intensity changes of these two output lights. When detecting a change, the structure is complicated and is independently affected by temperature, resulting in instability.

本発明の目的は、上記問題点に鑑み、簡易な構成で、光
周波数の変化量並びにその増減方向を検出することので
きる光周波数エンコーダを提供することにある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an optical frequency encoder that has a simple configuration and can detect the amount of change in optical frequency and the direction of increase or decrease thereof.

(課題を解決するための手段) 上記目的を達成するため、請求項(1)では、光源によ
る光の光周波数変化量を検出する光周波数エンコーダに
おいて、光源光を測定光と参照先に分割する光分割手段
と、測定光を所定の偏波モードに設定する偏波モード設
定手段と、所定の偏波モードに設定された測定光から二
つの偏波モードを励起し、かつ、これら偏波モード間の
位相差が所定値となるようにその長さを設定した複屈折
物質と、該複屈折物質の出力光を二つの偏波に分割する
偏波分割手段と、該偏波分割手段により分割した各偏波
強度をそれぞれ電気信号に変換する第1および第2の光
検出器と、前記参照光強度を電気信号に変換する第3の
光検出器と、該第3の光検出器による参照信号に基づい
て前記第1および第2の光検出器による各偏波信号から
光源光の光強度変化成分を取り除く演算処理部と、該演
算処理部により処理された二つの偏波信号の位相差に対
応したパルスを発生するパルス発生部とを備えた。
(Means for Solving the Problem) In order to achieve the above object, claim (1) provides that in an optical frequency encoder that detects the amount of change in optical frequency of light caused by a light source, the light source light is divided into measurement light and reference target light. a light splitting means; a polarization mode setting means for setting the measurement light to a predetermined polarization mode; and a polarization mode setting means for exciting two polarization modes from the measurement light set to the predetermined polarization mode; a birefringent material whose length is set so that the phase difference between the two polarized waves is a predetermined value; a polarization splitting means for splitting the output light of the birefringent material into two polarized waves; a first and second photodetector that converts each of the polarization intensities into electrical signals; a third photodetector that converts the reference light intensity into an electrical signal; and a reference light detector by the third photodetector. an arithmetic processing unit that removes a light intensity change component of the light source light from each polarization signal from the first and second photodetectors based on the signal; and a phase difference between the two polarization signals processed by the arithmetic processing unit. and a pulse generator that generates pulses corresponding to the pulses.

また、請求項(2)では、前記複屈折物質を石英をスペ
ーサとして接合した石英スペーサ付水晶ハタの一波長板
から構成した。
Further, in claim (2), the birefringent material is constituted by a single wavelength plate of a quartz group with a quartz spacer bonded with quartz as a spacer.

また、請求項(3)では、前記複屈折物質を応力付与型
複屈折光ファイバから構成した。
Moreover, in claim (3), the birefringent substance is constituted by a stress-applying birefringent optical fiber.

(作 用) 請求項(1)または請求項(2)または請求項(3)に
よれば、光源による光は、光分割手段により測定光と参
照光とに分割され、参照光は第3の光検出器にて受光さ
れ、電気信号の参照信号に変換され演算処理部に人力す
る。
(Function) According to claim (1), claim (2), or claim (3), the light emitted from the light source is split into measurement light and reference light by the light splitting means, and the reference light is split into third light. The light is received by a photodetector, converted into an electrical reference signal, and sent to the arithmetic processing section.

一方、測定光は、偏波モード設定手段によって所定の偏
波モードに設定された後、複屈折物質に入射する。所定
の偏波モードの測定光がら、この複屈折物質により二つ
の偏波モードが励起され、これら二つの偏波がそれぞれ
多重反射して干ルする。複屈折物質は、この二つの偏波
の位相差が所定値となるようにその長さを設定しである
ので、この複屈折物質による二つの偏波の出力光強度は
所定の位相差をもって変化する。
On the other hand, the measurement light is set to a predetermined polarization mode by the polarization mode setting means, and then enters the birefringent material. Two polarization modes are excited by the birefringent material from the measurement light of a predetermined polarization mode, and these two polarization waves are subjected to multiple reflections, respectively. The length of the birefringent material is set so that the phase difference between these two polarized waves is a predetermined value, so the output light intensity of the two polarized waves by this birefringent material changes with the predetermined phase difference. do.

