JPS5930032A - Optical fiber thermometer - Google Patents

Optical fiber thermometer

Info

Publication number
JPS5930032A
JPS5930032A JP57140792A JP14079282A JPS5930032A JP S5930032 A JPS5930032 A JP S5930032A JP 57140792 A JP57140792 A JP 57140792A JP 14079282 A JP14079282 A JP 14079282A JP S5930032 A JPS5930032 A JP S5930032A
Authority
JP
Japan
Prior art keywords
optical fiber
light
temperature
counter
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57140792A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP57140792A priority Critical patent/JPS5930032A/en
Publication of JPS5930032A publication Critical patent/JPS5930032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To simplify the mechanism along with a higher accuracy in the temperature measurement by using a double refractive optical fiber as sensor while the phase of a signal based on the change in the double refraction property due to temperature is detected in a digital manner. CONSTITUTION:A thermometer is composed of a light source 1 of semiconductor laser, a linear polarizer 2, a double refractive optical fiber 3, a light beam splitter 4, a 1/4 wavelength plate 5, polarizers 6 and 8, a photodetectors 7 and 9 and a counter 10. As leaving the other end of an optical fiber 3 propagating therethrough, light from the light source 1 is divided into two with the splitter 4. One beam is shifted by 90 deg. in the phase difference passing through a 1/4 wavelength plate 5 and gives a signal of light intensity I1 received with the detector 7. The other beam passes through the polarizer 8 and gives an electrical signal of light intensity I2 received with the detector 9. Then, the counter 10 counts the light intensities I1 and I2 to calculate the temperature of the optical fiber 3 from the counts.

Description

【発明の詳細な説明】 本発明は単一モードの複屈折性光ファイバを用いた温度
計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermometer using a single mode birefringent optical fiber.

従来、光ファイバを用いた比較的高精度の温度計として
は、半導体や螢光体などの特殊な物質をセンサとして用
い光ファイバを単に光の伝達媒質の手段として利用した
ものが実用化されている。しかしながら、従来のこのよ
うな温度計は、センサと光ファイバの結合部の信頼性が
低いという問題があり、また、アナログ処理を行なって
いるので精度にも限度があった。
Conventionally, relatively high-precision thermometers using optical fibers have been put into practical use, using special materials such as semiconductors or fluorescent materials as sensors, and using optical fibers simply as a light transmission medium. There is. However, such conventional thermometers have a problem in that the reliability of the connection between the sensor and the optical fiber is low, and since analog processing is performed, there is a limit to accuracy.

本発明は従来のこのような問題点を解消するためになさ
れたものであり、その目的とするところは、光フアイバ
自身をセンサとして用いること罠よりセンサと光ファイ
バの結合部をなくすとともに、ディジタル処理によって
容易高精度かつ高安定性が得られるような光フアイバ温
度計を提供することにある。
The present invention has been made to solve these conventional problems, and its purpose is to eliminate the coupling part between the sensor and the optical fiber rather than using the optical fiber itself as a sensor, and also to eliminate the coupling part between the sensor and the optical fiber. An object of the present invention is to provide an optical fiber thermometer that can easily obtain high accuracy and high stability through processing.

本発明はこのような目的を達成するために、複屈折性光
ファイバを用い、温度による複屈折性の大きさの変化に
もとすく信号の位相をディジタル的姉検出するようにし
たものである。
In order to achieve such an object, the present invention uses a birefringent optical fiber and digitally detects the phase of a signal even when the magnitude of birefringence changes due to temperature. .

以下、本発明を実施例を用いて詳細に説明する。Hereinafter, the present invention will be explained in detail using Examples.

第1図は本発明に係る光フアイバ温度計の一実施例の構
成図である。図において、半導体レーザや発光ダイオー
ドなどからなる光源1から出た光は、直線偏光子2で直
線偏光された後、集光レンズを用いるなど通常知られた
方法によって複屈折性光ファイバ3の一端に注入される
。ここで、複屈折性光ファイバ3の偏光軸は、入射光の
偏光方向と45°の方位に設定されている。複屈折性光
ファイバ3の中を伝播し他端から出た光は、光ビーム分
割器4によって2分される。2分された光ビームの一方
のビームは、4分の1波長板5を通って90°の位相差
を生じた後、偏光子6を通過して光検出器7で受信され
、光強度工、の電気信号となって出力される。
FIG. 1 is a configuration diagram of an embodiment of an optical fiber thermometer according to the present invention. In the figure, light emitted from a light source 1 consisting of a semiconductor laser, a light emitting diode, etc. is linearly polarized by a linear polarizer 2, and then connected to one end of a birefringent optical fiber 3 by a commonly known method such as using a condenser lens. is injected into. Here, the polarization axis of the birefringent optical fiber 3 is set at an angle of 45° with respect to the polarization direction of the incident light. The light propagating through the birefringent optical fiber 3 and exiting from the other end is split into two by a light beam splitter 4. One of the two divided light beams passes through a quarter-wave plate 5 to generate a 90° phase difference, passes through a polarizer 6, is received by a photodetector 7, and is processed by a light intensity filter. , is output as an electrical signal.

一方、光ビーム分割器4で2分された他方のビームは、
4分の1波長板を通らず偏光子8のみ通過して光検出器
9で受信され、光強度1.の電気信号となって出力され
る。
On the other hand, the other beam split into two by the optical beam splitter 4 is
It passes only through the polarizer 8 without passing through the quarter-wave plate and is received by the photodetector 9, and the light intensity is 1. is output as an electrical signal.

ここで、光強度I、、1.は次式のようになる。Here, the light intensity I,,1. is as follows.

II = Io (1+ cosΔ) It= Ia C1+sin△) ただし、IOは定数、Δは複屈折性光ファイバ3の複屈
折の大きさである。このΔはよく知られているように温
度とともに変化する量である。そして、光強度I、、I
−は温度とともに第2図に示すように変化する。光強度
1.と1、は△に関して90°の位相差を有する。
II = Io (1+cosΔ) It=Ia C1+sinΔ) However, IO is a constant, and Δ is the magnitude of birefringence of the birefringent optical fiber 3. This Δ is a quantity that changes with temperature, as is well known. And the light intensity I,,I
- changes with temperature as shown in FIG. Light intensity 1. and 1 have a phase difference of 90° with respect to Δ.

第1図において、10はカウンタであり、I1とI2を
入力して△の符号を含めた大きさをディジタルカウント
する。このとき、カウント値は例えば第3図に示すよう
に、光ファイバ3の温度と一次比例する。
In FIG. 1, 10 is a counter, which inputs I1 and I2 and digitally counts the magnitude including the sign of Δ. At this time, the count value is linearly proportional to the temperature of the optical fiber 3, for example, as shown in FIG.

なお、△は光ファイバ3が機械的振動を受けることによ
っても変化するが、これから生じる信号は振動的であり
、カウンタ1oにはカウントされない。
Note that Δ also changes when the optical fiber 3 is subjected to mechanical vibration, but the signal generated from this is vibrational and is not counted by the counter 1o.

このように、・本発明姉係る光フアイバ温度計によると
、光ファイバが自身でセンサとして作用するために従来
のようなセンサと光ファイバの結合部の信頼性低下とい
う問題は全くなくなり、しかも、温度をディジタル処理
で計測できるので従来のアナログ式に比して容易に高精
度かつ高安定性を得ることができる。
As described above, according to the optical fiber thermometer according to the present invention, since the optical fiber itself acts as a sensor, there is no problem of decreased reliability of the coupling part between the sensor and the optical fiber as in the past. Since temperature can be measured digitally, higher accuracy and stability can be easily obtained compared to conventional analog methods.

また、センサ構造が簡単になるばかりでなく、機械的振
動如よる測定誤差もなくなる。
Moreover, not only the sensor structure is simplified, but also measurement errors due to mechanical vibrations are eliminated.

また、センサが可とう性があり高絶縁性の光ファイバか
らなっているために、高電圧機器や動力機関の内部など
、通常の電気的測定が困難な環境においても遠隔計測が
可能となり、温度の測定が容易にできるようKなる。
Additionally, since the sensor is made of flexible, highly insulated optical fiber, it is possible to remotely measure temperatures in environments where normal electrical measurements are difficult, such as inside high-voltage equipment or power engines. K so that it can be easily measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光フアイバ温度計の一実施例の構
成図、第2図は温度と光強度の関係を示すグラフ、第3
図は温度とカウント値の関係を示すグラフである。 1・・・・・・・・・・・・光源 2・・・・・・・・・・・・直線偏光子3・・・・・・
・・・・・・複屈折性光ファイバ4・・・・・・・・・
・・・光ビーム分割器5・・・・・・・・・・・・4分
の1波長板6.8・・・・・・偏光子 7.9・・・・・・光検出器 10・・・・・・・・・カウンタ 特許出願人  芳 野 俊 彦 N’     i3d シWt、汽(C)
Fig. 1 is a configuration diagram of an embodiment of an optical fiber thermometer according to the present invention, Fig. 2 is a graph showing the relationship between temperature and light intensity, and Fig. 3 is a graph showing the relationship between temperature and light intensity.
The figure is a graph showing the relationship between temperature and count value. 1......Light source 2...Linear polarizer 3...
...Birefringent optical fiber 4...
...Light beam splitter 5 ...... Quarter wavelength plate 6.8 ... Polarizer 7.9 ... Photodetector 10・・・・・・・・・Counter patent applicant Toshihiko Yoshino N' i3d SiWT, Steam (C)

Claims (1)

【特許請求の範囲】[Claims] 複屈折性光ファイバと、この光ファイバの一端から光を
入力させる光入力手段と、前記光ファイバの他端からの
出力光を分割する光学的千竣と、分割した光の直交偏光
間に90゜の位相差を生じさせる光学的手段と、前記直
交偏光間に干渉を生じさせる光学的手段と、それぞれの
光強度を検出する検出手段と、この検出手段から出力さ
れる電気信号の絶対位祖をディジタル検出する手段とを
備えた光フアイバ温度計。
A birefringent optical fiber, a light input means for inputting light from one end of the optical fiber, an optical end for splitting the output light from the other end of the optical fiber, and a 90° angle between the orthogonal polarizations of the split light. optical means for producing a phase difference of 100°, optical means for producing interference between the orthogonal polarized lights, detection means for detecting the respective light intensities, and absolute position resolution of the electrical signal output from the detection means. A fiber optic thermometer with means for digitally detecting.
JP57140792A 1982-08-13 1982-08-13 Optical fiber thermometer Pending JPS5930032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57140792A JPS5930032A (en) 1982-08-13 1982-08-13 Optical fiber thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57140792A JPS5930032A (en) 1982-08-13 1982-08-13 Optical fiber thermometer

Publications (1)

Publication Number Publication Date
JPS5930032A true JPS5930032A (en) 1984-02-17

Family

ID=15276843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57140792A Pending JPS5930032A (en) 1982-08-13 1982-08-13 Optical fiber thermometer

Country Status (1)

Country Link
JP (1) JPS5930032A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009003449A1 (en) * 2007-06-29 2009-01-08 Trumpf Laser- Und Systemtechnik Gmbh Monitoring the temperature of an optical element
US7836773B2 (en) * 2006-10-18 2010-11-23 Fujikura Ltd. Optical fiber thermometer and temperature-compensated optical fiber sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836773B2 (en) * 2006-10-18 2010-11-23 Fujikura Ltd. Optical fiber thermometer and temperature-compensated optical fiber sensor
WO2009003449A1 (en) * 2007-06-29 2009-01-08 Trumpf Laser- Und Systemtechnik Gmbh Monitoring the temperature of an optical element
US8434938B2 (en) 2007-06-29 2013-05-07 Trumpf Laser-Und Systemtechnik Gmbh Monitoring a temperature and/or temperature related parameters of an optical element

Similar Documents

Publication Publication Date Title
US6647800B2 (en) Temperature insensitive fiber-optic torque and strain sensor
US4584470A (en) Single-polarization fiber optics magnetic sensor
JP2663999B2 (en) Optical measuring method for measuring alternating current with temperature compensation and apparatus for implementing the method
EA012960B1 (en) Optical fiber gyroscope with combination of low polarization optical path and polarization maintaining optical path
US6114846A (en) Optical measuring method and device for measuring a magnetic alternating field with an expanded measuring range and good linearity
US20150103356A1 (en) Interferometer, System, and Method of Use
KR20170141150A (en) a optic-fiber current sensor system
JPS6356924B2 (en)
JPS5930032A (en) Optical fiber thermometer
JP4836862B2 (en) Photovoltage sensor
RU2748305C1 (en) Fiber-optic sensor of magnetic field and electric current
JPS60263866A (en) Optical electric field sensor
JPH0376845B2 (en)
JPS6256968B2 (en)
JP2509692B2 (en) Optical measuring device
JPS61223821A (en) Optical measuring instrument
CA2413098C (en) Temperature insensitive fiber-optic torque and strain sensor
JPS59119334A (en) Pressure sensor
Sun et al. Design of high-sensitivity photoelastic optical fiber pressure sensor: a differential approach
TW387055B (en) Distributed fiber grating sensing systems using birefringence fiber interferometers for detecting wavelength shifts
JPH0639341Y2 (en) Optical electric field detector
Zhang et al. Effect of coupling condition on vibration‐induced noise in fiber lead used in an optical current measurement system
JPH01292263A (en) Optical fiber current measuring apparatus
SU1672245A1 (en) Piezooptical transducer
JPH03246436A (en) Crosstalk measuring instrument for polarization plane maintaining optical fiber