JPH02124456A - Connecting structure of solid-state electrolyte element - Google Patents

Connecting structure of solid-state electrolyte element

Info

Publication number
JPH02124456A
JPH02124456A JP63278115A JP27811588A JPH02124456A JP H02124456 A JPH02124456 A JP H02124456A JP 63278115 A JP63278115 A JP 63278115A JP 27811588 A JP27811588 A JP 27811588A JP H02124456 A JPH02124456 A JP H02124456A
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
state electrolyte
electrolyte layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63278115A
Other languages
Japanese (ja)
Inventor
Toshihiko Aoyama
青山 俊彦
Haruhisa Shiomi
塩見 治久
Yasuhiro Ujita
氏田 泰洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP63278115A priority Critical patent/JPH02124456A/en
Priority to DE19893936103 priority patent/DE3936103C2/en
Publication of JPH02124456A publication Critical patent/JPH02124456A/en
Priority to US07/794,663 priority patent/US5186809A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/16Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture specially for use as rectifiers or detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To make it possible to provide rigid junction by brazing by forming an intermediate layer comprising metal oxide between a terminal part and a solid-state electrolyte layer. CONSTITUTION:The surface of a hollow tubular body 2 comprising stabilized zirconia whose one end is closed is coated with a solid-state electrolyte layer 3 having oxygen ion conductivity, and a solid-state electrolyte element 1 is formed. At a tip part 1a of the element 1, reference electrodes 4 and 5, measuring electrodes 6 and 7 and a heater 8 are arranged. At a rear end part 1b, a reference electrode terminal 14, a measuring electrode terminal 15 and heater terminals 16 and 17 are formed. A first intermediate layer 22 is provided between the solid-state electrolyte layer 3 and the terminals 14 and 15, and a second intermediate layer 23 is provided between the solid- state electrolyte layer 3 and the terminals 16 and 17. The intermediate layers 22 and 23 are formed of alumina in a specified thickness. Since the heat conductivity of the alumina is larger than that of the solid-state electrolyte layer 3, and the thermal expansion rate is equal to or less than that of the solid-state electrolyte layer 3, heat is quickly transferred to the vicinities of the terminals uniformly when lead wires 20 are brazed. The flow of the brazing filler metal is excellent, and rigid brazing can be accomplished.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えは酸素センサ等に用いる固体電解質素子
の接続構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a connection structure for solid electrolyte elements used in, for example, oxygen sensors.

[従来の技術] 従来より、測定カス中の酸素)農産を検出する酸素セン
サには、固体電解質素子などの検出素子が使用されてお
り、この固体電解N素子は、周囲の酸素)農産の差によ
って起電力を生ずる固体電解質基板等から構成されてい
る。この固体電解質基板の測定ガス側の表面には測定電
極が設けられ、−方、測定電極と反対側の表面には基準
電極が設けられている。また、これらの測定電極及び基
準電極は、それぞれ細い導電部を介して固体電解質基板
の端部に設けられた出力端子に接続されている。
[Conventional technology] Conventionally, detection elements such as solid electrolyte elements have been used in oxygen sensors that detect agricultural products (oxygen) in measurement waste. It is composed of a solid electrolyte substrate etc. that generates an electromotive force. A measurement electrode is provided on the surface of the solid electrolyte substrate on the measurement gas side, and a reference electrode is provided on the surface opposite to the measurement electrode. Further, these measurement electrodes and reference electrodes are each connected to an output terminal provided at an end of the solid electrolyte substrate via a thin conductive portion.

更に、上記電極の周囲には、固体電解質基板を加熱して
出力を安定させるヒータが配置されており、このヒータ
も上記と同様な導電部を介してヒータ端子に接続されて
いる。
Further, a heater is arranged around the electrode to heat the solid electrolyte substrate to stabilize the output, and this heater is also connected to the heater terminal via the same conductive part as above.

そして、これらの出力端子及びヒータ端子には、出力の
取り出し又は電圧の印加のために、白金等のリード線が
接続されている。
Lead wires made of platinum or the like are connected to these output terminals and heater terminals in order to take out output or apply voltage.

この様な固体電解質素子の接続構造としては、従来より
、白金線を白金ペーストや高温ハンダで固定する構造、
白金線をセラミックスと一体焼結する構造、或はプラグ
を用いた嵌め合いによる構造等が提案されているが、各
々一長一短があり必ずしも十分に強固で信頼性のある接
続を行うことができなかった。
Conventionally, the connection structure for such solid electrolyte elements has been a structure in which platinum wires are fixed with platinum paste or high-temperature solder,
Structures in which platinum wire is integrally sintered with ceramics, or structures in which they fit together using plugs have been proposed, but each has advantages and disadvantages, and it has not always been possible to make a sufficiently strong and reliable connection. .