このような、複屈折物質の出力光は、偏波分割手段によ
って、二つの偏波に分割され、一方の偏波は第1の光検
出器で受光されて、電気信号の偏波信号に変換されて、
演算処理部に入力する。同様に、分割された他方の偏波
は第2の光検出器で受光され、電気信号の偏波信号に変
換されて、演算処理部に入力する。
The output light of the birefringent material is split into two polarized waves by the polarization splitting means, and one polarized wave is received by the first photodetector and converted into a polarized electrical signal. Been,
Input to the arithmetic processing section. Similarly, the other divided polarized wave is received by the second photodetector, converted into a polarized electric signal, and input to the arithmetic processing section.

演算処理部は、入力した参照信号に基づいて、二つの偏
波信号の光強度変化成分を取り除き、この処理後の二つ
の偏波信号がパルス発生手段に人力する。
The arithmetic processing section removes light intensity change components of the two polarized signals based on the input reference signal, and the two polarized signals after this processing are inputted to the pulse generating means.

パルス発生手段は入力した二つの信号の位相差から光源
光の光周波数の増減方向並びにその光周波数の変化量に
対応したパルスを発生する。
The pulse generating means generates a pulse corresponding to the direction of increase/decrease in the optical frequency of the light source light and the amount of change in the optical frequency from the phase difference between the two input signals.

(実施例) 第1図は、本発明による光周波数エンコーダの第1の実
施例を示す構成図である。第1図において、11は波長
1.3μ層の半導体レーザからなる光源、12は光源1
1による光を平行光束とする対物レンズ、13は光il
lによる光を測定光PBと参照光RBに分割するビーム
スプリッタ(光分割手段)、14は測定光PBを直線偏
波とする偏光子(偏波モード設定手段)、15はファブ
リ・ペロ干渉計を構成する石英15a1水晶15bを備
えた石英スペーサ付き水晶ハタの一波長板で、偏光子1
4による直線偏波がらXおよびyの二つの偏波モードを
励起し、がっ、これら二つの偏波モード間の位相差が所
定値となるようにその長さを、例えば20mmに設定し
ており、端面の反射率Rは、例えば0.04としている
。16は偏光ビームスプリッタ(偏波分割手段)で、石
英スペーサ付き水晶ハタの一波長板15の出力光をX偏
波PBxとy偏波PByに分割する。17aはX偏波P
BXを受光して電気信号のX偏波信号PExに変換する
第1の光検出器、17bはy偏波PByを受光して電気
信号のy偏波信号PEyに変換する第2の光検出器、1
7cは参照光RBを受光して電気信号の参照信号REに
変換する第3の光検出器で、これら第1乃至第3の光検
出器17a、17b、17cは、例えばInGaAs−
PINにより構成している。
(Embodiment) FIG. 1 is a block diagram showing a first embodiment of an optical frequency encoder according to the present invention. In FIG. 1, 11 is a light source consisting of a semiconductor laser with a wavelength of 1.3μ layer, and 12 is a light source 1.
1 is an objective lens that converts the light from 1 into a parallel beam; 13 is a light beam;
14 is a polarizer (polarization mode setting means) that makes the measurement light PB linearly polarized; 15 is a Fabry-Perot interferometer; A single-wavelength plate of a quartz group with a quartz spacer, including quartz 15a1 and quartz 15b constituting the polarizer 1.
Excite the two polarization modes of X and y from the linearly polarized wave according to 4, and set the length to, for example, 20 mm so that the phase difference between these two polarization modes becomes a predetermined value. The reflectance R of the end face is, for example, 0.04. Reference numeral 16 denotes a polarizing beam splitter (polarization splitting means) which splits the output light from the single-wavelength plate 15 made of a quartz group with a quartz spacer into an X-polarized wave PBx and a y-polarized wave PBy. 17a is the X polarization P
The first photodetector 17b receives the y-polarized wave PBy and converts it into the y-polarized electric signal PEy. ,1
A third photodetector 7c receives the reference light RB and converts it into an electric reference signal RE.
It is configured using a PIN.

