JPH02123102A - Production of partially hydrolyzed acrylamide-based polymer fine particle - Google Patents

Production of partially hydrolyzed acrylamide-based polymer fine particle

Info

Publication number
JPH02123102A
JPH02123102A JP63274793A JP27479388A JPH02123102A JP H02123102 A JPH02123102 A JP H02123102A JP 63274793 A JP63274793 A JP 63274793A JP 27479388 A JP27479388 A JP 27479388A JP H02123102 A JPH02123102 A JP H02123102A
Authority
JP
Japan
Prior art keywords
acrylamide
aqueous solution
polymerization
polymer
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63274793A
Other languages
Japanese (ja)
Other versions
JP2652431B2 (en
Inventor
Yoshihiro Kawamori
河盛 吉宏
Yoshirou Koizumi
小泉 僖朗
Tadashi Nishiyama
西山 正
Seiji Adachi
足立 誠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP63274793A priority Critical patent/JP2652431B2/en
Publication of JPH02123102A publication Critical patent/JPH02123102A/en
Application granted granted Critical
Publication of JP2652431B2 publication Critical patent/JP2652431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To readily obtain the subject fine particles for a coagulant, etc., at a low cost by supplying an acrylamide aqueous solution on an endless substrate in a state of a thin layer, irradiating radioactive rays for aqueous solution polymerization, forming the produced polymer into fine particles, mixing the resultant particles with causic alkali powder and then drying the mixture. CONSTITUTION:An aqueous solution of acrylamide with 35-50wt.% concentration is supplied onto an endless substrate in a state of a thin layer in an atmosphere ot an inert gas and subjected to aqueous solution polymerization at <=80 deg.C maximum temperature of the polymerization system by irradiation of ultraviolet rays while a liquid coolant is blown on the back surface of the endless substrate for cooling. The resultant acrylamide-based polymer gel with 5-15mm thickness produced in a state of a layer is mixed with causic alkali powder with <=0.5-2m/m particle size under stirring and the mixture is kept within a temperature range raised by heat of hydration and heat of solution for 10-60min. followed by drying to <=10wt.% water content using hot air at 80-100 deg.C. Thereby the objective polymer fine particles are obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野] 本発明は、水溶性に優れた。?A分加水分解アクリルア
ミド系ポリマー粉拉体の製造方法に関する。
(Industrial Field of Application) The present invention relates to a method for producing a powder of a hydrolyzed acrylamide polymer having excellent water solubility.

【従来の技術】[Conventional technology]