更に、近年では、上記従来技術の問題を克服する接続構
造として、固体電解質基板の表面に形成された出力及び
ヒータ端子に、リード線を直接ろ−付けする技術が提案
されている。
Furthermore, in recent years, as a connection structure that overcomes the problems of the prior art described above, a technique has been proposed in which lead wires are brazed directly to output and heater terminals formed on the surface of a solid electrolyte substrate.

[発明が解決しようとする課題] しかしながら、このろ−付けによる接続構造は、接着強
度も高く耐熱性に優れているという長所があるが、一般
に固体電解質基板の熱伝導率は小さいので、端子全体の
温度を均一に上げることが困難であり、そのためにろ−
材の流れが悪くなって、端子とリード線との接合強度が
小さくなるという問題が生じる。他方、この問題を解決
しようとして、ろ−付は温度を上げてろ一材の流れをよ
くすると、固体電解質基板が熱により影響を受けて性能
が劣化してしまうことがあった。これは、ろ−付は雰囲
気の還元ガスにより固体電解質中の酸素イオンが散逸し
て黒色となる現象(黒化現象)が発生するためである。
[Problem to be solved by the invention] However, although this connection structure using brazing has the advantage of high adhesive strength and excellent heat resistance, the solid electrolyte substrate generally has low thermal conductivity, so the entire terminal It is difficult to uniformly raise the temperature of the
A problem arises in that the material flows poorly and the bonding strength between the terminal and the lead wire decreases. On the other hand, in an attempt to solve this problem, when filtering is performed by increasing the temperature to improve the flow of the filter material, the solid electrolyte substrate is sometimes affected by the heat and its performance deteriorates. This is because during filtration, oxygen ions in the solid electrolyte are dissipated by the reducing gas in the atmosphere, resulting in a blackening phenomenon (blackening phenomenon).

一方、高温による固体電解質の劣化の問題を避けるため
に、低融点のる一材を使用すると、今度は耐熱性が不足
するという別の問題が生じてしまう。
On the other hand, if a material with a low melting point is used in order to avoid the problem of deterioration of the solid electrolyte due to high temperatures, another problem arises in that it lacks heat resistance.

本発明は、ろ−材による各端子とリード線との接合にお
ける課題を解決し、ろ−付けによる接合を好適に行うこ
とができる固体電解質素子の接続構造を提供することを
目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a connection structure for a solid electrolyte element that can solve problems in joining each terminal and a lead wire using a filter material and suitably perform joining by brazing.

[課題を解決するための手段] かかる目的を達成するための本発明の構成は、固体電解
質基板上に形成され、該固体電解質基板上の発熱部又は
電極に各々接続された端子部に、リード線をろ−付して
なる固体電解質素子の接続構造において、 上記端子部と固体電解質基板との間に、熱伝導率が固体
電解質基板よりも大であり、かつ熱膨張率が少なくとも
固体電解質基板と同等或はそれ以下である金属酸化物層
を形成したことを特徴とする固体電解質素子の接続構造
を要旨とする。
[Means for Solving the Problems] The configuration of the present invention for achieving the above object is formed on a solid electrolyte substrate, and a lead is connected to the terminal portions respectively connected to the heat generating portions or electrodes on the solid electrolyte substrate. In a connection structure for a solid electrolyte element formed by filtering a wire, a solid electrolyte substrate having a thermal conductivity higher than that of the solid electrolyte substrate and a thermal expansion coefficient of at least The object of the present invention is to provide a connection structure for a solid electrolyte element, which is characterized by forming a metal oxide layer that is equivalent to or less than .

ここで、固体電解質基板は、酸素イオン伝導性を有する
ものであり、例えば、Zr02−Y2O3゜Zr02−
Cao等からなる基板が用いられる。
Here, the solid electrolyte substrate has oxygen ion conductivity, for example, Zr02-Y2O3゜Zr02-
A substrate made of Cao or the like is used.

発熱部は、例えば、セラミックスを含んだ白金やタング
ステンからなるヒータであり、電極の周囲などに配置さ
れる。
The heat generating section is, for example, a heater made of platinum or tungsten containing ceramics, and is arranged around the electrodes.

電極又は端子部は、発熱部と同様に、例えばセラミック
スを含んだ白金等から形成される。
The electrode or terminal portion is made of, for example, platinum containing ceramics, like the heat generating portion.

金属酸化物層は、熱伝導率が固体電解質基板よりも大で
あり、かつ熱膨張率が少なくとも固体電解質基板と同等
或はそれ以下のものであればよく、固体電解質基板の種
類に応じて、例えはアルミナ。
The metal oxide layer only needs to have a thermal conductivity higher than that of the solid electrolyte substrate and a thermal expansion coefficient at least equal to or lower than that of the solid electrolyte substrate, and depending on the type of the solid electrolyte substrate, An example is alumina.

マグネシア、スピネル等の種々のセラミックスが採用で
きる。特に、固体電解質がZ r 02  Y2O3の
場合には、熱伝導率及び熱膨張率の点でアルミナが好適
である。尚、金属酸化物層の厚さは、5〜30011m
の範囲がろ−付けの際に、熱が伝わり易いので好適であ
る。
Various ceramics such as magnesia and spinel can be used. In particular, when the solid electrolyte is Z r 02 Y2O3, alumina is suitable in terms of thermal conductivity and coefficient of thermal expansion. In addition, the thickness of the metal oxide layer is 5 to 30011 m.
This range is suitable because heat is easily transmitted during brazing.

[作用] 本発明の固体電解質素子の接続構造によれば、発熱部又
は電極に接続された端子部は、直接に固体電解質基板と
接するのではなく、金属酸化物層を介して固体電解質基
板と一体に形成されている。
[Function] According to the connection structure of the solid electrolyte element of the present invention, the terminal portion connected to the heat generating portion or the electrode does not directly contact the solid electrolyte substrate, but contacts the solid electrolyte substrate via the metal oxide layer. It is formed in one piece.

この金属酸化物層は、熱伝導率が固体電解質基板よりも
大であるので、端子部にリード線をろ−付けする際に、
端子部及びその周囲に熱を速やかに伝えてろ一材の流れ
をよくし、ろ−付は性を向上させる。その上、この金属
酸化物層は、a膨張率が少なくとも固体電解質基板と同
等或はそれ以下であるので、ろ−付けの際に加熱されて
も固体電解質基板から剥離することがない。
This metal oxide layer has higher thermal conductivity than the solid electrolyte substrate, so when brazing lead wires to the terminals,
It quickly transmits heat to the terminal area and its surroundings, improves the flow of the filter material, and improves filtering performance. Furthermore, since this metal oxide layer has an a expansion coefficient at least equal to or lower than that of the solid electrolyte substrate, it will not peel off from the solid electrolyte substrate even when heated during brazing.

[実施例] 以下本発明の固体電解質素子の接続構造の実施例を、第
1図ないし第3図に基づいて説明する。
[Example] Hereinafter, an example of a connection structure for a solid electrolyte element of the present invention will be described based on FIGS. 1 to 3.

まず、第2図によって、酸素センサに用いられる固体電
解質素子1の全体構成について説明する。
First, the overall configuration of the solid electrolyte element 1 used in the oxygen sensor will be explained with reference to FIG.

図示するように、固体電解質素子lは、一端が閉ざされ
た安定化又は部分安定化ジルコニアからなる中空筒状体
2の表面に、Zr02−Y2Ch固溶体からなる固体電
解質基板(層)3が被覆形成されたものである。
As shown in the figure, the solid electrolyte element 1 has a solid electrolyte substrate (layer) 3 made of a Zr02-Y2Ch solid solution coated on the surface of a hollow cylindrical body 2 made of stabilized or partially stabilized zirconia with one end closed. It is what was done.

上記固体電解質素子1の先端部1aには、測定ガスを検
出するために、固体電解質層3を挟んで第1基準電極4
及び第2基準電極5や、第1測定電極6及び第2測定電
極7などが配置されている。
A first reference electrode 4 is provided at the tip 1a of the solid electrolyte element 1 with a solid electrolyte layer 3 in between to detect the measurement gas.
A second reference electrode 5, a first measurement electrode 6, a second measurement electrode 7, and the like are arranged.

すなわち、中空筒状体2の側壁部2aと接する固体電解
質N3の内周面3aには、ジルコニアを含む白金からな
る第1基準電極4及び第2基準電極5が設けられ、一方
、その外周面3bには、上記と同様なジルコニアを含む
白金からなる第1測定電極6及び第2測定電極7が、各
々第1基準電極4及び第2基準電極5と対応して設けら
れている。更に、第1測定電極6及び第2測定電極7の
周囲には、アルミナを含む白金からなる発熱体8が配置
されており、また、上記中空筒状体2の側壁部2aには
、中空部2bと第1基準電極4及び第2基準電極5とを
連通ずる第1ないし第4貫通孔9,10,11.12が
形成されている。
That is, a first reference electrode 4 and a second reference electrode 5 made of platinum containing zirconia are provided on the inner peripheral surface 3a of the solid electrolyte N3 in contact with the side wall 2a of the hollow cylindrical body 2, while the outer peripheral surface thereof 3b, a first measurement electrode 6 and a second measurement electrode 7 made of platinum containing zirconia similar to those described above are provided corresponding to the first reference electrode 4 and the second reference electrode 5, respectively. Further, a heating element 8 made of platinum containing alumina is arranged around the first measurement electrode 6 and the second measurement electrode 7, and a hollow part is provided in the side wall part 2a of the hollow cylindrical body 2. First to fourth through holes 9, 10, 11.12 are formed to communicate the reference electrode 2b with the first reference electrode 4 and the second reference electrode 5.

この第1ないし第4貫通孔9〜12は、中空筒状体2の
中空部2bに導入された大気を固体電解質層3に導く通
路であり、1対の第1及び第2貫通孔9.10と、もう
1対の第3及び第4貫通孔11.12とが対向して配置
されている。
The first to fourth through holes 9 to 12 are passages that lead the atmosphere introduced into the hollow part 2b of the hollow cylindrical body 2 to the solid electrolyte layer 3, and the pair of first and second through holes 9. 10 and another pair of third and fourth through holes 11.12 are arranged facing each other.

一方、固体電解質素子1の後端部1bには、ジルコニア
を含む白金を主成分とした基準電極端子14及び測定電
極端子15や一対の発熱体端子16.17が形成されて
いる。この基準電極端子14は、固体電解質層3に設け
られたスルーホール18を介して第1及び第2基準電極
4.5に接続されている。また測定電極端子15は、第
1及び第2測定電極6.7に接続されており、更に発熱
体端子16.17は、発熱体8に接続されている。
On the other hand, at the rear end portion 1b of the solid electrolyte element 1, there are formed a reference electrode terminal 14 and a measurement electrode terminal 15, which are mainly made of platinum containing zirconia, and a pair of heating element terminals 16 and 17. This reference electrode terminal 14 is connected to the first and second reference electrodes 4.5 via a through hole 18 provided in the solid electrolyte layer 3. Furthermore, the measuring electrode terminal 15 is connected to the first and second measuring electrodes 6.7, and the heating element terminal 16.17 is further connected to the heating element 8.

上記基準電極端子14及び測定電極端子15には、各々
出力を取り出すために、それぞれ白金のリード線20a
、20bがろ−付けされており、また発熱体端子16.
17にも、電圧を印加するために、各々白金のリード線
20c、20dがろ−付けされている。
The reference electrode terminal 14 and the measurement electrode terminal 15 are each connected to a platinum lead wire 20a in order to take out the output.
, 20b are brazed, and the heating element terminal 16.
17 are also brazed with platinum lead wires 20c and 20d, respectively, for applying voltage.

更に、固体電解質素子1の後端部1bを展開して第1図
に示すように、固体電解質N3と基準電極端子14及び
測定電極端子15との間には、熱伝導率0.1〜0. 
2cal/cm*sec・℃、熱膨張率7〜8X10−
6/℃のアルミナからなる厚さ50μmの第1中間層2
2が形成されている。また、固体電解質層3と発熱体端
子16.17との間にも、同様にアルミナからなる厚さ
50umの第2中間層23が形成されている。尚、この
第2中間層23は固体電解質素子1の先端部1aまで伸
びて発熱体8(第2図)と固体電解質層3との絶縁層の
役割も兼ねている。
Furthermore, as shown in FIG. 1 when the rear end portion 1b of the solid electrolyte element 1 is expanded, there is a thermal conductivity of 0.1 to 0 between the solid electrolyte N3, the reference electrode terminal 14, and the measurement electrode terminal 15. ..
2cal/cm*sec・℃, thermal expansion coefficient 7~8X10-
6/°C first intermediate layer 2 with a thickness of 50 μm made of alumina
2 is formed. Further, a second intermediate layer 23 made of alumina and having a thickness of 50 um is also formed between the solid electrolyte layer 3 and the heating element terminals 16, 17. The second intermediate layer 23 extends to the tip 1a of the solid electrolyte element 1 and also serves as an insulating layer between the heating element 8 (FIG. 2) and the solid electrolyte layer 3.

次に、この様な固体電解質素子1の製造法を第3図に基
づいて説明する。
Next, a method for manufacturing such a solid electrolyte element 1 will be explained based on FIG. 3.

まず、中空筒状体2は、金型プレスまたは押出成形によ
って加工された後に焼成される。
First, the hollow cylindrical body 2 is processed by die pressing or extrusion molding and then fired.

固体電解質層3は、ZrO2Y2O3固溶体の原料粉末
に、通常使用されるバインダを10〜20%聯合したグ
リーンシートから形成される。
The solid electrolyte layer 3 is formed from a green sheet in which 10 to 20% of a commonly used binder is combined with raw material powder of ZrO2Y2O3 solid solution.

次に、固体電解質層3の内周面3aとなる上記グリーン
シートの裏面に、ジルコニアを含む白金からなる厚さ1
0μmの第1及び第2基準電極4゜5が厚膜印刷される
Next, a thickness 1 made of platinum containing zirconia is applied to the back surface of the green sheet, which becomes the inner peripheral surface 3a of the solid electrolyte layer 3.
First and second reference electrodes 4°5 of 0 μm are thick film printed.

一方、固体電解質層3の外周面3bとなるグリーンシー
トの表面の一端には、バインダを15〜25%含んだア
ルミナからなる第1中間層22が厚膜印刷される。
On the other hand, a first intermediate layer 22 made of alumina containing 15 to 25% binder is printed as a thick film on one end of the surface of the green sheet, which becomes the outer peripheral surface 3b of the solid electrolyte layer 3.

更に、固体電解質層3の外周面3a及び第1中間層22
の表面には、主として白金からなる厚さ108mの測定
電極6.7.基準電極端子14及び測定電極端子15が
厚膜印刷される。
Furthermore, the outer peripheral surface 3a of the solid electrolyte layer 3 and the first intermediate layer 22
On the surface of the 108 m thick measuring electrode 6.7. is made mainly of platinum. The reference electrode terminal 14 and the measurement electrode terminal 15 are thick-film printed.

次に、主としてアルミナからなる厚さ20μmの保護層
24.25が上記各々の測定電極6.7の表面に厚1漠
印刷される。
A 20 μm thick protective layer 24.25 consisting mainly of alumina is then printed on the surface of each measuring electrode 6.7.

更に、アルミナからなる厚さ30μmの第2中間層23
が、上述した基準電極端子14及び測定電極端子15と
、測定電極6.7の第1の窓部26.27とを除いて、
グリーンシートの表面上に厚膜印刷される。
Furthermore, a second intermediate layer 23 made of alumina and having a thickness of 30 μm
However, except for the reference electrode terminal 14 and the measurement electrode terminal 15 mentioned above, and the first window part 26.27 of the measurement electrode 6.7,
A thick film is printed on the surface of the green sheet.

次に、主として白金からなる厚さ10μmの発熱体8及
び発熱体端子16.17が、上記第2中間層230表面
で、かつ上記第1及び第2測定電極6.7の周囲に厚膜
印刷される。
Next, a 10 μm thick heating element 8 and heating element terminals 16.17 mainly made of platinum are printed in a thick film on the surface of the second intermediate layer 230 and around the first and second measurement electrodes 6.7. be done.

更に、シリカを含むアルミナからなる厚さ20μmの第
1絶縁層2日が、上記発熱体端子16゜17と、測定電
極6.7の第2の窓部30.31とを除く第2中間層2
日の表面に厚膜印刷される。
Further, a first insulating layer of 20 μm thick made of alumina containing silica covers the second intermediate layer excluding the heating element terminal 16° 17 and the second window portion 30.31 of the measuring electrode 6.7. 2
Thick film printed on the surface of the sun.

この様に、厚膜印刷されたグリーンシートの裏面にジル
コニアペーストを塗布し、上記第1及び第2基準電極4
.5が中空筒状体2の2対の第1ないし第4貫通孔9〜
12と各々対応する位置となるように、中空筒状体2の
外周にグリーンシートを被覆する。次に、真空引きをし
ながらラバープレスを行うことにより、グリーンシート
を中空筒状体2に巻き付は圧着固定した後に大気圧下で
焼成する。
In this way, zirconia paste is applied to the back side of the thick-film printed green sheet, and the first and second reference electrodes 4 are
.. 5 denotes two pairs of first through fourth through holes 9 to 5 of the hollow cylindrical body 2;
The outer periphery of the hollow cylindrical body 2 is covered with a green sheet at positions corresponding to the positions 12 and 12, respectively. Next, by performing a rubber press while applying vacuum, the green sheet is wrapped around the hollow cylindrical body 2 and fixed by pressure, and then fired under atmospheric pressure.

この焼成後に、基準電極端子14.測定電極端子15及
び発熱体端子16.17とリード線20とのろ−付けが
行われるが、ろ−材としては、銀72%、銅28%から
なる融点が789℃の銀ろ−(JIS規格: BAG8
)が用いられる。この銀ろ−を、約850℃で約10分
間加熱することによりろ−付けが行われ、固体電解質素
子lの接続構造が完成する。
After this firing, the reference electrode terminal 14. The measurement electrode terminal 15 and the heating element terminals 16 and 17 are filtered with the lead wire 20. As the filter material, a silver filter (JIS Standard: BAG8
) is used. Filtering is performed by heating this silver filter at about 850° C. for about 10 minutes, and the connection structure of the solid electrolyte element 1 is completed.

この様にして構成された固体電解質素子1の接続構造に
よって、次に示す効果がある。
The connection structure of the solid electrolyte element 1 configured in this manner has the following effects.

第1及び第2中間層22.23のアルミナの熱伝導率は
、固体電解質のZrO2Y2O3固溶体の熱伝導率0.
 05cal/cm−sec・℃よりも大きい。
The thermal conductivity of the alumina of the first and second intermediate layers 22 and 23 is 0.0.
05 cal/cm-sec・℃.

従って、銀ろ−を加熱してリード線20をろ−付けする
場合には、基準電極端子14.測定電極端子15及び発
熱体端子16.17や、その周囲の第1及び第2中間層
22.23に、熱が速やかにかつ均一に伝わるので、ろ
−材の流れがよく強固なろ−付けを行うことができる。
Therefore, when heating the silver filter to braze the lead wire 20, the reference electrode terminal 14. Heat is quickly and uniformly transferred to the measurement electrode terminal 15, the heating element terminal 16, 17, and the surrounding first and second intermediate layers 22, 23, so that the filter material flows well and provides strong brazing. It can be carried out.

また、ろ−付は際の加熱によって、熱伝導率の大きな第
1及び第2中間層22.23の温度が急速に一ト昇して
も、第1及び第2中間層22. 23を形成するアルミ
ナの熱膨張率は、固体電解質のZrO2Y2O3固溶体
の熱H:J張率9〜10×106/’Cよりも小さく、
第1及び第2中間層22゜23が高温になっても、固体
電解質層3と比較して熱膨張による寸法のずれはそれほ
ど大きくはないので、剥離や脱落等が生ずることがない
Moreover, even if the temperature of the first and second intermediate layers 22.23, which have high thermal conductivity, rapidly rises by one temperature due to heating during filtering, the first and second intermediate layers 22.23. The coefficient of thermal expansion of the alumina forming 23 is smaller than the thermal H:J elongation of the ZrO2Y2O3 solid solution of the solid electrolyte, 9 to 10 x 10/'C;
Even if the first and second intermediate layers 22 and 23 reach a high temperature, the dimensional deviation due to thermal expansion is not so large compared to the solid electrolyte layer 3, so peeling or falling off will not occur.

この様に、ろ−付は温度を高めなくても、基準電極端子
14.測定電極端子15及び発熱体端子16と、リード
線20とを強固に接合することができるので、固体電解
質層3がろ−付けの際の加熱によって損なわれることが
ない。また、上記ろ−付は温度で好適なろ−付けができ
るので、低融点のる一部を用いる必要がなく、従って、
耐熱性に優れたものとなる。
In this way, the reference electrode terminal 14 can be filtered without increasing the temperature. Since the measurement electrode terminal 15 and the heating element terminal 16 can be firmly joined to the lead wire 20, the solid electrolyte layer 3 is not damaged by heating during brazing. In addition, since the above-mentioned filtration can be carried out at a suitable temperature, there is no need to use a part with a low melting point, and therefore,
It has excellent heat resistance.

尚、本実施例では、第2中間層23を、発熱部8と固体
電解質層3とを絶縁する層として一体に成形したが、各
々別体としてもよい。更に、第1及び第2中間層22.
23は、各基準電極端子14、測定電極端子15及び発
熱体端子16.1.7の真下にのみ形成してもよい。
In this embodiment, the second intermediate layer 23 is integrally molded as a layer that insulates the heat generating part 8 and the solid electrolyte layer 3, but they may be formed separately. Furthermore, first and second intermediate layers 22.
23 may be formed only directly below each reference electrode terminal 14, measurement electrode terminal 15 and heating element terminal 16.1.7.

以上本発明の実施例について説明したが、本発明はこの
ような実施例に同等限定されるものではなく、この要旨
を逸脱しない範囲内に於て種々なる態様で実施し得るこ
とは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not equally limited to these embodiments, and it goes without saying that the present invention can be implemented in various forms without departing from the scope of the invention. .

[発明の効果] 本発明の固体電解質素子の接続構造によれば、固体電解
質基板と発熱部又は電極の端子部との間に、金属酸化物
層が形成されている。この金属酸化物層は熱伝導率が固
体電解質基板よりも大であり、かつ熱膨張率が少なくと
も固体電解質基板と同等或はそれ以下であるので、端子
部とリード線とのろ−付けの際には、ろ−材の流れが良
好となり強固な接合を行うことができる。また、ろ−付
けの際に過度に加熱する必要がないので、固体電解質基
板を損なうことがない。更に、低融点のる一部を使用し
ないので、この接続構造は耐熱性に優れている。尚、ろ
−付けによる加熱によっても、金属酸化物層は固体電解
質基板から剥離しない。
[Effects of the Invention] According to the solid electrolyte element connection structure of the present invention, a metal oxide layer is formed between the solid electrolyte substrate and the heat generating part or the terminal part of the electrode. This metal oxide layer has a higher thermal conductivity than the solid electrolyte substrate, and a coefficient of thermal expansion that is at least equal to or lower than that of the solid electrolyte substrate, so it is easy to use when brazing the terminals and lead wires. In this case, the flow of the filter medium becomes good and a strong bond can be achieved. Furthermore, since there is no need to heat excessively during brazing, the solid electrolyte substrate will not be damaged. Furthermore, since the part with a low melting point is not used, this connection structure has excellent heat resistance. Note that even when heated by brazing, the metal oxide layer does not peel off from the solid electrolyte substrate.

【図面の簡単な説明】 第1図は固体電解素子の後端部を展開して示す斜視図、
第2図は固体電解質素子を一部破断して示す斜視図、第
3図は固体電解質素子を分解して示す説明図である。 1・・・固体電解質素子 2・◆◆中空筒状体 4.5・・・第1.第2基準電極 6.7・・・第1.第2測定電極 8・・・発熱体 14・・・基準電極端子 15・・・測定電極端子 16.17・・・発熱体端子 20・・・リード線 22.23・・・第1.第2中間層
[Brief Description of the Drawings] Figure 1 is a perspective view showing the rear end of the solid electrolyte element expanded.
FIG. 2 is a partially cutaway perspective view of the solid electrolyte element, and FIG. 3 is an exploded explanatory view of the solid electrolyte element. 1...Solid electrolyte element 2.◆◆Hollow cylindrical body 4.5...1st. Second reference electrode 6.7...1st. Second measuring electrode 8...Heating element 14...Reference electrode terminal 15...Measuring electrode terminal 16.17...Heating element terminal 20...Lead wire 22.23...First. 2nd middle layer

Claims (1)

【特許請求の範囲】 1 固体電解質基板上に形成され、該固体電解質基板上
の発熱部又は電極に各々接続された端子部に、リード線
をろー付してなる固体電解質素子の接続構造において、 上記端子部と固体電解質基板との間に、熱伝導率が固体
電解質基板よりも大であり、かつ熱膨張率が少なくとも
固体電解質基板と同等或はそれ以下である金属酸化物層
を形成したことを特徴とする固体電解質素子の接続構造
[Claims] 1. In a connection structure for a solid electrolyte element formed on a solid electrolyte substrate and in which lead wires are brazed to terminal portions respectively connected to heat generating parts or electrodes on the solid electrolyte substrate. A metal oxide layer having a thermal conductivity higher than that of the solid electrolyte substrate and a thermal expansion coefficient at least equal to or lower than that of the solid electrolyte substrate is formed between the terminal portion and the solid electrolyte substrate. A connection structure for a solid electrolyte element characterized by the following.
JP63278115A 1988-11-02 1988-11-02 Connecting structure of solid-state electrolyte element Pending JPH02124456A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63278115A JPH02124456A (en) 1988-11-02 1988-11-02 Connecting structure of solid-state electrolyte element
DE19893936103 DE3936103C2 (en) 1988-11-02 1989-10-30 Arrangement for attaching a wire to a solid electrolyte element
US07/794,663 US5186809A (en) 1988-11-02 1991-11-18 Structure for joining a wire to a solid electrolytic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63278115A JPH02124456A (en) 1988-11-02 1988-11-02 Connecting structure of solid-state electrolyte element

Publications (1)

Publication Number Publication Date
JPH02124456A true JPH02124456A (en) 1990-05-11

Family

ID=17592831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63278115A Pending JPH02124456A (en) 1988-11-02 1988-11-02 Connecting structure of solid-state electrolyte element

Country Status (2)

Country Link
JP (1) JPH02124456A (en)
DE (1) DE3936103C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242130A (en) * 2000-02-29 2001-09-07 Kyocera Corp Gas sensor element
JP2001281206A (en) * 2000-03-29 2001-10-10 Kyocera Corp Detecting element
JP2002168829A (en) * 2000-11-29 2002-06-14 Kyocera Corp Detecting element
JP2002168827A (en) * 2000-11-28 2002-06-14 Kyocera Corp Detecting element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709670A1 (en) * 1994-10-31 1996-05-01 General Motors Corporation Low power consumption thick film heater
DE102008005973B4 (en) * 2008-01-24 2014-04-03 Enotec Gmbh, Prozess- Und Umweltmesstechnik Method of making a measuring probe and measuring probe made by this method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591122A (en) * 1978-12-27 1980-07-10 Nec Corp Semiconductor device
JPS60143579A (en) * 1983-12-29 1985-07-29 日本特殊陶業株式会社 Terminal structure of ceramic substrate
JPS60158568A (en) * 1984-01-30 1985-08-19 株式会社フジクラ Method of producing lead from conductive part of substrate
JPS61134655A (en) * 1984-12-06 1986-06-21 Ngk Insulators Ltd Oxygen sensor element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111412B2 (en) * 1986-12-27 1995-11-29 日本特殊陶業株式会社 Air-fuel ratio sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591122A (en) * 1978-12-27 1980-07-10 Nec Corp Semiconductor device
JPS60143579A (en) * 1983-12-29 1985-07-29 日本特殊陶業株式会社 Terminal structure of ceramic substrate
JPS60158568A (en) * 1984-01-30 1985-08-19 株式会社フジクラ Method of producing lead from conductive part of substrate
JPS61134655A (en) * 1984-12-06 1986-06-21 Ngk Insulators Ltd Oxygen sensor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001242130A (en) * 2000-02-29 2001-09-07 Kyocera Corp Gas sensor element
JP2001281206A (en) * 2000-03-29 2001-10-10 Kyocera Corp Detecting element
JP2002168827A (en) * 2000-11-28 2002-06-14 Kyocera Corp Detecting element
JP2002168829A (en) * 2000-11-29 2002-06-14 Kyocera Corp Detecting element
JP2002195980A (en) * 2000-12-27 2002-07-10 Kyocera Corp Heater-embedded oxygen sensor device
JP4530529B2 (en) * 2000-12-27 2010-08-25 京セラ株式会社 Heater integrated oxygen sensor element

Also Published As

Publication number Publication date
DE3936103C2 (en) 1998-12-17
DE3936103A1 (en) 1990-05-03

Similar Documents

Publication Publication Date Title
US4668375A (en) Electric connection terminal for a sensor element utilizing ceramics
KR960011154B1 (en) Sic thin film thermister
JPH0749277A (en) Pressure sensor and manufacture thereof
JPS629239A (en) High-speed response type temperature sensor
KR20160137657A (en) Sensor element and process for assembling a sensor element
JPH02124456A (en) Connecting structure of solid-state electrolyte element
KR100452794B1 (en) High temperature detector and method for the production thereof
JPH0310131A (en) Thermistor for high temperature use
JP2868272B2 (en) Sensor assembly structure
US5186809A (en) Structure for joining a wire to a solid electrolytic element
JPS6124178A (en) Method of contacting conductor with conductive strip or conductive layer in thermal resistant manner
JPH08148260A (en) Ceramic heater
JPS628134B2 (en)
KR100369895B1 (en) Thermistor for Middle-High Temperature and Manufacturing Method thereof
JP4671492B2 (en) Detection element
JP2633838B2 (en) High temperature thermistor
JP2907513B2 (en) Gas sensor manufacturing method
JP4803873B2 (en) Detection element
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JPH08283075A (en) Temperature sensor heat receiving body and its production
JP2753494B2 (en) Method for manufacturing a thermistor element
JPH10172806A (en) Temperature sensor and its manufacture
JPS58162855A (en) Manufacture of lean sensor
JPH03158752A (en) Method for bonding lead wire for electrode in gas sensor element
JP2003161719A (en) Detecting element