18は演算処理部で、第1および第2の光検出器17a
、17bによるX偏波信号PExおよびy偏波信号PE
yを光検出器17cによる参照信号REで除算して、光
源11の光強度変化成分を取り除き、交流成分の信号E
X、Eyを取り出す。
18 is an arithmetic processing unit, and the first and second photodetectors 17a
, 17b, the X polarization signal PEx and the y polarization signal PE
y is divided by the reference signal RE from the photodetector 17c to remove the light intensity change component of the light source 11, and the alternating current component signal E is obtained.
Take out X and Ey.

1つはパルス発生部で、演算処理部18の出力信号EX
、Eyの入力により、光源11からの光周波数の変化に
より生じる強度変化の二つの偏波モードx、y間、即ち
、X偏波PBxとy偏波PBy間の位相差から光周波数
が増加している場合には、前進パルスを、減少している
場合には、後進パルスをその変化量に応じて発生し、出
力する。
One is a pulse generation section, which receives the output signal EX of the arithmetic processing section 18.
, Ey, the optical frequency increases due to the phase difference between the two polarization modes x and y of the intensity change caused by the change in the optical frequency from the light source 11, that is, between the X polarization PBx and the y polarization PBy. If it is decreasing, a forward pulse is generated, and if it is decreasing, a backward pulse is generated and output in accordance with the amount of change.

次に、上記構成による動作を、第6図を参照しながら順
を追って説明する。
Next, the operation of the above configuration will be explained step by step with reference to FIG.

まず、波長1.3μ置の半導体レーザである光源11へ
の注入電流を変化させることで、光源11による光の光
周波数を第6図(a)に示すように、Δf〜30GIl
z(波長換算で、1.7オングストローム)変化させる
。この光源11による光は、対物レンズ12により平行
ビーム光となり、ビームスプリッタ13で測定光PBと
参照光RBに分割され、測定光PBは偏光子14に入射
し、参照光RBは、光検出器17cに受光されて、電気
信号の参照信号REに変換される。
First, by changing the current injected into the light source 11, which is a semiconductor laser with a wavelength of 1.3μ, the optical frequency of the light from the light source 11 is changed from Δf to 30GIl, as shown in FIG. 6(a).
z (1.7 angstroms in terms of wavelength). The light from this light source 11 is converted into a parallel beam by an objective lens 12, and is split into a measuring beam PB and a reference beam RB by a beam splitter 13. The measuring beam PB is incident on a polarizer 14, and the reference beam RB is transmitted to a photodetector. The light is received by 17c and converted into a reference signal RE of an electric signal.

一方、偏光子14に入射した測定光PBは、石英スペー
サ付き水晶ハタの一波長板15の水晶15bの複屈折軸
に対して45°にその偏波面が設定された直線偏波とな
って、石英スペーサ付き水晶ハタの一波長板15に石英
スペーサ15a側から入射する。これにより、Xおよび
yの二つの偏波モードが励起され、X偏波PBXおよび
y偏波PByがそれぞれ多重反射し干渉する。
On the other hand, the measurement light PB incident on the polarizer 14 becomes a linearly polarized wave whose plane of polarization is set at 45 degrees with respect to the birefringence axis of the crystal 15b of the single-wavelength plate 15 of the crystal group with a quartz spacer. The light enters the single-wavelength plate 15 made of a quartz group with a quartz spacer from the quartz spacer 15a side. As a result, two polarization modes, X and y, are excited, and the X-polarized wave PBX and the y-polarized wave PBy are each reflected multiple times and interfere with each other.