(背景) アクリルアミド系ポリマーの部分加水分解物は、従来か
ら、紙力増強剤、増粘剤、土IIJ改良剤、原油回収用
薬剤、廃水処理剤などとして、各種の産業分野で広く利
用されている。 この部分加水分解アクリルアミド系ポリマーの製造方法
としては、既に様々の方法が提案されているが、水溶液
重合によって得たアクリルアミド系ポリで−を、司”性
−フルカリ等により加水分解して、ポリマー中のアミド
基の一部をカルポキシルノ、いこ変換する方法が一般的
である。 ところで1部分加水分解アクリルアミド系ポリマーに限
らず、この種の凝集剤として使用される水溶性の高分子
量ポリマーは、運搬、保管及び使用における取扱性1作
業性及び経済性等の見地から、通常、粉末〜顆粒状の製
品とされる。しかし低い七ツマー濃度で水溶液重合し、
さらに/、?性アルカリ水溶液を加えて部分加水分解す
ると、全体の濃度が稀薄なものとなり、従って、この部
分加水分解アクリルアミド系ポリマー溶液を粉末化する
際には多量の木を淋発させる必要があり、このためのエ
ネルギーコストが多大なものとなる。 そこで以上の欠点を避けるため、可及的高濃度での重合
を図る趣旨で、既に多数の発明が提案されている。 例えば、モノマー濃度15〜45垂做%とじて水溶液重
合したアクリルアミド系ポリマーのゲルヲ粒状化し、苛
性アルカリ水溶液と混合、接触させ実質的に含水Vが低
下しない条件下で50〜150℃に保った後、乾燥する
方法が提案されている(特公昭8l−29984) 。 しかし、30重量%以上の高いモノマー濃度で水R液重
合して得たアクリルアミド系ポリマーゲルの粒状化物は
、粘着性が少なく、粒子相互間や装置等への粘接着は軽
微なものであるが1部分加水分解のため/+T性アシア
ルカリ水溶液加した場合、該水溶液が50重睦%に近い
高濃度であっても、ポリマーゲル粒状化物の表面を膨潤
させ、これに粘着性を帯びさせて強い粘接着性を生じさ
せる現象が認められる。この結果1粒子相互間の粘着に
よる粗大塊が生成して苛性アルカリ水溶液の各ポリマー
粒子内への均等な浸透が妨げられるため、均一な部分加
水分解が行なわれず、結果的に好ましい品質の製品を得
るのが難かしい。 また、粗大な塊体は、自体乾燥し難いので、このような
粗大塊体の生成を防止するため、苛性アルカリ水溶液の
添加方法や添加装置及び撹拌、混合操作等に解決の困難
な特別の工夫や配慮を必要とする0例えば、苛性アルカ
リ水溶液の添加は必然的に総水分量を増加させることで
あるから、これにより、蒸発、除去されるべき水分が多
くなり、乾燥に必要なエネルギー量を増加させる。 尤も、より高いモノマーa度で水溶液重合させれば、八
発さるべき水分量はそれだけ少なくなるが1アクリルア
ミド系ポリマーの場合、高い千ツマ−F[で重合を行な
うと、重合時の反応熱による熱劣化のため、高分子量の
ポリマーが得られないか又は三次元架橋を生じて水溶性
の良くないポリマーとなることが知られている。従って
1例えば凝集剤用に適した高分子量のアクリルアミド系
ポリ1−を得ようとする場合、公知の過硫酸塩、アゾ系
化合物などの熱ラジカル重合開始剤を用いる熱玉舎払、
公知の過硫酸塩/アミン類又は過硫酸t!! / 炬硫
酸塩などのレドックス重合開始剤を用いるレドックス重
合法、さらには、熱屯合開始剤とレドックス重合開始剤
との併用法などにより水溶液重合を行なうためには、2
0〜25重量%と比較的低いモノマー濃度を選ばなけれ
ばならない、このため、効率良く経済的に乾燥できる粘
着性の少ないポリマーゲルを得るのが難かしくなる。 本発明者らは、以上の問題点を解決するための一方法と
して、先に特開昭81−118405号に係る「アクリ
ルアミド系重合体部分加水分解物の製法」を提案した。 この先行方法は、水溶液重合によって得られたアクリル
アミド系ポリマーゲルを、竪型切断機を用いて粒径0.
3〜3■/、の細粒状にνJ断する段階で、アルカリ性
物質等を粉末又はスラリー状として流入させ、得られた
細粒化ポリマーゲルを擢型攪拌機で混合することにより
、部分的に加水分解を行なう方法であり、総水分量を低
くしてポリマーゲルの粘着性を抑制すると共に、ポリマ
ーゲルの細粒化によって次工程の乾保効・ドを大巾にア
ップしうるという作用効果を奏するものである。 どころか、以上の方法に従ってアクリルアミド系ポリマ
ーの部分加水分解を実施した場合、アルカリ剤として苛
性アルカリを用いると、長時間連続四転を行なった際、
以下のような障害が多発し、時に、・装置の運転を停止
しなければならない水産を招くことが判明した。 即ち、アクリルアミド系ポリマーゲルを竪型切断機によ
り細粒化する段階で固体の苛性アルカリを混入させると
、切断自体による発熱(摩擦熱)に加え、固体の苛性ア
ルカリが、ポリマーゲル中の水分に溶解する際多量の溶
解熱を発生し1次第に機内の温度が上昇してくる。そし
てこの機温上Hに伴い、細粒化されつつあるポリマーゲ
ルから水蒸気が発生して機内切断部周辺で凝縮水となり
、この凝縮水に粉砕された苛性アルカリやポリマーゲル
が付着し、粘着性の高い半溶解状態となって切断、粉砕
を妨げたり又はスクリーンの外周に付刃したりして、切
断機からの細粒化物の排出を阻害する。そこで対策とし
て、機温を下げる目的で大量の冷風を機外に吹込むと、
粉砕された苛性アルカリ微粉や苛性アルカリのミストが
飛散し、かつ加水分解によって発生したアンモニアを撒
き散らすことにもなり、労働衛生及び環境保全上好まし
くない。 一方、フレーク、粉末などの固体状苛性アルカリに換え
濃厚な苛性アルカリ水溶液又はスラリーを用いると、」
転継続時間こそ多少延びるが、程度の差はあっても同様
の障害を避けるのは難く殊に高い加水分解率を得ようと
したとき、水分量が増加して粘着性か大きくなるので、
I、Y性アルカリ水溶液の使用は、この目的に適しない
。 また、高濃度の苛性アルカリやアンモニアが存在する場
での切断、粉砕という過酷な環境からして、温度の上昇
は、装置の腐蝕劣化を速め、特に重要な切断刃やその駆
動部材或はスクリーンの耐用命数を顕著に短縮させる。 さりとて、セラミ−2り刃のような高強度1f)I蝕材
料は非常に高価であるから、対象物との関連では実用性
がない。
(Background) Partial hydrolysates of acrylamide polymers have been widely used in various industrial fields as paper strength enhancers, thickeners, soil IIJ improvers, crude oil recovery agents, wastewater treatment agents, etc. There is. Various methods have already been proposed for producing this partially hydrolyzed acrylamide-based polymer. A common method is to convert a part of the amide group into carpoxyl or ico-carboxylate. Incidentally, not only partially hydrolyzed acrylamide-based polymers, but also water-soluble high molecular weight polymers used as flocculants of this type can be used for transport, Handling during storage and use 1. From the viewpoints of workability and economy, it is usually a powder to granular product. However, it is polymerized in aqueous solution at a low concentration of
moreover/,? When partial hydrolysis is performed by adding an aqueous alkaline solution, the overall concentration becomes dilute. Therefore, when powdering this partially hydrolyzed acrylamide polymer solution, it is necessary to evaporate a large amount of wood. The energy costs will be enormous. Therefore, in order to avoid the above-mentioned drawbacks, many inventions have already been proposed with the aim of achieving polymerization at as high a concentration as possible. For example, a gel of an acrylamide polymer polymerized in an aqueous solution at a monomer concentration of 15 to 45% is granulated, mixed with an aqueous caustic solution, brought into contact with the gel, and kept at 50 to 150°C under conditions that do not substantially reduce the water content V. , a drying method has been proposed (Japanese Patent Publication No. 81-29984). However, the granulated acrylamide polymer gel obtained by water R liquid polymerization at a high monomer concentration of 30% by weight or more has low stickiness, and only slight adhesion between particles or to equipment, etc. Because of partial hydrolysis, when +T acyalkali aqueous solution is added, even if the aqueous solution has a high concentration close to 50% by weight, the surface of the polymer gel granules swells and becomes sticky. A phenomenon that causes strong adhesive properties is observed. As a result, coarse lumps are formed due to adhesion between particles, which prevents the caustic aqueous solution from permeating evenly into each polymer particle, preventing uniform partial hydrolysis, and resulting in a product of desirable quality. difficult to obtain. In addition, coarse lumps are difficult to dry themselves, so in order to prevent the formation of such coarse lumps, special measures that are difficult to solve are required in the method of adding the caustic alkaline aqueous solution, the addition device, stirring, and mixing operations. For example, since the addition of aqueous caustic solution necessarily increases the total water content, this increases the amount of water that has to be evaporated and removed, reducing the amount of energy required for drying. increase. Of course, if the aqueous solution polymerization is carried out at a higher monomer a degree, the amount of water that must be released will be reduced accordingly, but in the case of acrylamide-based polymers, if polymerization is carried out at a high temperature, the reaction heat during polymerization will It is known that due to thermal deterioration, a high molecular weight polymer cannot be obtained or three-dimensional crosslinking occurs, resulting in a polymer with poor water solubility. Therefore, when trying to obtain a high molecular weight acrylamide poly 1- suitable for use as a flocculant, for example, a thermal expulsion using a thermal radical polymerization initiator such as a known persulfate or an azo compound,
Known persulfates/amines or persulfates! ! / In order to carry out aqueous solution polymerization by a redox polymerization method using a redox polymerization initiator such as sulfate, or by a method using a combination of a thermal polymerization initiator and a redox polymerization initiator, 2.
Relatively low monomer concentrations of 0-25% by weight must be chosen, which makes it difficult to obtain low-stick polymer gels that can be dried efficiently and economically. As a method for solving the above-mentioned problems, the present inventors previously proposed a "method for producing acrylamide-based polymer partial hydrolyzate" according to JP-A-81-118405. In this prior method, an acrylamide polymer gel obtained by aqueous polymerization is cut into particles with a particle size of 0 using a vertical cutter.
At the stage of cutting νJ into fine particles of 3 to 3 μ/, an alkaline substance, etc. is introduced in the form of powder or slurry, and the resulting fine-grained polymer gel is mixed with a scoop-type stirrer to partially add water. It is a method of decomposition, and has the effect of reducing the total water content to suppress the stickiness of the polymer gel, and by making the polymer gel finer, it can greatly increase the dry retention effect in the next process. It is something to play. On the contrary, when partial hydrolysis of acrylamide-based polymer is carried out according to the above method, when caustic alkali is used as the alkali agent, when continuous four-turning is performed for a long time,
It has been found that the following failures occur frequently, sometimes resulting in fisheries production having to stop operation of the equipment. In other words, if solid caustic alkali is mixed into the acrylamide-based polymer gel at the stage of cutting it into fine particles using a vertical cutting machine, in addition to the heat generated by the cutting itself (frictional heat), the solid caustic alkali will cause water in the polymer gel to When melting, a large amount of melting heat is generated, and the temperature inside the machine gradually rises. As the temperature increases, water vapor is generated from the polymer gel, which is becoming finer, and becomes condensed water around the cutting section inside the machine.The crushed caustic alkali and polymer gel adhere to this condensed water, causing it to become sticky. It becomes a highly semi-dissolved state and obstructs cutting and pulverization, or it forms blades on the outer periphery of the screen, inhibiting the discharge of fine particles from the cutting machine. As a countermeasure, a large amount of cold air is blown outside the machine to lower the machine temperature.
The crushed caustic alkali fine powder and caustic alkali mist are scattered, and ammonia generated by hydrolysis is also scattered, which is unfavorable from the standpoint of occupational health and environmental conservation. On the other hand, if a concentrated aqueous solution or slurry of caustic alkaline is used instead of solid caustic alkaline such as flakes or powder,
Although the duration of conversion is somewhat longer, it is difficult to avoid the same problems, even though they differ in degree. Especially when trying to obtain a high hydrolysis rate, the moisture content increases and the stickiness becomes large.
The use of aqueous I and Y alkaline solutions is not suitable for this purpose. Furthermore, given the harsh environment of cutting and pulverizing in places where high concentrations of caustic alkali and ammonia are present, rising temperatures accelerate the corrosion and deterioration of equipment, especially the important cutting blades, their driving members, and screens. significantly shortens the service life of However, high-strength 1f) I-corrosion materials, such as ceramic double-edged blades, are very expensive and therefore impractical in the context of objects.

【発明が解決しようとする課題】[Problem to be solved by the invention]

そこで本発明は、既存の部分加水分解ポリアクリルアミ
ドゲルの製造法に改良を加えることによって、■細粒化
したポリマーゲル粒子相互間及び粒子−と装こなどとの
粘着や接着が殆どないため竹業性が良好であり、かつQ
)加水分解反応を促進させるための加熱エネルギーを必
要とせず、及び(中蒸発除去すべき水分量が少ないので
、乾燥のために必要なエネルギーが経済的である、改良
された部分加水分解アクリルアミド系ポリマー粉粒体の
製造法を提供するのを[1的とする。
Therefore, by improving the existing method for producing partially hydrolyzed polyacrylamide gel, the present invention has achieved the following: Good business performance and Q
) An improved partially hydrolyzed acrylamide system that does not require heating energy to accelerate the hydrolysis reaction and (in which the energy required for drying is economical because the amount of water to be removed by evaporation is small) [1] The present invention provides a method for producing polymer powder.

【課題を解決するための手段] (概要) 以上の目的を達成するため、本発明に係る部分加水分解
アクリルアミド系ポリマー粉粒体の製造方法は、濃度3
5〜50重量%のアクリルアミドモノマーを含有する水
溶液を、不活性ガス雰囲気中の無端支持体上へ1層状に
供給すると共に、該無端支持体の裏面へ液状冷媒を吹き
つけて冷却しながら、紫外線を照射して最高1合系温度
80℃以下で水溶液重合を行ない、厚さ5〜15畠量の
層状として得られたアクリルアミド系ポリマーのゲルを
、粒径0.5〜21/−まで細粒化した後、粒径0.5
s八以下の苛性アルカリ粉末と攪拌混合し、反応物の温
度を水和熱及び溶解熱による上昇温度域に10〜80分
間保ち、最後に280〜100℃熱風を用いて含水率1
0%以下まで乾燥することを特徴とする。以下、発明に
関連する主要事項につき項別に述べる。 (アクリルアミドモノマーの種類) 本発明で使用できるアクリルアミドモノマーとしては、
アクリルアミド単独、又はアクリルアミドと1例えば(
メタ)アクリルアミドしくは2−アクリルアミド−2−
メチルプロパンスルホン酸塩などとの程合物が例示され
、さらには、アクリルアミドとの混合物が35〜50重
社%の均一なモノマー水溶液となり1重合して得られる
ポリマーが水溶性であるか又は部分加水分解により水溶
性のポリマーとなる範囲であれば、アクリロニトリル又
は(メタ)アクリル酸のフルキル−、ヒドロキシアルキ
ル−若しくはアルコキシアルキル−などのエステル類や
酪酸ビニルなども使用できる。但し、アクリルアミド以
外のモノマーの比率を高くすると、重合反応が遅くなり
、かつ高分子琶のポリマーを得るのも困難となり、しか
も水溶性不良のポリマーとなりやすいなどの問題につな
がることが多いため、アクリルアミドモノマーとその他
のモノマーとを混合して用いる場合には、アクリルアミ
ドの比率を80%以上とする必要がある。 (七ツマー濃度) 本発明において、重合に使用されるアクリルアミドモノ
マーの水R液濃度は35〜50重(i[%である0重合
反応の速度は、モノマー濃度に大きく依存しており、低
濃度になるにつれ5重合所要時間が増大する傾向がある
。かつ、七ツマー濃度が低ドする程、重合して得られる
ポリマーゲルの粘着性が増大するのみならず、蒸発1除
去さるべき木分埴も多くなるから、できるだけ高いモノ
マー濃度が9!ましい、とは云え、余りにも高い千)で
−1iftで水溶液生金させると、重合反応熱によって
重合系の温度が高くなりすぎ、該反応熱による不水溶化
や著しい分子に低下などの劣化現象が見られるので、特
定の好適濃度範囲であるのが望ましい。 (張合−r段) 本9!明方法における木′e液重合では、紫外線のエネ
ルギーを利用する。そこで、重合反応系を実質的に気密
化すると共に、系内に不活性ガス(例えば窒素ガス)を
充満させ、外部からの空気(酸素)の流入を遮断した状
態下で、予め、窒素などの不活性気体を吹込んで溶存酸
素を可及的除去した七ツマー水溶液を、無端支持体上へ
連続的に薄層状に供給しながら、300〜400mmの
紫外線を照用し−c15〜60分間利合を行なわせる。 このように薄い層状で重合を行なうため、発生する重合
熱は比較的僅かであって、核熱は、該支持体裏面への液
状冷媒(例えば冷水)の吹きつけにより、効果的に冷却
除去されることができる。そしてこれにより、ノゾさ5
〜15mmの層状をなした水分h(が約50〜851!
a%のゲル体が形成される。 1−記紫外線照射重合では、紫外線の強さが重合反応速
度に敏感な影響をグーえるため、照射する紫外線の強度
を重合反応の進行段階に応じて適宜制御することにより
、急激な発熱を抑制できる。これらの条件を適宜組合わ
せることによって、35〜50屯+jj%と高いモノマ
ー濃度であっても、重合系の温度を80℃以下に保って
、水溶性良好で高分子ら1のアクリルアミド系ポリマー
を得ることが可能である。 ここに紫外線旧射重合の開始剤としては、ベンゾイノ、
ベンゾインアルキルエーテル、ジメチルベンジルケター
ル等、公知の化合物を使用でき光重合開始剤としてのア
ラビス(アミジノプロパン12ム酸Iiりなどの水溶性
アソ系化合物も使用しうる。これらの重合開始剤は、I
′ti独又は2種以上組合せて使用することもiij能
である。 (細粒化) 以上の紫外線重合手段により得られる厚さ5〜1511
11の層状ポリマーゲルは、次いで粒径o 、 5〜2
m/mに迄細粒化される。若し、この細粒化ゲルのね径
が大きすぎれば、後に添加、混合される粉末状1・Y性
アルカリが、木細粒化ゲルの保有する水分に遭って溶解
してゲル粒子内部へ侵透するのに時間がかかり、均一な
部分加水分解を進めるためにも、また、乾燥を効率的に
行わせる点でも好ましくない、細粒化ゲルの粒径が小さ
い程、苛性アルカリのゲル粒径内部への浸透及び拡散が
容易となり、水の蒸発も速かに進行するが、微粒化しす
ぎると蒸発時に熱風と一緒に飛散してしまい、収量が低
ドしたり、通風経路を閉塞させたりするなどの障害につ
ながりやすい、かつ、微細粒化のために設備や作業の効
−Vを考慮すれば、細粒化の程度には自ずと限Iffが
あり、粒径05〜2會八は、これらの各条件を満足させ
る適当な範囲である。 因に、アクリルアミド系ポリマーのゲルをこのようなれ
径に細粒化するに際しては、例えばL掲時開昭81−1
10511公報中で提案した。ポリマーゲルを粗砕した
後、固定刃と回転刃から構成されるとJ(に、ゲルの滞
留領域を有し、かつ該領域内における平均粉砕滞留時間
が3分以上となる竪型切断機を用いて細粒化する方法が
適当である。 (特性アルカリ) 細粒化ゲルを部分加水分解するために用いる粉末状の1
寺性アルカリとしては、l’l’l’性ソーダ又は苛性
カリが実用的である。これらの苛性アルカリは粉末状で
あることが望ましく、細粒化ゲルと撹拌解して吸収され
、粒子内部へ浸透する。急速な吸収を期待するため、そ
の粒径は、犬きくとも0.51/−以下である必要があ
る。所望により、フレーク状、棒状、又はタブレフト状
の苛性アルカリを、粉砕しながら、細粒化ゲル中へ仕込
むことも可能である。 粉末状苛性アルカリと細粒化ゲルとを混合すると、その
直後より混合物の温度が上Aし始める。 この温度上昇の程度は、ゲル/苛性アルカリ両名の比率
によっても異なるが、通常50〜80℃に達する。 所期の加水分解反応は、この温度上昇により促進される
ので、別段外部から加熱する必要はなく、該混合物を容
器内で保温しつつ^)置するか又は穏やかな撹拌を行い
ながら10〜60分間保持し加水分解反応を進行させれ
ばよい、その後、該混合物をバンド型通風乾繰機などを
用いて80〜100℃の8風を通じて乾燥させる。かく
して?Uられた乾燥物の粒径は、普通、0.3〜1.O
mmであり、再粉砕及び整粒化を必要としない。 【作用】 高いモノマー濃度下に、紫外線照射により水溶液重合し
て得たアクリルアミド系ポリマーゲルを細粒化し、この
細粒物を粉末状の苛性アルカリと撹拌混合して部分加水
分解を行った後、乾燥させると、 (1)細粒化したポリマーゲルは、乾燥するまで粒子相
/E間は無論、粒子と装置とも殆ど粘着又は接RLない
ので、各工程の作業が容易となる。 (2)  粉末状の^Y性アルカリを直接細粒化された
ポリマーゲルと混合したとき生じる峙性アルカリの水和
、溶解熱が加水分解反応を促進させるため、加熱エネル
ギーを必要としない。 (3)  モノで−水溶液の、W製時以外は水を使用せ
ず、しかもモノマー水溶液の粘度が高いため蒸発除去す
べき水分ばか少なくなり、乾燥のだめのエネルギー!正
は大幅に減少する。 (4)乾燥した製品の粒径が揃っているので、再粉砕を
必要とせず、従って、爆発等につながる粉塵飛散の恐れ
もない。 (Φ 各工程を連続化させることができるため、没備の
コ/バクト化が容易である。 等の格段の作用効果を奏する。 【実施例] 以下、実施例により発明具体化の例を示すが各側は勿論
説明用のもので、発明思想の限定や制限を意図し又はα
味するものでない。 実施例1 ステンレス鋼製の巾450 mm、有効長3,000m
mのエンドレスベルトの裏面にド側から冷水を噴射でき
る構造とした重合用無端支持体を憎備した。別に、該エ
ンドレスベルトのL部に、その下端間[」面が該ベルト
面と略々膚接し、上面に紫外線透過性ガラス窓を備える
気密小室を固定し、該小室内へ常詩窒素ガスを通じて、
室内酸素濃度を0.1%以下に2181節した。 さらに、該小室の上方部に紫外線光源として蛍光ケミカ
ルランプ(東芝製FL30SBL)を設置し、気密小室
内ベルト表面の紫外線強度を前半部10w/m’後半部
を20w/rrfに調19シ、エンドレスベルトを10
0 mm1分の定速度で駆動させながら、エンドレスベ
ルトの裏面へ15℃の冷水を噴射した。 50重低%アクリルアミド水溶液24.0Kg、チオ尿
素38.0g、  )リエタノールアミン24.0g及
び脱イオン水5.94 Kgをステンレス製の50文8
ジャケン1及び撹拌機付落#4(’!へ仕込み、撹拌、
溶解させて均 なモノマー水溶液とした。この水溶液の
pHは9.2.温度15℃であった。 得られたモノブー水溶液の全開先、50立容のポリエチ
レン製タンクへ移し、不活性ガスを吹込んで液中の溶存
酸素濃度を0.lppm以Fにまで脱酸素し、定iIl
ポンプを用いて気密小室内の駆動エンドレスベルト」;
へ30Kg/時の速1■で定f、f的に供給した6回時
に、別に設とした1文官のステンレス製タンクから、を
合間始剤として1%ペンツインインプロピルエーテルの
メタノール溶液を、上記モノマー水溶液が気密小室内へ
入る1t(前の位置に設けた静首型ラインミキサーへ1
2og/時の速度で定+11注入し、モノマー水溶液と
重合開始剤とを均一に混合した後、紫外線照射による重
合を行なった。 重合は、モノマー水溶液が該ベルト上へ供給されてから
30秒以内に始り、約7分後に重合物の表面温度は48
℃の最高温度に達した。張合開始後、30分で前記気密
小室から排出されるゲル状の含水ポリマーは、約10m
mのシート状で17〜18℃であった。 得られたポリマーゲルを、連続的にエンドレスベルトか
ら剥がし、互いに【−み合う方向に回転するローラー型
カッターの上方から連続的に供給して、3X5X10腸
層の角型に切断した。この角型ポリマーゲルを、孔径3
m膳φのスクリーンをセットした回転刃と固定刃とから
なる竪型切断機に15℃の冷風を通じながら供給して一
回目の粒状化を行なった後、孔径2II+1小のスクリ
ーンをセットした同様の竪型切断機を、ざらに孔径[■
のスクリーンをセットした竪型切断機を夫々通して粒径
的1a+mに整粒されたポリマーゲルを得た。このよう
にして得られた細粒化ポリマーゲルは、含水率55〜5
7%であった。 直1550cmφ、高さEIOcmの円筒型容器の底部
に、L丁2枚の正逆回転翼を、側方部に水門式排出口を
有する撹拌装置を用意した。 h記装置の回転翼を40Qrp■の速度で回転させなが
ら、」二で111た整粒化ポリマーゲルを20Kg/時
の速度で供給し、同時に粒径74μm以下の粉末状1゛
・Y性ソーダを900g/時〜1.Okg/時の速度で
供給し、排出口の開きを適宜調整して、平均滞留時間2
分間の条件で撹拌混合を行った。 L記撹拌装置から排出されたゲル混合物を、さらに保温
用ジャケットを備えた二軸スクリューコンベアへ連続的
に供給し、約15分間滞留させた。 この間冷却及び加熱は行なわれなかった0本スクリュー
コンベアへの供給時のゲル混合物の温度は43〜46℃
であったが、スクリューコンベアより排出された部分加
水分解ゲル混合物の温度は58〜62℃であった。 得られたゲル混合物は、粘着性及び接着性が全くなく、
粒径的1mmのバラバラの細粒であった。 このゲル混合物を1通風式バンド型乾燥機により、85
〜90℃の熱風で乾燥させたところ、約15分間で、含
水率8%以下の粉粒体が得られた。得られた粉粒体の分
析値を原料ゲルのそれと対照させて下表−1に示す。 表−1 木([η]30℃)旧/8 N−NaN03 ■不溶解分量の測定法 3交容ビーカーに脱イオン性2,5005Mを入れ、2
5±2℃に保って500rpmで撹拌しながら、ポリマ
ー5.0gを継粉が生じないように投入し、そのまま撹
拌を続け、120分後、100メツシヱのステンレス製
金網で謹過して1oOsJLの脱イオン水で3回水洗し
た後、+05℃で60分間乾燥した後の金網りの残留物
の重さを試料採取量との比で示す。 実施例2 実施例1と同じ重合装置を用い、同様にして重合を行っ
た。但し七ツマー水溶液は、以下のように変更し、各成
分を溶解槽に仕込んで調製した。 50%アクリルアミド水溶液  20.92Kg30%
アクリル醜ソーダ水溶液 5.l3Kgチオ尿素   
         38gトリエタノールアミン   
    24g脱イオン水         3.89
Kg重合用ベルト上・\定量供給したモノマー水溶液(
七ツマー濃度40.FlffiIX、P)!+0.5.
15℃)とベンゾインイソプロピルエーテルの1%メタ
ノール溶液の量は、夫々30Kg/時及び180g/時
であった。 紫外線の照射を受けたモノマー水溶液は、直ちに重合を
始め、約6分後に、その表面温度が57〜60℃の最高
温度に達した。 得られた厚さ約10mmの層状のポリマーゲルを、実施
例1と同様にして粒径的11mに細粒化した。 実施例1の撹拌混合装置に、含水率58〜57%の細粒
化ポリマーゲルを2oKg/時、粒径が3gm以下に粉
砕された苛性カリを1.3 Kg/時の速度で夫々同時
に供給して撹拌混合し、実施例1のスクリューコンベア
内に約20分間滞留させた後、通風式バンド型乾燥機に
より、85〜90℃の熱風で15分間乾煙し、水分1&
17.2〜8.5%の粉粒体を(1i。 この粉粒体の分析値を、上表=1と同様にF表−2とし
て示す。 表−2 @加水分解率 めた。 【発明の効果] 以且、説明した通り、本発明によれば、■細粒化したポ
リマーゲル粒子相互間及び粒子と装置などとの粘着や接
着が殆どないため作業性が良好であり、かつ■加水分解
反応を促進させるための加熱エネルギーを必要とせず、
及び■蒸発除去すべき水分量が少ないので、乾燥のため
に必要なエネルギーが経済的であるなど、凝果剤等とし
て有用な部分加水分解アクリルアミ ド系ポリマー粉粒体 の−1段に顕著な改良をもたらす。
[Means for Solving the Problems] (Summary) In order to achieve the above objects, the method for producing partially hydrolyzed acrylamide polymer powder according to the present invention has a concentration of 3.
An aqueous solution containing 5 to 50% by weight of acrylamide monomer is supplied in a single layer onto an endless support in an inert gas atmosphere, and while cooling the endless support by spraying a liquid refrigerant onto the back surface, ultraviolet rays are applied. The gel of the acrylamide polymer obtained in the form of a layer with a thickness of 5 to 15 layers is pulverized into fine particles with a particle size of 0.5 to 21/-. After the particle size is 0.5
Stir and mix with caustic alkali powder of s8 or less, keep the temperature of the reactant in the rising temperature range due to heat of hydration and heat of dissolution for 10 to 80 minutes, and finally reduce the water content to 1 using hot air at 280 to 100 °C.
It is characterized by drying to 0% or less. Below, major matters related to the invention will be described section by section. (Types of acrylamide monomers) Acrylamide monomers that can be used in the present invention include:
Acrylamide alone or with acrylamide for example (
meth)acrylamide or 2-acrylamide-2-
The mixture with methylpropane sulfonate etc. is exemplified, and furthermore, the mixture with acrylamide becomes a homogeneous monomer aqueous solution of 35 to 50%, and the polymer obtained by one polymerization is water-soluble or partially Acrylonitrile or esters such as furkyl-, hydroxyalkyl-, or alkoxyalkyl-of (meth)acrylic acid, vinyl butyrate, etc. can also be used as long as they become water-soluble polymers by hydrolysis. However, increasing the proportion of monomers other than acrylamide slows down the polymerization reaction, makes it difficult to obtain a high-molecular-weight polymer, and often leads to problems such as polymers with poor water solubility. When a monomer and other monomers are mixed and used, the ratio of acrylamide must be 80% or more. (September concentration) In the present invention, the water R solution concentration of the acrylamide monomer used in the polymerization is 35 to 50% (i [%). The speed of the polymerization reaction is largely dependent on the monomer concentration; 5 The time required for polymerization tends to increase as the concentration of 7 polymer decreases.In addition, as the concentration of 7 polymer decreases, not only does the stickiness of the polymer gel obtained by polymerization increase, but also the viscosity of the polymer gel that must be removed by evaporation increases. Although it is desirable to have as high a monomer concentration as possible because the monomer concentration is too high, if the raw metal is made into an aqueous solution at -1ift, the temperature of the polymerization system will become too high due to the heat of the polymerization reaction, and the reaction heat will increase. Since deterioration phenomena such as water insolubility and significant molecular deterioration are observed, it is desirable that the concentration be within a specific preferred concentration range. (Harai-r stage) Book 9! In the wood e-liquid polymerization in the light method, ultraviolet energy is used. Therefore, in addition to making the polymerization reaction system substantially airtight, the system is filled with an inert gas (e.g., nitrogen gas) and the inflow of air (oxygen) from the outside is blocked. An aqueous seven-mer solution, in which dissolved oxygen was removed as much as possible by blowing inert gas, was continuously supplied onto the endless support in a thin layer while irradiated with ultraviolet light of 300 to 400 mm and incubated for 15 to 60 minutes. have them do it. Since the polymerization is carried out in a thin layer in this way, the heat of polymerization generated is relatively small, and the nuclear heat can be effectively cooled and removed by spraying a liquid refrigerant (for example, cold water) onto the back surface of the support. can be done. And with this, Nozosa 5
~15mm layered moisture h (approximately 50~851!
a% gel body is formed. 1- In ultraviolet irradiation polymerization, the intensity of ultraviolet rays can have a sensitive effect on the polymerization reaction rate, so by appropriately controlling the intensity of the irradiated ultraviolet rays according to the progress stage of the polymerization reaction, rapid heat generation can be suppressed. can. By appropriately combining these conditions, even at a high monomer concentration of 35 to 50 tons + jj%, the temperature of the polymerization system can be kept below 80°C, and an acrylamide-based polymer with good water solubility and high molecular weight can be produced. It is possible to obtain. Here, as the initiator for ultraviolet radiation polymerization, benzoino,
Known compounds such as benzoin alkyl ether and dimethylbenzyl ketal can be used, and water-soluble aso-based compounds such as arabis (amidinopropane dodecamic acid II) can also be used as photopolymerization initiators.
It is also possible to use them alone or in combination of two or more. (Refining) Thickness 5 to 1511 obtained by the above ultraviolet polymerization method
The layered polymer gel of 11 then has a particle size o, 5-2
The grains are refined down to m/m. If the thread diameter of this fine-grained gel is too large, the powdered 1-Y alkali that will be added and mixed later will encounter the moisture held by the fine-grained wood gel and dissolve into the inside of the gel particles. The smaller the particle size of the finely divided gel, the more the caustic alkali gel particles become. It becomes easy to penetrate and diffuse into the inside of the diameter, and water evaporates quickly, but if the particles become too atomized, they will be scattered with the hot air during evaporation, resulting in low yields and blocking of ventilation channels. Considering the effectiveness of equipment and work for fine graining, there is naturally a limit to the degree of grain refinement, and for grain sizes of 05 to 2, This is an appropriate range that satisfies each of these conditions. Incidentally, when refining acrylamide polymer gel to such a diameter, for example,
This was proposed in Publication No. 10511. After coarsely crushing the polymer gel, use a vertical cutting machine consisting of a fixed blade and a rotating blade, which has a gel retention area and an average crushing residence time in the area of 3 minutes or more. (Characteristic alkali) Powdered 1 used to partially hydrolyze the refining gel.
As the alkaline alkali, l'l'l' alkaline soda or caustic potash is practical. These caustic alkalis are desirably in powder form, are stirred and dissolved in the finely granulated gel, are absorbed, and penetrate into the interior of the particles. In order to expect rapid absorption, the particle size should be at most 0.51/- or less. If desired, it is also possible to charge the caustic alkali in the form of flakes, rods, or tablets into the pulverized gel while pulverizing it. Immediately after mixing the powdered caustic alkali and the finely divided gel, the temperature of the mixture begins to rise. The degree of this temperature increase varies depending on the ratio of gel/caustic, but usually reaches 50 to 80°C. The desired hydrolysis reaction is accelerated by this temperature increase, so there is no need to externally heat the mixture. The mixture may be held for a minute to allow the hydrolysis reaction to proceed. Thereafter, the mixture is dried using a band-type ventilation dryer or the like by passing 8 winds at 80 to 100°C. Thus? The particle size of the dried product is usually 0.3 to 1. O
mm, and does not require re-grinding or sizing. [Function] The acrylamide polymer gel obtained by aqueous solution polymerization under high monomer concentration by ultraviolet irradiation is made into fine particles, and the fine particles are stirred and mixed with powdered caustic alkali to perform partial hydrolysis. When dried: (1) Until the finely divided polymer gel is dried, there is almost no adhesion or contact RL between the particle phase/E and between the particles and the device, making it easier to work in each step. (2) Since the heat of hydration and dissolution of the polar alkali generated when the powdered ニY alkali is directly mixed with the finely divided polymer gel accelerates the hydrolysis reaction, heating energy is not required. (3) Mono-aqueous solution, no water is used except when making W, and since the viscosity of the monomer aqueous solution is high, less water needs to be evaporated and removed, saving energy for drying! Positive decreases significantly. (4) Since the particle size of the dried product is uniform, there is no need for re-grinding, and therefore there is no risk of dust scattering that could lead to explosions. (Φ Since each process can be made continuous, it is easy to convert waste into co/bact. [Examples] Examples of embodiments of the invention will be shown below using Examples. However, each side is of course for illustrative purposes, and is intended to limit or limit the inventive idea, or
It's not something to taste. Example 1 Made of stainless steel, width 450 mm, effective length 3,000 m
An endless support for polymerization was provided on the back side of the endless belt (m), which was structured so that cold water could be sprayed from the (d) side. Separately, an airtight chamber is fixed to the L portion of the endless belt, the surface between its lower ends is in almost skin contact with the belt surface, and the upper surface is equipped with an ultraviolet-transparent glass window, and nitrogen gas is constantly passed into the chamber. ,
2181 measures were taken to reduce the indoor oxygen concentration to 0.1% or less. Furthermore, a fluorescent chemical lamp (FL30SBL manufactured by Toshiba) was installed as an ultraviolet light source in the upper part of the chamber, and the intensity of the ultraviolet rays on the belt surface in the airtight chamber was adjusted to 10w/m in the first half and 20w/rrf in the second half. 10 belts
While driving at a constant speed of 0 mm/min, 15°C cold water was sprayed onto the back surface of the endless belt. 24.0 Kg of 50% acrylamide aqueous solution, 38.0 g of thiourea, 24.0 g of ) reethanolamine and 5.94 Kg of deionized water were added to a stainless steel 50 container 8.
Jaken 1 and stirrer included #4 ('!, stirring,
The monomer was dissolved to form a homogeneous aqueous monomer solution. The pH of this aqueous solution was 9.2. The temperature was 15°C. The obtained Monoboo aqueous solution was transferred to a fully opened 50 cubic capacity polyethylene tank, and inert gas was blown in to bring the dissolved oxygen concentration in the solution to 0. Deoxidizes to less than 1ppm F, constant iIl
``Endless belt driven in an airtight chamber using a pump'';
At the 6th time of constant f, f supply at a rate of 30 kg/hour, a methanol solution of 1% pentwin propyl ether was added as an initiator from a stainless steel tank set up separately. 1 t of the above monomer aqueous solution enters the airtight chamber (1 t goes into the static neck type line mixer installed in the previous position)
After uniformly mixing the monomer aqueous solution and the polymerization initiator by constant injection at a rate of 2 og/hour, polymerization was performed by ultraviolet irradiation. Polymerization begins within 30 seconds after the aqueous monomer solution is fed onto the belt, and after about 7 minutes the surface temperature of the polymer reaches 48.
The maximum temperature of ℃ was reached. The gel-like water-containing polymer discharged from the airtight chamber 30 minutes after the start of bonding is about 10 m
The temperature was 17 to 18°C in sheet form. The obtained polymer gel was continuously peeled off from the endless belt and cut into a square shape of 3×5×10 intestinal layers by continuously feeding it from above a roller-type cutter rotating in mutually interlocking directions. This prismatic polymer gel has a pore size of 3
After the first granulation was carried out by supplying a vertical cutting machine consisting of a rotary blade and a fixed blade with a screen of m diameter φ while blowing cold air at 15°C, a similar granulation machine with a screen of hole diameter 2II + 1 small was set. A vertical cutting machine is used to roughly cut the hole diameter [■
The polymer gels were passed through a vertical cutter equipped with a screen to obtain polymer gels sized to a particle size of 1a+m. The finely divided polymer gel thus obtained has a water content of 55 to 5.
It was 7%. At the bottom of a cylindrical container with a diameter of 1,550 cm in diameter and a height of EIO cm, a stirring device having two L-sized forward and reverse rotary blades and a water gate-type outlet on the side was prepared. While rotating the rotor blade of the device described in h above at a speed of 40Qrp, the sized polymer gel prepared by 111 was fed at a rate of 20Kg/hour, and at the same time powdered 1゛Y-based soda with a particle size of 74μm or less was supplied. 900g/hour ~ 1. Supply at a rate of 0 kg/hour, adjust the opening of the outlet appropriately, and maintain the average residence time 2.
Stirring and mixing were performed under conditions of 1 minute. The gel mixture discharged from the stirrer L was continuously fed to a twin screw conveyor equipped with a heat insulation jacket and allowed to stay there for about 15 minutes. During this period, no cooling or heating was performed, and the temperature of the gel mixture was 43-46°C when it was fed to the 0-screw conveyor.
However, the temperature of the partially hydrolyzed gel mixture discharged from the screw conveyor was 58 to 62°C. The resulting gel mixture has no tackiness or adhesive properties;
They were fine particles with a diameter of 1 mm. This gel mixture was dried for 85 minutes using a band dryer with one ventilation.
When dried with hot air at ~90°C, powder and granules with a moisture content of 8% or less were obtained in about 15 minutes. The analytical values of the obtained powder and granular material are shown in Table 1 below in comparison with those of the raw material gel. Table-1 Wood ([η] 30°C) Old/8 N-NaN03 ■Measurement method of undissolved amount 3 Put deionized 2,5005M in a mixed beaker,
While maintaining the temperature at 5±2°C and stirring at 500 rpm, 5.0 g of polymer was added to prevent splintering, and the stirring was continued. After 120 minutes, the mixture was carefully filtered through a 100-mesh stainless steel wire gauze to obtain 10OsJL. The weight of the wire gauze residue after rinsing three times with deionized water and drying for 60 minutes at +05° C. is expressed as a ratio to the sample volume. Example 2 Polymerization was carried out in the same manner as in Example 1 using the same polymerization apparatus. However, the seven-mer aqueous solution was prepared by charging each component into a dissolution tank with the following changes. 50% acrylamide aqueous solution 20.92Kg30%
Acrylic ugly soda solution 5. l3Kg Thiourea
38g triethanolamine
24g deionized water 3.89
Kg on the polymerization belt \ Monomer aqueous solution supplied in a fixed amount (
Nanatsumer concentration 40. FlffiIX, P)! +0.5.
The amounts of 1% methanol solution of benzoin isopropyl ether (15° C.) were 30 Kg/hour and 180 g/hour, respectively. The monomer aqueous solution that was irradiated with ultraviolet light immediately began to polymerize, and after about 6 minutes, its surface temperature reached a maximum temperature of 57 to 60°C. The obtained layered polymer gel having a thickness of about 10 mm was refined in the same manner as in Example 1 to a particle size of 11 m. The finely divided polymer gel with a water content of 58 to 57% was simultaneously fed to the stirring and mixing apparatus of Example 1 at a rate of 2 o Kg/hour, and the caustic potash pulverized to a particle size of 3 gm or less at a rate of 1.3 Kg/hour. The mixture was stirred and mixed, and the mixture was left in the screw conveyor of Example 1 for about 20 minutes, and then dried and smoked with hot air at 85 to 90°C for 15 minutes using a ventilation band type dryer to remove moisture of 1 &
17.2 to 8.5% powder and granule (1i. The analysis values of this powder and granule are shown in Table F-2, similar to Table 1 above. Table-2 @ Hydrolysis rate. [Effects of the Invention] As explained above, according to the present invention, 1) there is almost no adhesion or adhesion between the finely divided polymer gel particles or between the particles and the equipment, etc., resulting in good workability; and 2) Does not require heating energy to accelerate the hydrolysis reaction,
and ■ Since the amount of water to be removed by evaporation is small, the energy required for drying is economical, which is a significant improvement in partially hydrolyzed acrylamide-based polymer powder useful as a flocculant, etc. bring about.

Claims (1)

【特許請求の範囲】[Claims] 1 濃度35〜50重量%のアクリルアミドモノマーを
含有する水溶液を、不活性ガス雰囲気中の無端支持体上
へ薄層状に供給すると共に、該無端支持体の裏面へ液状
冷媒を吹きつけて冷却しながら、紫外線を照射して最高
重合系温度80℃以下で水溶液重合を行ない、厚さ5〜
15mmの層状として得られたアクリルアミド系ポリマ
ーのゲルを、粒径0.5〜2m/mまで細粒化した後、
粒径0.5m/m以下の苛性アルカリ粉末と攪拌混合し
、反応物の温度を水和熱及び溶解熱による上昇温度域に
10〜60分間保ち、最後に、80〜100℃熱風を用
いて含水率10%以下まで乾燥することを特徴とする、
水溶性の液の良好な、部分加水分解アクリルアミド系ポ
リマー粉粒体の製造方法。
1. An aqueous solution containing an acrylamide monomer with a concentration of 35 to 50% by weight is supplied in a thin layer onto an endless support in an inert gas atmosphere, while cooling the endless support by spraying a liquid refrigerant onto the back surface thereof. , aqueous solution polymerization is carried out at a maximum polymerization temperature of 80°C or less by irradiation with ultraviolet rays, and the thickness is 5~
After refining the acrylamide polymer gel obtained as a 15 mm layer to a particle size of 0.5 to 2 m/m,
The mixture is stirred and mixed with caustic alkali powder with a particle size of 0.5 m/m or less, the temperature of the reactant is kept in the rising temperature range due to the heat of hydration and the heat of dissolution for 10 to 60 minutes, and finally, the mixture is heated at 80 to 100°C using hot air. Characterized by drying to a moisture content of 10% or less,
A method for producing partially hydrolyzed acrylamide-based polymer powder that produces a good water-soluble liquid.
JP63274793A 1988-10-31 1988-10-31 Method for producing partially hydrolyzed acrylamide polymer powder Expired - Fee Related JP2652431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63274793A JP2652431B2 (en) 1988-10-31 1988-10-31 Method for producing partially hydrolyzed acrylamide polymer powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63274793A JP2652431B2 (en) 1988-10-31 1988-10-31 Method for producing partially hydrolyzed acrylamide polymer powder

Publications (2)

Publication Number Publication Date
JPH02123102A true JPH02123102A (en) 1990-05-10
JP2652431B2 JP2652431B2 (en) 1997-09-10

Family

ID=17546640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63274793A Expired - Fee Related JP2652431B2 (en) 1988-10-31 1988-10-31 Method for producing partially hydrolyzed acrylamide polymer powder

Country Status (1)

Country Link
JP (1) JP2652431B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732448A3 (en) * 1995-03-17 1998-03-04 Japan PMC Corporation Agent for improving surface quality of paper
JP2000136203A (en) * 1998-08-24 2000-05-16 Nippon Shokubai Co Ltd Production of water-containing gel product of water- absorbing resin
WO2017115861A1 (en) * 2015-12-28 2017-07-06 株式会社日本触媒 Method for producing water absorbent resin
JP2020117634A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106219592B (en) * 2016-07-27 2017-12-19 常州大学 The formation of nanoscale silver oxide and process for dispersing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732448A3 (en) * 1995-03-17 1998-03-04 Japan PMC Corporation Agent for improving surface quality of paper
JP2000136203A (en) * 1998-08-24 2000-05-16 Nippon Shokubai Co Ltd Production of water-containing gel product of water- absorbing resin
WO2017115861A1 (en) * 2015-12-28 2017-07-06 株式会社日本触媒 Method for producing water absorbent resin
JPWO2017115861A1 (en) * 2015-12-28 2018-10-18 株式会社日本触媒 Method for producing water absorbent resin
JP2020117634A (en) * 2019-01-24 2020-08-06 株式会社豊田中央研究所 Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same

Also Published As

Publication number Publication date
JP2652431B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US4690788A (en) Process for preparing water-soluble polymer gel particles
CN85104823A (en) The preparation method of water-soluble acrylic polymers
JP4150252B2 (en) Method for producing water absorbent resin
US4306955A (en) Photopolymerized acrylic polymer essentially devoid of residual monomer(s)
US10307506B2 (en) Process for producing water-absorbing resin
CN1042346A (en) Prepare acrylate and the method that contains acrylic ester polymer
US3905122A (en) Method for drying polymer hydrogel
CN87102540A (en) The preparation method of high molecular weight acrylic polymers
JPH02123102A (en) Production of partially hydrolyzed acrylamide-based polymer fine particle
US4654378A (en) Process for the manufacture of high solids, free-flowing, granular poly(dimethyldiallyl ammonium chloride)
CN100543045C (en) A kind of fast hydrolyzation of polyacrylamide
EP0099811A1 (en) Process for preparing water-soluble acryl polymer flocks
US4535131A (en) Process for producing partially hydrolyzed acrylamide polymer
JPH02173102A (en) Production of partial hydrolyzate of acrylamide polymer
CN101143912A (en) Method for producing high-performance high water absorption resin
JPS61115909A (en) Production of fine acrylamide polymer particle of low residual acrylamide
JPH02180905A (en) Production of partially hydrolyzed acrylamide polymer
JPH047887B2 (en)
JP3851232B2 (en) Method for producing polyvinylamine
JP2003251106A (en) Manufacturing method for granular polymeric flocculant
JP2005247931A (en) Method for producing water-absorbing resin particle
JPH1087842A (en) Method for grinding adherent water-containing gel-like polymer
JPS63270708A (en) Manufacture of water-soluble cationic (meth)acrylic polymer
JPH0264106A (en) Production of water-absorbing resin
JPH0532410B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees