JPH02126146A - Gas sensor for controlling introduction of outdoor air of automobile - Google Patents

Gas sensor for controlling introduction of outdoor air of automobile

Info

Publication number
JPH02126146A
JPH02126146A JP27958288A JP27958288A JPH02126146A JP H02126146 A JPH02126146 A JP H02126146A JP 27958288 A JP27958288 A JP 27958288A JP 27958288 A JP27958288 A JP 27958288A JP H02126146 A JPH02126146 A JP H02126146A
Authority
JP
Japan
Prior art keywords
exhaust gas
sensitivity
sensor
gas sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27958288A
Other languages
Japanese (ja)
Inventor
Shuji Kusano
修二 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP27958288A priority Critical patent/JPH02126146A/en
Publication of JPH02126146A publication Critical patent/JPH02126146A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To allow the detection of both a gasoline exhaust gas and diesel exhaust gas by using a sensor formed with adding compds. of specific elements to filmlike SnO2 as the gas sensor. CONSTITUTION:The sensor formed by adding the compds. of at least one kind of the elements of the group consisting of alkaline metals, alkaline earth metals, lanthanides of 57 to 72 atom numbers Sc, Y, Sb, Bi, Pb, Al, Ga, Zn, Fe, Nb, and Mo to the film-like SnO2 is used as the gas sensor for controlling the introduction of the outdoor air of automobiles. More preferably, the sensor formed by adding the compds. of at least one elements of the group consisting of the alkaline metals, alkaline earth metals, lanthanide of 57 to 72 atom numbers, Sc, Y, Sb, Bi, and Pb to the SnO2 is used as the gas sensor. These additives provide the higher relative sensitivity to the diesel exhaust gas than the Al, Ga, Zn, Fe, Nb, and Mo.

Description

【発明の詳細な説明】 [発明の利用分野1 この発明は、自動車の外気導入制御に関する。[Detailed description of the invention] [Field of application of the invention 1 The present invention relates to outside air introduction control for automobiles.

[従来技術1 自動車の車外空気の汚染をガスセンサにより検出し、車
室への外気導入を制御することが一群の出願により提案
されている。例えば実公昭58−39.219号や特公
昭59−50,528号等は、自動車の外気導入制御装
置の基本原理を提案している。自動車が前方の車両の排
ガス後流に入り込むと、ベンチレータから数十ppm程
度のco等を含んだ汚染空気が吸引される。外気導入制
御装置では、ガスセンサでこれを検出し、外気の導入を
遮断する。このような技術は未だ実用化されていないが
、潜在的には大きな可能性を秘めた技術である。発明者
らは、この装置が将来実用化されることに備え、外気導
入制御用のガスセンサを開発した。
[Prior Art 1] A series of applications have proposed detecting pollution of the air outside an automobile using a gas sensor and controlling the introduction of outside air into the passenger compartment. For example, Japanese Utility Model Publication No. 58-39.219 and Japanese Patent Publication No. 59-50,528 propose the basic principle of an outside air intake control device for an automobile. When a car enters the wake of the exhaust gas from the vehicle in front, contaminated air containing about several tens of ppm of CO is sucked in from the ventilator. The outside air introduction control device detects this with a gas sensor and shuts off the introduction of outside air. Although such technology has not yet been put into practical use, it is a technology with great potential. In preparation for the future practical use of this device, the inventors developed a gas sensor for controlling outside air introduction.

発明者がここで直面した問題は、ガソリン排ガスとディ
ーゼル排ガスとへのセンサ感度のアンバランスであった
。即ち通常のガスセンサでは、ディーゼル排ガスへの感
度が、ガソリン排ガスへの感度に比べて低く、ディーゼ
ル排ガスの検出が困難となった。
The problem faced by the inventor here was an imbalance in sensor sensitivity to gasoline and diesel exhaust gases. That is, with a normal gas sensor, the sensitivity to diesel exhaust gas is lower than the sensitivity to gasoline exhaust gas, making it difficult to detect diesel exhaust gas.

このようなデータの1例を第2図に示す。このデータは
、自動車のベンチレータからの外気吹き出し口にガスセ
ンサを取り付け、実際に車両を走行させた際のものであ
る。なおセンサの取り付は技術が未洗練なため、センサ
の感度は見掛は上低く現れている(この点に付いては、
第6図に示した感度を参照のこと)。比較例1のセンサ
はSnO□系の汎用ガスセンサ(出願人のTGS 82
2、TGS 822は商品名)であり、比較例2のセン
サはSnO2系の水素センサである。水素センサは、S
nO,ガスセンサをシリコーン蒸気で処理し、水素以外
のガスへの感度を失わせたものである(第6回「センサ
の基、礎と応用シンポジウム」、昭和61年5月30日
、岡山義昭)。図のO印はディーゼル排ガス(バス)へ
の感度を、Δ印はLPG排ガス(タクシ−)への感度を
、0印はガソリン排ガス(普通乗用車)への感度を、■
印はガソリン排ガス(軽乗用車)への感度を現す。いず
れのガスセンサもディーゼル排ガスへの感度が不十分で
ある。またL P G排ガスへの感度はガソリン排ガス
への感度と同等で、これらは同様に考えれば良い。セン
サの種類について考えるど、水素選択性センサ(比較例
2)では、ディーゼル排ガスへの感度がほとんどない。
An example of such data is shown in FIG. This data was obtained when a gas sensor was attached to the outside air outlet from the car's ventilator and the car was actually driven. Furthermore, due to the unsophisticated technology for mounting the sensor, the sensitivity of the sensor appears to be lower than it appears (with regard to this point,
(See sensitivity shown in Figure 6). The sensor of Comparative Example 1 is a SnO□-based general-purpose gas sensor (applicant's TGS 82
2, TGS 822 is a trade name), and the sensor of Comparative Example 2 is a SnO2-based hydrogen sensor. Hydrogen sensor is S
nO, a gas sensor treated with silicone vapor to lose its sensitivity to gases other than hydrogen (6th ``Fundamentals and Applications of Sensors Symposium'', May 30, 1988, Yoshiaki Okayama) . In the diagram, the O mark indicates the sensitivity to diesel exhaust gas (bus), the Δ mark indicates the sensitivity to LPG exhaust gas (taxi), the 0 mark indicates the sensitivity to gasoline exhaust gas (regular passenger car), and ■
The mark indicates sensitivity to gasoline exhaust gas (light passenger vehicles). Both gas sensors have insufficient sensitivity to diesel exhaust gas. Furthermore, the sensitivity to LPG exhaust gas is equivalent to the sensitivity to gasoline exhaust gas, and these can be considered in the same way. Considering the types of sensors, the hydrogen selectivity sensor (Comparative Example 2) has almost no sensitivity to diesel exhaust gas.

水素の検出は、ディーゼル排ガスの検出には役立たない
Hydrogen detection is not useful for diesel exhaust detection.

これらのデータが意味するものは、外気導入装置はガソ
リン排ガスに対してのみ反応し、ディーゼル排ガスには
反応しないということである。このような状態は、自動
車の外気導入制御装置を不完全なものにする。
What these data mean is that the fresh air inlet device only responds to gasoline exhaust gases, not diesel exhaust gases. Such a condition makes the outside air intake control device of the automobile incomplete.

[発明の課題] この発明の課題は、ガソリン排ガスとディーゼル排ガス
とへの相対感度をそろえ、ディーゼル排ガスの検出を可
能にすることにある。そしてこの課題が達成されれば、
ガソリン排ガスとディーゼル排ガスの双方に動作する自
動車の外気導入制御装置が得られることになる。
[Problem of the Invention] An object of the present invention is to equalize the relative sensitivities to gasoline exhaust gas and diesel exhaust gas, and to enable detection of diesel exhaust gas. And if this task is accomplished,
This results in an automobile outside air intake control device that operates on both gasoline exhaust gas and diesel exhaust gas.

[発明の構成1 この発明の特徴は、自動車の外気導入制御用のガスセン
サとして、膜状のSnO2に、アルカリ金属、アルカリ
土類金属、原子番号57〜72のランタニド、SC,Y
% Sb、B15PbSAt、Ga、Zn、Fe5Nb
、Moからなる群の少なくとも一員の元素の化合物を添
加したものを、用いることにある(請求項1)。
[Configuration 1 of the Invention] The present invention is characterized in that it is used as a gas sensor for controlling the introduction of outside air into an automobile.
% Sb, B15PbSAt, Ga, Zn, Fe5Nb
, Mo (Claim 1).

ここで好ましくはガスセンサとして、SnO。Here, SnO is preferably used as the gas sensor.

に、アルカリ金属、アルカリ土類金属、原子番号57〜
72のランタニド、Sc、Y、SbS Bi。
, alkali metals, alkaline earth metals, atomic numbers 57~
Lanthanide of 72, Sc, Y, SbS Bi.

Pbからなる群の少なくとも一員の元素の化合物を添加
したものを用いる(請求項2)。これらの添加物は、A
I、Ga、Zn、Fe、Nb、Moよりもディーゼル排
ガスへの相対感度を高める。
A compound containing at least one member of the group consisting of Pb is used (Claim 2). These additives are A
Increases relative sensitivity to diesel exhaust gas than I, Ga, Zn, Fe, Nb, and Mo.

ディーゼル排ガスとガソリン排ガスとを比較すると、汚
染物質の総量、特に可燃性ガスの総量はガソリン排ガス
の方が多い。即ちディーゼル排ガスは相対的にきれいな
排ガスである。しかしディーゼルの排ガスには異臭や刺
激性があり、検出を省略することはできない。次に個別
の成分を見ると、ガソリン排ガスではCOやH2が多量
に含まれている。一方デイーゼル排ガスではCOやH2
の含有量は少ない。比較例2の水素センサがディーゼル
感度を示さなかったのは、ディーゼル排ガス中の水素含
有量が僅かであることを示している。
Comparing diesel exhaust gas and gasoline exhaust gas, the total amount of pollutants, especially the total amount of combustible gases, is higher in gasoline exhaust gas. That is, diesel exhaust gas is relatively clean exhaust gas. However, diesel exhaust gas has a strange odor and is irritating, so detection cannot be omitted. Next, looking at individual components, gasoline exhaust gas contains large amounts of CO and H2. On the other hand, in diesel exhaust gas, CO and H2
The content of is small. The fact that the hydrogen sensor of Comparative Example 2 did not exhibit diesel sensitivity indicates that the hydrogen content in diesel exhaust gas is small.

ディーゼル排ガスにもガソリン排ガスにもNOxが含ま
れたおり、その総量には大差がない。一方一般にセンサ
は、NOxと可燃性ガスとに対して逆方向の感度を示す
。従ってディーゼル排ガスの検出には、NOx感度の抑
制が必要である。ガソリン排ガスに少なくディーゼル排
ガスに多い成分として、アルデヒド類がある。しかしア
ルデヒド類の含有量は、ディーゼル排ガスでも僅かであ
る。
Both diesel exhaust gas and gasoline exhaust gas contain NOx, and there is not much difference in the total amount. On the other hand, sensors generally exhibit opposite sensitivities to NOx and combustible gases. Therefore, detection of diesel exhaust gas requires suppression of NOx sensitivity. Aldehydes are components that are rare in gasoline exhaust gas but abundant in diesel exhaust gas. However, the content of aldehydes is small even in diesel exhaust gas.

これらの条件の基で、ディーゼルとガソリンとへの感度
を調整するには、以下のことが重要となる。
Under these conditions, the following is important in adjusting the sensitivity to diesel and gasoline.

(1)NOx感度を抑制し、ディーゼル排ガスへの感度
低下を防止する。
(1) Suppress NOx sensitivity and prevent a decrease in sensitivity to diesel exhaust gas.

(2)coやB2への感度を減少させ、ガソリン感度を
減少させる。
(2) Decrease sensitivity to co and B2 and reduce gasoline sensitivity.

(3)ディーゼルに特有な成分である、アルデヒド類へ
の感度を増す。
(3) Increases sensitivity to aldehydes, which are components unique to diesel.

この発明はこれらの条件に沿ったものである。This invention meets these conditions.

ガスセンサを膜状(例えば厚さ50μm以下、より好ま
しくは15μm以下)としたのは、アルデヒド類が易分
解性のガスであるためである。アルデヒドの易分解性の
ため、センサを厚くするとアルデヒドがセンサ内部に拡
散する過程で分解してセンサ内部に到達せず、感度が低
下する。
The reason why the gas sensor is made into a membrane (for example, with a thickness of 50 μm or less, more preferably 15 μm or less) is because aldehydes are easily decomposable gases. Because aldehyde is easily decomposed, if the sensor is made thicker, the aldehyde will decompose during the process of diffusing into the sensor and will not reach the inside of the sensor, resulting in a decrease in sensitivity.

次に発明者は、5n02への各種添加物の影響を調べ、
アルカリ金属、アルカリ土類金属、原子番号57−72
のランタニド、Sc、Y、Sb。
Next, the inventor investigated the effects of various additives on 5n02,
Alkali metal, alkaline earth metal, atomic number 57-72
Lanthanide, Sc, Y, Sb.

Bi、Pb、AI、Ga、Zns Fe% Nb。Bi, Pb, AI, Ga, Zns Fe% Nb.

Moが、ディーゼル排ガスへの増感作用とガソリン排ガ
スへの感度の抑制作用とを持つことを見出した。なおこ
れらの添加物の内、ディーゼルとガソリンとへの相対感
度をそろえるのに特に有効なものは、アルカリ金属、ア
ルカリ土類金属、原子番号57−72のう〉・タニド、
Sc、Y% Sb。
It has been found that Mo has an effect of sensitizing diesel exhaust gas and suppressing sensitivity to gasoline exhaust gas. Among these additives, those that are particularly effective in equalizing the relative sensitivity to diesel and gasoline are alkali metals, alkaline earth metals, tanides with atomic numbers 57-72,
Sc, Y% Sb.

B1、Pbである。これらの物質の添加は、5nO1膜
への含浸法で行ったので、添加量自体に付いて本質的な
意味のあるデータは得られていない。
B1, Pb. Since these substances were added by impregnation into the 5nO1 film, no essentially meaningful data was obtained regarding the amounts added.

即ちこれらの添加物はSnO,膜の表面に沈着し、濃度
分布は膜の表面と内部とで均一ではない。また膜厚を変
え、添加物の原子数とSnの原子数との比を大きく変え
ても、結果への影響は小さい。
That is, these additives are deposited on the surface of the SnO film, and the concentration distribution is not uniform between the surface and inside of the film. Further, even if the film thickness is changed and the ratio between the number of atoms of the additive and the number of Sn atoms is greatly changed, the effect on the results is small.

実験の範囲から添加物の範囲を示すと、添加物の金属原
子とSnO,中のSn原子との比で、外掛けの0.22
−50at%、より好ましくは0.4〜2Qa Lm%
か有効である。
The range of the additive is shown from the range of the experiment.
-50at%, more preferably 0.4-2Qa Lm%
or is valid.

第6図に、ガソリン排ガスとディーゼル排ガスとへの相
対感度を示す。このデータは排ガスをサンプリングバッ
グでサンプリングし、約0−6%に希釈して、空気中と
の抵抗値の変化を求めたものである。比較例1の汎用ガ
スセンサや比較例2の水素センサでは、ディーゼル感度
が低い。一方単味の5n02の膜状センサ(膜厚10μ
m)では、ガソリン感度が低下するが、ディーゼル感度
は増加していない。これは比較例1のセンサ([111
厚50μm)の膜厚を小さくし、センサに含まれていた
貴金属触媒を除いたためで1)る。SnO,膜(膜厚1
0μm1以下原則として同じ)にYやBa。
FIG. 6 shows the relative sensitivity to gasoline exhaust gas and diesel exhaust gas. This data was obtained by sampling exhaust gas with a sampling bag, diluting it to approximately 0-6%, and determining the change in resistance value compared to air. The general-purpose gas sensor of Comparative Example 1 and the hydrogen sensor of Comparative Example 2 have low diesel sensitivity. On the other hand, a simple 5n02 film sensor (film thickness 10μ
In m), gasoline sensitivity decreases, but diesel sensitivity does not increase. This is the sensor of Comparative Example 1 ([111
This is because the film thickness (50 μm) was reduced and the noble metal catalyst contained in the sensor was removed. SnO, film (thickness 1
0μm1 or less (same in principle), Y or Ba.

Bi等を含浸さゼると、ディーゼル感度が増加する。図
中の添加量は、含浸に用いたY等の濃度をm o l 
/Litter単位で現し添加量はセンサ1個当たり0
 、1 tt +−,1tterである。なおこの添加
量は、0 、1 m o l /LitterX l 
71Litterで2m01%の添加量に相当する。
When impregnated with Bi or the like, diesel sensitivity increases. The amount added in the figure is the concentration of Y, etc. used for impregnation.
Expressed in units of /Litter, the amount added is 0 per sensor.
, 1 tt +−, 1 tter. Note that this addition amount is 0, 1 mol/Litter
71L corresponds to an addition amount of 2m01%.

第3図〜第5図に、実施例3 (S n 02に0.3
m o l /LitterのY溶液を1/7L滴下、
含浸)、比較例1、比較例2の各ガスセンサのガス濃度
特性を示す。比較例2のガスセンサでは水素感度のみが
顕著であり、ガソリン感度は高いがディーゼル感度は低
い。実施例3のガスセンサと比較例1のガスセンサとを
比較すると、NOx感度を抑制してアルデヒド感度を増
した点、COやH8への感度を減少させた点が異なる。
3 to 5 show Example 3 (0.3 in S n 02).
Drop 1/7L of Y solution of mol/Litter,
The gas concentration characteristics of each gas sensor of Comparative Example 1 and Comparative Example 2 are shown. In the gas sensor of Comparative Example 2, only hydrogen sensitivity is significant, gasoline sensitivity is high, but diesel sensitivity is low. Comparing the gas sensor of Example 3 and the gas sensor of Comparative Example 1, the differences are that NOx sensitivity was suppressed and aldehyde sensitivity was increased, and sensitivity to CO and H8 was decreased.

これはNOx感度の抑制によるディーゼル感度の低下の
防止、COやH!感度の減少によるガソリン感度の減少
、アルデヒド感度の向上によるディーゼルへの増感との
メカニズムと一致する。なおディーゼル感度の向上やガ
ソリン感度の抑制のメカニズムは、他の実施例でも同様
である。またここではアルデヒドを代表するものとして
、ホルムアルデヒドを用いた。
This prevents a decrease in diesel sensitivity by suppressing NOx sensitivity, CO and H! This is consistent with the mechanism of a decrease in gasoline sensitivity due to a decrease in sensitivity, and an increase in diesel sensitivity due to an increase in aldehyde sensitivity. Note that the mechanism for improving diesel sensitivity and suppressing gasoline sensitivity is the same in other embodiments. Further, formaldehyde was used here as a representative aldehyde.

得られたガスセンサの、実車走行でのデータを第1図に
示す。図の縦軸は、センサに直列に接続した負荷抵抗(
R1)への出力を現す。実施例ではディーゼル排ガス(
○印、バスの排ガス)でも、ガソリン排ガス(0印、乗
用車の排ガス)と同等の感度を示すが、比較例ではディ
ーゼル排ガスへの感度は小さなピークとして現れるに過
ぎない。
Figure 1 shows the data of the obtained gas sensor during actual vehicle driving. The vertical axis in the figure is the load resistance (
represents the output to R1). In the example, diesel exhaust gas (
The sensitivity to diesel exhaust gas (marked with ○, bus exhaust gas) is the same as that of gasoline exhaust gas (marked with 0, exhaust gas from passenger cars), but in the comparative example, the sensitivity to diesel exhaust gas only appears as a small peak.

[実施例] ガスセンサの調整 S n (OCHx)ao (CH2)3N Hi)の
3θwt%イソブタノール溶液をアルミナバイブに滴下
し、110°Cでイソブタノールを蒸発させた後、50
0℃でS r+の有機化合物を熱分解し5n02薄膜と
した。このプロセスを繰り返し、膜厚10μmの単味の
S n O2膜とした。SnO,膜の製造方法は任意で
、他のSnの有機金属化合物を材料としても、あるいは
真空蒸着等を用いても良い。
[Example] Adjustment of gas sensor A 3θwt% isobutanol solution of S n (OCHx)ao (CH2)3N Hi) was dropped onto an alumina vibe, and the isobutanol was evaporated at 110°C.
The S r+ organic compound was thermally decomposed at 0° C. to form a 5n02 thin film. This process was repeated to obtain a single SnO2 film with a thickness of 10 μm. The method for manufacturing the SnO film is arbitrary, and other organometallic compounds of Sn may be used as the material, or vacuum evaporation or the like may be used.

調整したSnO□膜に、各種金属元素の有機化合物溶液
、例えばYの場合、Y(OCt(3)t(0(CHz:
hNH2)のイソブタノール溶液を滴下し、500°C
で熱分解した。他の添加物の場合も、類似構造の有機金
属化合物を用いた。滴下量はセンサ1個当たりlμLi
tterとし、濃度は金属換算で0.03〜0.3mo
 l/I、i t terとした。5nO8膜の膜厚は
10μm1サブストレートのバイブは直径1.2mm、
長さ3mm強で、5nC)2膜の容積は1.2Xlo−
’ccに当tこる。これに5nOzの分子量150.6
grと、比重約7gr/ c cとを加味すると、Sn
□z膜は5.6μmolに当たり、金属の添加量は0.
1mo l/LitterX I μLitterで外
掛けの約2m01%に当たる。従って0.03〜0.3
mo ]/Litterの溶液の滴下は、0.6〜3m
o1%の添加に相当する。なお発明者は5nOz膜の膜
厚を1μmとし、添加液を0.03−0.2mo I/
LitterXl/7Lとして、添加量を6〜40mo
1%とすることを試みた。しかし結果は同等で、添加物
濃度の限界は明らかにはならなかった。
An organic compound solution of various metal elements, for example, in the case of Y, Y(OCt(3)t(0(CHz:
Add dropwise isobutanol solution of hNH2) and heat at 500°C.
It was thermally decomposed. In the case of other additives, organometallic compounds with similar structures were also used. The dripping amount is lμLi per sensor.
tter, and the concentration is 0.03 to 0.3 mo in terms of metal.
l/I, it ter. The thickness of the 5nO8 film is 10 μm.The diameter of the vibrator for 1 substrate is 1.2 mm.
With a length of just over 3mm, the volume of the 5nC)2 film is 1.2Xlo-
'cc hit. This has a molecular weight of 150.6 at 5 nOz.
gr and the specific gravity of about 7 gr/cc, Sn
□z film is 5.6 μmol, and the amount of metal added is 0.
1 mol/LitterX I μLitter corresponds to approximately 2m01% of the external capacity. Therefore 0.03-0.3
mo]/Litter solution is dropped from 0.6 to 3 m.
Corresponds to addition of o1%. In addition, the inventor set the film thickness of the 5nOz film to 1 μm, and added the additive solution to 0.03-0.2mo I/
Addition amount is 6 to 40 mo as LitterXl/7L
An attempt was made to make it 1%. However, the results were comparable and no limits on additive concentration were apparent.

得られたSnO,膜に一対の電極を接続し、サブストレ
ートのアルミナパイプにはヒータコイルを挿入して、ガ
スセンサとした。このセンサの形状は比較例1や比較例
2のものと同等で、ヒータを用いセンサを380°Cに
加熱し、特性を評価した。
A pair of electrodes was connected to the obtained SnO film, and a heater coil was inserted into the alumina pipe of the substrate to prepare a gas sensor. The shape of this sensor was the same as that of Comparative Example 1 and Comparative Example 2, and the sensor was heated to 380° C. using a heater to evaluate its characteristics.

ガスセンサの感度 得られたガスセンサ用いて、第1図〜第6図のデータを
採取した。第1図、第2図は実車走行でのデータで、第
3図〜第5図は用いたガスセンサのガス濃度特性である
。第6図に、約0.6%に希釈したガソリンとディーゼ
ルの排ガスへの感度を示す。なお図の下部の記号は、含
浸させた金属元素と含浸時の濃度(m o l /Li
tter単位)を示す。
Sensitivity of the gas sensor The data shown in FIGS. 1 to 6 were collected using the obtained gas sensor. Figures 1 and 2 show data from actual vehicle running, and Figures 3 to 5 show gas concentration characteristics of the gas sensor used. Figure 6 shows the sensitivity to exhaust gas of gasoline and diesel diluted to about 0.6%. The symbols at the bottom of the figure indicate the impregnated metal elements and the concentration at the time of impregnation (mol/Li
tter unit).

各種添加物の影響を表1に示す。Table 1 shows the effects of various additives.

表1 添加物 濃度 (m o l /Ix l μL) 比較例3 5n02単味 実施例 1Y0.03 2Y0.1 3Y0.3 感   度 ガソリン ディーゼル 6.2    2.4 5.2 5.1 6.0 2.8 3.6 4.3 4    Ba0.1 5   Mg0.03 6    Mg0.1 7    MgO,3 8Ca0.3 9    Sr0.1 5.2 6.2 5.8 5.2 6.8 5.6 3.8 3゜3 3.4 5.2 3.8 3.2 10  K  O,1 11Na0.1 5.6 5.4 4.2 3.8 12  La0.03 13  La0.1 14  La0.28 5.4 4.6 3.5 3.4 3.5 2.7 P r O,03 Ndo、03 Nd0.l Nd0.3 Gd0.27 Dy0.I E r O,l Hf0.1 表 1  統さ 3.8 4.9 4.2 5.0 5.2 6.0 6.4 4.8 2.9 3.0 3.4 3.4 4.4 4.0 4.2 4.2 ScO,1 4,2 3,6 S b O,03 Bio、1 Pb0.1 4.7 5.2 4.0 3.4 4.5 3.4 AIo、l Ga0.l ZnO,3 FeO,L Nb0.l Mo0.1 3.9 4.0 4.2 4.5 6.2 4.1 2.7 2.8 3.0 2.8 3.1 2.9 表   1   続き 比較例 4   WO,l      5.0   2.15 
  NiO,l      8.4    3.06 
  Cr0.1     1.6    1.27  
 vO,l      3.4   2.38   T
aO,16,63−2 9Co0.1    15     3.10  In
O,l      4.8   2.61 1n0.3
    4.8   2.52  MnO,l    
  4.3   2.13  ZrO,l      
6.2   2.44  TiO,l      6.
0   2.75  CuO,l      4.6 
  2.416  B  O,16,22,6 17SiO,16,22,8 18P  O,16,82,6 * センサはいずれもSnO2系(膜厚10μm)、添
加物は含浸法で添加、ガス感度は空気中とガス中との抵
抗値の比を現す。
Table 1 Additive Concentration (mol / Ix l μL) Comparative Example 3 5n02 Single Example 1Y0.03 2Y0.1 3Y0.3 Sensitivity Gasoline Diesel 6.2 2.4 5.2 5.1 6.0 2.8 3.6 4.3 4 Ba0.1 5 Mg0.03 6 Mg0.1 7 MgO,3 8Ca0.3 9 Sr0.1 5.2 6.2 5.8 5.2 6.8 5.6 3.8 3゜3 3.4 5.2 3.8 3.2 10 K O,1 11Na0.1 5.6 5.4 4.2 3.8 12 La0.03 13 La0.1 14 La0.28 5.4 4.6 3.5 3.4 3.5 2.7 P r O, 03 Ndo, 03 Nd0. l Nd0.3 Gd0.27 Dy0. I E r O,l Hf0.1 Table 1 Coordination 3.8 4.9 4.2 5.0 5.2 6.0 6.4 4.8 2.9 3.0 3.4 3.4 4 .4 4.0 4.2 4.2 ScO,1 4,2 3,6 S b O,03 Bio, 1 Pb0.1 4.7 5.2 4.0 3.4 4.5 3.4 AIo , l Ga0. l ZnO, 3 FeO, L Nb0. l Mo0.1 3.9 4.0 4.2 4.5 6.2 4.1 2.7 2.8 3.0 2.8 3.1 2.9 Table 1 Continued Comparative Example 4 WO,l 5 .0 2.15
NiO,l 8.4 3.06
Cr0.1 1.6 1.27
vO,l 3.4 2.38 T
aO,16,63-2 9Co0.1 15 3.10 In
O, l 4.8 2.61 1n0.3
4.8 2.52 MnO,l
4.3 2.13 ZrO,l
6.2 2.44 TiO,l 6.
0 2.75 CuO,l 4.6
2.416 B O,16,22,6 17SiO,16,22,8 18P O,16,82,6 * All sensors are SnO2 type (film thickness 10 μm), additives are added by impregnation method, gas sensitivity is Represents the ratio of resistance values in air and gas.

次に、5n02膜の厚さと感度との関係を表2に示す。Next, Table 2 shows the relationship between the thickness of the 5n02 film and the sensitivity.

試料として、SnO2膜(膜厚1μm)に0.03−0
.2mo l/LitterのY溶液を1μmL滴下し
、熱分解したものを用いj;o他の試料として、SnO
,粉体に外掛けで2mo 1%濃度となるようにY溶液
を含浸させ500°Cで熱分解した後、40pm厚の膜
状と300μm厚のチップ状とに成型したものとを用い
た。
As a sample, 0.03-0 was applied to the SnO2 film (film thickness 1 μm)
.. 1 μmL of 2 mol/Litter Y solution was added dropwise and thermally decomposed. As another sample, SnO
The powder was impregnated with a Y solution to a concentration of 2 mo 1%, thermally decomposed at 500° C., and then molded into a film with a thickness of 40 pm and a chip with a thickness of 300 μm.

表   2 試  料     ガソリン感度 単味 1μm     6.4 同Y0.03mol/L 5.8 同Y0.1mol/L  5.4 同Y0.2mol/L  5.2 ディーゼル感度 2.8 4.2 4.2 4.6 単味 40μm    7.0 同Y2mo 1% 5.8 2.8 3.6 単味 300μm 同Y2mo 1% 5.2 4.2 1.8 2.4 表2から明らかなように、膜厚の増加はディーゼルへの
相対感度に不利な影響を及ぼず。しかし薄膜のガスセン
サは被毒を受は易いので、薄膜が必ずしも有利であると
は限らない。これらのことを加味すると、センサの好ま
しい膜厚は50μm以下、より好ましくは50A以上〜
15μm以下となる。
Table 2 Sample Gasoline sensitivity single 1 μm 6.4 Y0.03mol/L 5.8 Y0.1mol/L 5.4 Y0.2mol/L 5.2 Diesel sensitivity 2.8 4.2 4.2 4.6 Plain 40 μm 7.0 Same Y2mo 1% 5.8 2.8 3.6 Plain 300 μm Same Y2mo 1% 5.2 4.2 1.8 2.4 As is clear from Table 2, the film The increase in thickness does not adversely affect the relative sensitivity to diesel. However, thin film gas sensors are susceptible to poisoning, so thin films are not necessarily advantageous. Taking these things into account, the preferred film thickness of the sensor is 50 μm or less, more preferably 50 A or more.
It becomes 15 μm or less.

なおSnO2ガスセンサの添加物には、これ以外に経時
変化の抑制剤、温湿度依存性の抑制剤等の種々のものが
知られている。そこでこの発明の添加物は単独ではなく
、これらのものと共に添加しても良い。
Note that various other additives for SnO2 gas sensors are known, such as inhibitors of changes over time, inhibitors of temperature and humidity dependence, and the like. Therefore, the additives of this invention may not be added alone, but may be added together with these additives.

[発明の効果] この発明では、ディーゼル排ガスとガソリン排ガスへの
ガスセンサの感度をそろえる。この結果、自動車の外気
導入制御装置の問題点である、ディーゼル排ガスへの感
度不足を解消することができる。
[Effects of the Invention] In this invention, the sensitivities of the gas sensors to diesel exhaust gas and gasoline exhaust gas are made the same. As a result, it is possible to solve the problem of insufficient sensitivity to diesel exhaust gas, which is a problem with the outside air intake control device of a car.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のガスセンサの特性図、第2図は従来例
のガスセンサの特性図、第3図は実施例の特性図、第4
図、第5図は従来例の特性図、第6図は実施例の特性図
である。
Fig. 1 is a characteristic diagram of the gas sensor of the embodiment, Fig. 2 is a characteristic diagram of the conventional gas sensor, Fig. 3 is a characteristic diagram of the embodiment, and Fig. 4 is a characteristic diagram of the gas sensor of the conventional example.
5 is a characteristic diagram of a conventional example, and FIG. 6 is a characteristic diagram of an embodiment.

Claims (2)

【特許請求の範囲】[Claims] (1) 排ガスによる外気の汚染を検出して、車室への
外気の導入を制御するようにした自動車の外気導入制御
用のガスセンサにおいて、 前記ガスセンサを、膜状のSnO_2に、アルカリ金属
、アルカリ土類金属、原子番号57〜72のランタニド
、Sc、Y、Sb、Bi、Pb、Al、Ga、Zn、F
e、Nb、Moからなる群の少なくとも一員の元素の化
合物を添加したものとしたことを特徴とする、自動車の
外気導入制御用のガスセンサ。
(1) In a gas sensor for controlling the introduction of outside air into a vehicle cabin, which detects pollution of outside air by exhaust gas and controls the introduction of outside air into the vehicle interior, the gas sensor is made of a film of SnO_2 coated with an alkali metal, an alkali, etc. Earth metals, lanthanides with atomic numbers 57-72, Sc, Y, Sb, Bi, Pb, Al, Ga, Zn, F
1. A gas sensor for controlling outside air introduction into an automobile, characterized in that the compound is added with a compound of at least one member of the group consisting of e, Nb, and Mo.
(2) 前記添加物を、アルカリ金属、アルカリ土類金
属、原子番号57〜72のランタニド、Sc、Y、Sb
、Bi、Pbからなる群の少なくとも一員の元素の化合
物としたことを特徴とする、請求項1に記載の自動車の
外気導入制御用のガスセンサ。
(2) The additive may be an alkali metal, an alkaline earth metal, a lanthanide with an atomic number of 57 to 72, Sc, Y, or Sb.
2. The gas sensor for controlling outside air introduction into an automobile according to claim 1, wherein the gas sensor is a compound of at least one member of the group consisting of , Bi, and Pb.
JP27958288A 1988-11-04 1988-11-04 Gas sensor for controlling introduction of outdoor air of automobile Pending JPH02126146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27958288A JPH02126146A (en) 1988-11-04 1988-11-04 Gas sensor for controlling introduction of outdoor air of automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27958288A JPH02126146A (en) 1988-11-04 1988-11-04 Gas sensor for controlling introduction of outdoor air of automobile

Publications (1)

Publication Number Publication Date
JPH02126146A true JPH02126146A (en) 1990-05-15

Family

ID=17612990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27958288A Pending JPH02126146A (en) 1988-11-04 1988-11-04 Gas sensor for controlling introduction of outdoor air of automobile

Country Status (1)

Country Link
JP (1) JPH02126146A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118459A (en) * 1989-09-30 1991-05-21 Toyota Central Res & Dev Lab Inc Exhaust gas sensor
WO1996035115A1 (en) * 1995-04-29 1996-11-07 I.T.V.I. International Techno Venture Invest Aktiengesellschaft Sensor assembly for controlling the ventilation of indoor spaces
US6287475B1 (en) 1996-10-15 2001-09-11 Citizen Watch Co., Ltd. Magnetic head slider manufacturing method
JP2007147655A (en) * 2007-03-09 2007-06-14 Ngk Spark Plug Co Ltd Gas sensor element
CN103063705A (en) * 2012-12-25 2013-04-24 华中农业大学 Trimethylamine gas sensor and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118459A (en) * 1989-09-30 1991-05-21 Toyota Central Res & Dev Lab Inc Exhaust gas sensor
WO1996035115A1 (en) * 1995-04-29 1996-11-07 I.T.V.I. International Techno Venture Invest Aktiengesellschaft Sensor assembly for controlling the ventilation of indoor spaces
US6287475B1 (en) 1996-10-15 2001-09-11 Citizen Watch Co., Ltd. Magnetic head slider manufacturing method
JP2007147655A (en) * 2007-03-09 2007-06-14 Ngk Spark Plug Co Ltd Gas sensor element
JP4603001B2 (en) * 2007-03-09 2010-12-22 日本特殊陶業株式会社 Gas sensor element
CN103063705A (en) * 2012-12-25 2013-04-24 华中农业大学 Trimethylamine gas sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100481904B1 (en) Exhaust purifier and purification method for internal combustion engines
TW402660B (en) A process for operating an exhaust gas treatment unit containing a sulfur trap and a nitrogen oxides storage catalyst
US7722749B2 (en) Gas sensor and method for forming same
US20020159926A1 (en) Exhaust gas purification apparatus of internal combustion engine and catalyst for purifying exhaust gas of internal combustion engine
US6274016B1 (en) Nitrogen oxide gas sensor
US20020031452A1 (en) Exhaust gas purification catalyst and exhaust gas purification system
US20090148357A1 (en) Apparatus and catalyst for purifying exhaust gas
US4584086A (en) Device for detecting concentration of oxygen in exhaust gas
EP1482306B1 (en) Humidity sensor and method of using the humidity sensor
KR870001258B1 (en) Gas sensor
JP3097287B2 (en) Gas sensor and method of manufacturing the same
JP2000517426A (en) Sensor for monitoring NOx catalyst
JPH02126146A (en) Gas sensor for controlling introduction of outdoor air of automobile
EP0610884B1 (en) Oxygen concentration sensor
JP3054850B2 (en) Humidity detection method
US4242303A (en) Gas detecting element
GB2037432A (en) Oxygen sensor
US20210239637A1 (en) Gas detection complex and method for producing same, gas sensor comprising gas detection complex and method for manufacturing same
DE19856369C2 (en) Resistive gas sensor and method for its production
US4732738A (en) Combustible gas detecting element
KR100189041B1 (en) Sensor for determining carbon monoxide
JP2921032B2 (en) Ammonia gas sensor
DE10117911A1 (en) Exhaust gas cleaner
CA2481117C (en) Method for improving a chemo/electro-active material
Vartiainen et al. Water uptake by sunlight and ozone exposed diesel exhaust particles