ここで、石英スペーサ付き水晶ハタの一波長板15の石
英15aの長さをLg、石英15aの屈折率を01水晶
15bの長さをLc、水晶15bの2軸の屈折率をそれ
ぞれnx、nyとし、レーザ光の光周波数をfとすると
、多重反射光の、ある光とその1つ前の光との位相差Φ
X、Φyは、Cを光速度として、 Φx−2π・2 (nLg +nX Lc ) /λ−
4π(nLg+nxLc)f/c   (1)Φy −
2yr ・2 (nLg +ny Lc ) /λ−4
π(nLg 十ny Lc )f/c   (2)とな
り、光周波数fに比例する。干渉の結果、石英スペーサ
付き水晶ハタの一波長板15の出力光強度1 outx
、  I outyは、ΦX、Φyを位相としてI o
utx/ I 1n =1/ (1+F 5in2(Φx/2))(3)1 
outy/ I 1n =1/(1+F  5in2(Φy/2))(4)F−
4R/ (1−R) 2 となり、光周波数fの変化に対応して変化する。
Here, the length of the quartz 15a of the single-wavelength plate 15 of the quartz group with a quartz spacer is Lg, the refractive index of the quartz 15a is 01, the length of the crystal 15b is Lc, and the refractive index of the two axes of the crystal 15b is nx, ny, respectively. If the optical frequency of the laser beam is f, then the phase difference Φ between a certain light and the previous light in the multiple reflected light is
X, Φy are Φx−2π・2 (nLg +nX Lc) /λ−, where C is the speed of light.
4π(nLg+nxLc)f/c (1)Φy −
2yr ・2 (nLg +ny Lc) /λ-4
π(nLg +ny Lc)f/c (2), which is proportional to the optical frequency f. As a result of the interference, the output light intensity of the single-wavelength plate 15 made of quartz crystal with a quartz spacer is 1 outx
, I outy is I o with ΦX and Φy as phases.
utx/ I 1n = 1/ (1+F 5in2 (Φx/2)) (3) 1
outy/ I 1n = 1/(1+F 5in2(Φy/2)) (4)F-
4R/(1-R) 2 and changes in response to changes in the optical frequency f.

なお、Rは石英スペーサ付きハタの一波長板15の端面
の反射率である。本節1の実施例では反射率R−0,0
4と小さくとったので出力光強度は、1 ouLx/ 
I In 〜1− F  5in2(Φx/2)−1−
F/2  (1−cosΦx  )      (6)
I outy/ I in 〜1− F  5in2(
Φy/2)−1−F/2  (1−cosΦy  ) 
     (7)と近似できる。。ここで、石英スペー
サ付水晶ハタの一波長板15は、 (nx −ny ) Lc −1/8 ・λ−1/ 8
 争 c/f     (8)従って、上記(1)およ
び(2)式からΦX−Φy =4πII(nx −ny )Lc Qf/c−π /
  2                      
         (9)となり、X偏波PBXおよび
y偏波PByの出力光強度がπ/2の位相差をもって変
化する。
Note that R is the reflectance of the end face of the grouper single-wavelength plate 15 with a quartz spacer. In the example of this section 1, the reflectance R-0,0
Since the output light intensity is set as low as 4, the output light intensity is 1 ouLx/
I In ~1- F 5in2 (Φx/2)-1-
F/2 (1-cosΦx) (6)
I outy/I in ~1-F5in2(
Φy/2)-1-F/2 (1-cosΦy)
(7) can be approximated. . Here, the single-wavelength plate 15 made of quartz crystal with a quartz spacer has the following formula: (nx −ny) Lc −1/8 ・λ−1/8
Conflict c/f (8) Therefore, from equations (1) and (2) above, ΦX-Φy = 4πII (nx - ny) Lc Qf/c-π /
2
(9), and the output light intensities of the X-polarized wave PBX and the y-polarized wave PBy change with a phase difference of π/2.

次に、この石英スペーサ付水晶ハタの一波長板15の出
力光のX偏波PBXおよびy偏波PByは偏光ビームス
プリッタ16により分割され、光検出器17a、17b
によりX偏波PBxおよびy偏波PByがそれぞれ受光
され、その出力光強度が電気信号PEx、PEy、に変
換される。
Next, the X-polarized wave PBX and the y-polarized wave PBy of the output light of the single-wavelength plate 15 of the quartz group with a quartz spacer are split by a polarizing beam splitter 16, and are transmitted to the photodetectors 17a, 17b.
The X-polarized wave PBx and the y-polarized wave PBy are respectively received, and their output light intensities are converted into electrical signals PEx, PEy.

次に、演算処理部18において、光検出器17a、17
bによるXおよびy偏波信号PEx。
Next, in the arithmetic processing section 18, the photodetectors 17a, 17
b X and y polarization signals PEx.

PEyをそれぞれ参照信号REで割り算し、光源11に
よる光、即ち、レーザ光の光強度変化成分を取り除き、
交流成分を取り出す。ここで、n 〜nx 〜ny 〜
1.5          (10)L−Lg +Lc
 −20+sm        (10c −3,OX
 108m1s          (12)として、
位相Φを概算すると、 Φr+f−Φfm4πnLΔf / c−4πX1.5
 X20X10’X30XIO/3.0X108 −12π                   (1
3)となり、第6図(b)および(C)に示すような、
二つの信号Ex、Eyが得られる。ここで、光源11に
よる光の光周波数が増加している場合、X偏波PBxの
光強度変化の位相がy偏波に比べてπ/2進み、逆に光
周波数が減少している場合、y偏波PByがX偏波PB
xに比べてπ/2進んでいる。
Divide each PEy by the reference signal RE to remove the light intensity change component of the light from the light source 11, that is, the laser light,
Take out the AC component. Here, n ~ nx ~ ny ~
1.5 (10) L-Lg +Lc
-20+sm (10c -3,OX
As 108m1s (12),
Approximately the phase Φ is: Φr+f−Φfm4πnLΔf/c−4πX1.5
X20X10'X30XIO/3.0X108 -12π (1
3), as shown in Figures 6(b) and (C),
Two signals Ex and Ey are obtained. Here, when the optical frequency of the light from the light source 11 is increasing, the phase of the optical intensity change of the Y polarization PBy becomes X polarization PB
It is ahead of x by π/2.

次に、これら位相がπ/2互いに進退する2つの信号E
x、Eyから前進および後進パルスを発生させることの
できるパルス発生部19に、第6図(b)および(C)
に示す二つの信号EX、Eyが入力し、これが例えば4
逓倍されて、第6図(d)に示すように、レーザ光の光
周波数が増加している場合には前進パルスが、また、減
少している場合には後進パルスが、光周波数の変化量に
対応して発生される。
Next, two signals E whose phases advance and retreat from each other by π/2
The pulse generator 19 that can generate forward and backward pulses from
Two signals EX and Ey shown in are input, and this is, for example, 4
After being multiplied, as shown in Figure 6(d), if the optical frequency of the laser beam is increasing, the forward pulse is used, and if it is decreasing, the backward pulse is the amount of change in the optical frequency. is generated in response to.

本第1の実施例によれば、屈折率差が小さく反射率の小
さい接合が可能な石英15aと水晶15bとからなる石
英スペーサ付き水晶爪付の一波長板15を、その屈折率
の違う2軸を二つの独立したファブリ・ベロ干渉計とし
て用いることにより、構成が簡易となり、水晶15b部
分を薄くし熱膨張係数の低い石英15aで長さを確保す
ることにより、温度変化による長さ変化を小さく抑える
ことができ、かつ、上記(1)および(2)式から分か
るように位相Φが長さしに比例するので、分解能の高い
光周波数の変化量検出を実現できる。
According to the first embodiment, a single-wavelength plate 15 with a quartz spacer and a crystal claw made of quartz 15a and quartz 15b, which have a small refractive index difference and can be bonded with a low reflectance, is used as a single-wavelength plate 15 with a quartz claw and a quartz spacer, and a single-wavelength plate 15 with a quartz claw with a quartz spacer, which can be bonded with a small refractive index difference and a low reflectance. By using the shaft as two independent Fabry-Bello interferometers, the configuration is simplified, and by making the crystal 15b portion thinner and securing the length with the quartz 15a, which has a low coefficient of thermal expansion, changes in length due to temperature changes can be avoided. This can be kept small, and since the phase Φ is proportional to the length as seen from equations (1) and (2) above, detection of the amount of change in optical frequency with high resolution can be realized.

第7図は、本発明による光周波数エンコーダの第2の実
施例を示す構成図である。
FIG. 7 is a block diagram showing a second embodiment of the optical frequency encoder according to the present invention.

本第2の実施例と前記第1の実施例の異なる点は、スペ
ーサ付きハタの一波長板15の代わりに、応力付与型複
屈折光ファイブ20、例えば複屈折率Bが、 B−nx −ny −4X 10−’      (1
4)であるPANDAファイバを採用している。また、
対物レンズ21により、偏光子14による直線偏波光を
複屈折光ファイバ20に導入し、偏波面をこの複屈折光
ファイバ20の偏波軸に対して45°になるように設定
し、複屈折光ファイバ20のXおよびyの二つの偏波モ
ードを励起し、対物レンズ22により複屈折光ファイバ
20からの出力光を平行ビームとする。さらに、この複
屈折光ファイバ20の出射端は回転し、偏光ビームスプ
リッタ16と軸合わせ可能で、偏光ビームスプリッタ1
6でXおよびyモードを伝搬した光を分割する構成とな
っている。
The difference between the second embodiment and the first embodiment is that instead of the single-wavelength plate 15 with a spacer, a stress-applying birefringent optical fiber 20, for example, a birefringent index B of B-nx- ny -4X 10-' (1
4) PANDA fiber is used. Also,
The linearly polarized light from the polarizer 14 is introduced into the birefringent optical fiber 20 by the objective lens 21, and the plane of polarization is set at 45 degrees with respect to the polarization axis of the birefringent optical fiber 20. The two polarization modes, X and Y, of the fiber 20 are excited, and the output light from the birefringent optical fiber 20 is made into a parallel beam by the objective lens 22. Furthermore, the output end of this birefringent optical fiber 20 can be rotated and aligned with the polarizing beam splitter 16,
6 splits the light propagated in the X and y modes.

本第2の実施例において、複屈折光ファイバ20の長さ
しを L −130,4063關           (1
5)とし、サブミクロンオーダの調節を行うことにより
、Δf 〜30 GHzで、 Φr+f−Φf’ 〜78π(1B) ΦX−Φy−π/ 2          (17)と
することができた。
In the second embodiment, the length of the birefringent optical fiber 20 is L −130,4063 cm (1
5) and by making adjustments on the submicron order, it was possible to obtain Φr + f - Φf' ~ 78π (1B) ΦX - Φy - π/2 (17) at Δf ~ 30 GHz.

本第2の実施例によれば、応力付与型複屈折光ファイバ
20を用いることにより、長さおよび端面の調節が容易
にできるようになり、構成面、そして、コアが同質のも
の、例えば石英でできていることから、温度の影響面、
さらに、長さを比較的長くしても干渉性が落ちないこと
から、分解能面において、第1の実施例を上回る性能を
有する利点がある。
According to the second embodiment, by using the stress-applied birefringent optical fiber 20, the length and end face can be easily adjusted. Because it is made of
Furthermore, since the coherence does not deteriorate even if the length is relatively long, there is an advantage that the performance is superior to that of the first embodiment in terms of resolution.

(発明の効果) 以上説明したように、請求項(1)によれば、その構成
要素の一つに複屈折物質を用いることにより、位相差を
もった二つのファブリ・ペロ干渉計が一つの材料内に同
時に構成されることになるので、この二つのファブリ・
ベロ干渉計が独立に温度の影響を受けることはなく、シ
かも軸合わせが極めて容易であり、容易に光周波数の変
化量並びにその増減方向を検出することができ、光源か
らの出射光の周波数変化を利用する光計測に極めて有効
な光周波数エンコーダを実現できる。
(Effect of the invention) As explained above, according to claim (1), by using a birefringent material as one of the constituent elements, two Fabry-Perot interferometers having a phase difference can be integrated into one. These two fabrics are constructed simultaneously in the material.
Vero interferometers are not independently affected by temperature, are extremely easy to align, and can easily detect the amount of change in optical frequency as well as the direction of increase or decrease. It is possible to realize an optical frequency encoder that is extremely effective for optical measurement that utilizes changes.

また、請求項(2)によれば、請求項(1)の効果に加
えて、水晶部分を薄くし熱膨張係数の低い石英で長さを
確保することにより、温度変化による長さ変化を小さく
抑えることができ、かつ、位相差は石英スペーサ付き部
分の一波長板の長さに比例するので、分解能の高い光周
波数の変化量検出を実現できる。
According to claim (2), in addition to the effect of claim (1), by making the crystal part thinner and securing the length with quartz having a low coefficient of thermal expansion, changes in length due to temperature changes are reduced. In addition, since the phase difference is proportional to the length of the single-wavelength plate in the portion with the quartz spacer, it is possible to detect the amount of change in optical frequency with high resolution.

また、請求項(3)によれば、応力付与型複屈折光ファ
イバを用いることにより、長さおよび端面の調節が容易
にできるようになり、構成面、そして、コアが同質の材
料でできていることから、温度の影響面、さらに、長さ
を比較的長くしても干渉性が落ちることがないので、分
解能面において、請求項(2)の場合を上回る性能を得
られる利点がある。
According to claim (3), by using a stress-applied birefringent optical fiber, the length and end face can be easily adjusted, and the constituent faces and core are made of the same material. Therefore, there is an advantage that performance superior to the case of claim (2) can be obtained in terms of the influence of temperature, and since the coherence does not deteriorate even if the length is made relatively long, in terms of resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光周波数エンコーダの第1の実施
例を示す構成図、第2図は第1の従来例の構成図、第3
図は第1の従来例の動作並びに問題点の説明図、第4図
は第2の従来例の構成図、第5図は第2の従来例の動作
並びに問題点の説明図、第6図は本発明に係る第1の実
施例の動作説明図、第7図は本発明による光周波数エン
コーダの第2の実施例を示す構成図である。 図中、11・・・光源、12,21.22・・・対物レ
ンズ、13・・・ビームスプリッタ(光分割手段)、1
4・・・偏光子(偏波モード設定手段)、15・・・石
英スペーサ付水晶ハタの一波長板(複屈折物質)、16
・・・偏光ビームスプリッタ(偏波分割手段)、17a
、17b、  17cm・・第1乃至第3の光検出器、
18・・・演算処理部、19・・・パルス発生手段、2
0・・・応力付与型複屈折光ファイバ(I屈折物質)。 特許出願人 日本電信電話株式会社 代理人 弁理士 吉  1) 精  孝ファフ゛す・穴
口干渉計 第2図 出力 尤周j反数 光強度 光」nう反数 光強度 変イILx
FIG. 1 is a block diagram showing a first embodiment of an optical frequency encoder according to the present invention, FIG. 2 is a block diagram of a first conventional example, and FIG.
The figure is an explanatory diagram of the operation and problems of the first conventional example, FIG. 4 is a configuration diagram of the second conventional example, FIG. 5 is an explanatory diagram of the operation and problems of the second conventional example, and FIG. 7 is an explanatory diagram of the operation of the first embodiment according to the present invention, and FIG. 7 is a configuration diagram showing the second embodiment of the optical frequency encoder according to the present invention. In the figure, 11... Light source, 12, 21.22... Objective lens, 13... Beam splitter (light splitting means), 1
4... Polarizer (polarization mode setting means), 15... Quartz grouper single wavelength plate with quartz spacer (birefringent material), 16
...Polarizing beam splitter (polarization splitting means), 17a
, 17b, 17cm...first to third photodetectors,
18... Arithmetic processing unit, 19... Pulse generating means, 2
0... Stress-applying birefringent optical fiber (I refractive material). Patent applicant: Nippon Telegraph and Telephone Corporation Agent Patent attorney: Yoshi 1) Precision optical fiber/hole mouth interferometer Figure 2: Output frequency (reciprocal light intensity)

Claims (3)

【特許請求の範囲】[Claims] (1)光源による光の光周波数変化量を検出する光周波
数エンコーダにおいて、 光源光を測定光と参照光に分割する光分割手段と、 測定光を所定の偏波モードに設定する偏波モード設定手
段と、 所定の偏波モードに設定された測定光から二つの偏波モ
ードを励起し、かつ、これら偏波モード間の位相差が所
定値となるようにその長さを設定した複屈折物質と、 該複屈折物質の出力光を二つの偏波に分割する偏波分割
手段と、 該偏波分割手段により分割した各偏波強度をそれぞれ電
気信号に変換する第1および第2の光検出器と、 前記参照光強度を電気信号に変換する第3の光検出器と
、 該第3の光検出器による参照信号に基づいて前記第1お
よび第2の光検出器による各偏波信号から光源光の光強
度変化成分を取り除く演算処理部と、 該演算処理部により処理された二つの偏波信号の位相差
に対応したパルスを発生するパルス発生部とを備えた ことを特徴とする光周波数エンコーダ。
(1) An optical frequency encoder that detects the amount of change in optical frequency of light caused by a light source includes a light splitting means that splits the light source light into a measurement light and a reference light, and a polarization mode setting that sets the measurement light to a predetermined polarization mode. a birefringent material that excites two polarization modes from measurement light set to a predetermined polarization mode, and whose length is set so that the phase difference between these polarization modes is a predetermined value. , a polarization splitting means for splitting the output light of the birefringent material into two polarized waves, and first and second photodetectors for converting each polarization intensity divided by the polarization splitting means into electrical signals, respectively. a third photodetector that converts the reference light intensity into an electrical signal; and a third photodetector that converts the reference light intensity into an electrical signal, and converts each polarization signal from the first and second photodetectors based on the reference signal from the third photodetector. A light source comprising: an arithmetic processing unit that removes a light intensity variation component of the light source light; and a pulse generator that generates a pulse corresponding to a phase difference between two polarized signals processed by the arithmetic processing unit. frequency encoder.
(2)前記複屈折物質を石英をスペーサとして接合した
石英スペーサ付水晶八分の一波長板から構成した請求項
(1)記載の光周波数エンコーダ。
(2) The optical frequency encoder according to claim (1), wherein the birefringent material is constituted by a quartz one-eighth wavelength plate with a quartz spacer bonded with quartz as a spacer.
(3)前記複屈折物質を応力付与型複屈折光ファイバか
ら構成した請求項(1)記載の光周波数エンコーダ。
(3) The optical frequency encoder according to claim (1), wherein the birefringent material is composed of a stress-applying birefringent optical fiber.
JP28040488A 1988-11-08 1988-11-08 Optical frequency encoder Expired - Fee Related JPH076845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28040488A JPH076845B2 (en) 1988-11-08 1988-11-08 Optical frequency encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28040488A JPH076845B2 (en) 1988-11-08 1988-11-08 Optical frequency encoder

Publications (2)

Publication Number Publication Date
JPH02128126A true JPH02128126A (en) 1990-05-16
JPH076845B2 JPH076845B2 (en) 1995-01-30

Family

ID=17624562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28040488A Expired - Fee Related JPH076845B2 (en) 1988-11-08 1988-11-08 Optical frequency encoder

Country Status (1)

Country Link
JP (1) JPH076845B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004080A (en) * 2002-05-24 2004-01-08 Tektronix Inc Sweep wavemeter and wavelength calibration method
JP2008070385A (en) * 2001-01-30 2008-03-27 Thorlabs Inc Device and method for wavelength calibration of swept laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070385A (en) * 2001-01-30 2008-03-27 Thorlabs Inc Device and method for wavelength calibration of swept laser
JP4722110B2 (en) * 2001-01-30 2011-07-13 ソルラブス、 インコーポレイテッド Wavelength calibration apparatus and method for swept laser
JP2004004080A (en) * 2002-05-24 2004-01-08 Tektronix Inc Sweep wavemeter and wavelength calibration method
JP4667728B2 (en) * 2002-05-24 2011-04-13 ソルラブス、 インコーポレイテッド Sweep wavelength meter and wavelength calibration method

Also Published As

Publication number Publication date
JPH076845B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US6057911A (en) Fiber optic fabry-perot sensor for measuring absolute strain
EP0194941B1 (en) Heterodyne interferometer system
US20050174578A1 (en) High efficiency low coherence interferometry
JPS62225918A (en) Stress birefringence measuring device for photosensor
US7147388B2 (en) Method for fabrication of an all fiber polarization retardation device
Huang et al. Direct measurement of refractive indices (ne, no) of a linear birefringent retardation plate
JPH02128126A (en) Light frequency encoder
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JPS59166873A (en) Optical applied voltage and electric field sensor
JPH0755571A (en) Plarization dispersion measuring instrument
JP7284741B2 (en) Interferometers and optics
JPS60263866A (en) Optical electric field sensor
JPS61223821A (en) Optical measuring instrument
JPH01143931A (en) Method and device for measuring mode double refractive index of birefringent fiber
JPH07167606A (en) Interference measuring device
JPS61196103A (en) Displacement meter
JP2580443B2 (en) Optical voltage sensor
JPH08285690A (en) Depolarization device and light power measuring device using the depolarization device
JPH03249569A (en) Optical voltage/electric field sensor
RU2036419C1 (en) Fibre-optical indicator of outside action
JPS5930032A (en) Optical fiber thermometer
JPS5957169A (en) Double refractive interferometer sensor
Bock et al. Universal readout system for temperature, elongation and hydrostatic pressure sensors based on highly birefringent fibers
JPH0894317A (en) Displacement sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees