JPH047887B2 - - Google Patents

Info

Publication number
JPH047887B2
JPH047887B2 JP59233560A JP23356084A JPH047887B2 JP H047887 B2 JPH047887 B2 JP H047887B2 JP 59233560 A JP59233560 A JP 59233560A JP 23356084 A JP23356084 A JP 23356084A JP H047887 B2 JPH047887 B2 JP H047887B2
Authority
JP
Japan
Prior art keywords
polymer gel
polymerization
water
polymer
crusher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59233560A
Other languages
Japanese (ja)
Other versions
JPS61110510A (en
Inventor
Akira Yada
Shusaku Matsumoto
Yoshihiro Kawamori
Takao Saito
Tadashi Nishama
Seiji Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP23356084A priority Critical patent/JPS61110510A/en
Priority to CA000494151A priority patent/CA1253833A/en
Priority to CN85109717A priority patent/CN1007796B/en
Priority to FR858516383A priority patent/FR2572671B1/en
Priority to US06/795,263 priority patent/US4690788A/en
Priority to FI854352A priority patent/FI84448C/en
Priority to DE19853539385 priority patent/DE3539385A1/en
Priority to GB8530862A priority patent/GB2184054B/en
Publication of JPS61110510A publication Critical patent/JPS61110510A/en
Publication of JPH047887B2 publication Critical patent/JPH047887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/04Making granules by dividing preformed material in the form of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • B29B13/065Conditioning or physical treatment of the material to be shaped by drying of powder or pellets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水溶性重合体ゲルの破砕方法に関す
る。さらに詳しくは、水溶性ビニル系単量体の水
溶液の重合によつてえられた重合体ゲルを短ざく
状にし、さらに短ざく状にしたものを細片状に切
断する水溶性重合体ゲルの破砕方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for crushing water-soluble polymer gel. More specifically, the polymer gel obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer is cut into short pieces, and the short pieces are further cut into strips. Regarding the crushing method.

[従来の技術] 従来より、アクリルアミドの単独重合体、アク
リルアミドを主体とし、これと他の重合性単量体
との共重合体またはそれらのアルカリ加水分解物
は、紙力増強剤、増粘剤、土壌改良剤、原油回収
用薬剤、廃水処理剤などとして広く利用されてい
る。
[Prior Art] Conventionally, acrylamide homopolymers, copolymers mainly composed of acrylamide with other polymerizable monomers, or alkaline hydrolysates thereof have been used as paper strength agents and thickeners. It is widely used as a soil conditioner, crude oil recovery agent, wastewater treatment agent, etc.

それらアクリルアミド系水溶性重合体の製法に
は、塊状重合法、懸濁重合法、乳化重合法、溶液
重合法などがあるが、本質的に高分子量の重合体
が用いられるため、通常水溶液重合法を採用する
ばあいが多い。
Methods for producing these water-soluble acrylamide polymers include bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization, but since polymers with essentially high molecular weight are used, aqueous solution polymerization is usually used. is often adopted.

水溶液重合法によつて分子量が非常に高く、か
つ良好な水溶解性を有する重合体をうるには、重
合反応段階における架橋を防止する意味において
も、比較的低い濃度で重合を実施する必要があ
る。
In order to obtain a polymer with a very high molecular weight and good water solubility by aqueous solution polymerization, it is necessary to carry out the polymerization at a relatively low concentration, also in the sense of preventing crosslinking during the polymerization reaction stage. be.

しかしながら近年、運搬コスト、保管コストな
どの経済性が重視されるため、液状製品よりも粉
末製品が生産の主流を占めるにいたり、低濃度で
水溶性重合法を行なうばあいには、えられた重合
体を粉末化する際に多量の水を揮散させ、乾燥し
なければならず、粉末化のためのユーテイリテイ
ーコストが増大する欠点を有している。
However, in recent years, as emphasis has been placed on economic efficiency such as transportation costs and storage costs, powder products have become the mainstream of production rather than liquid products, and when water-soluble polymerization is carried out at low concentrations, When powdering a polymer, a large amount of water must be volatilized and drying must be carried out, which has the drawback of increasing the utility cost for powdering.

かかる欠点を排除するため、できる限り高い単
量体濃度で重合を実施し、粉末化段階におけるユ
ーテイリテイーコストの軽減をはかる研究が行な
われ、多数の特許出願がなされている。
In order to eliminate such drawbacks, research has been conducted to reduce utility costs in the powdering step by carrying out polymerization at as high a monomer concentration as possible, and numerous patent applications have been filed.

しかしながら、アクリルアミド、アクリル酸な
どのビニル系単量体は本質的に架橋して3次元化
する傾向がきわめて強く、したがつて必然的に架
橋防止のための緩和な条件、とりわけ単量体濃度
に関しては、たとえばアニオン系またはノニオン
系のばあいには、高々約20〜30%(重量%、以下
同様)という比較的低い濃度に保持したままで重
合を実施しなければならない。
However, vinyl monomers such as acrylamide and acrylic acid inherently have a very strong tendency to crosslink and become three-dimensional. For example, in the case of an anionic or nonionic polymer, the polymerization must be carried out while maintaining a relatively low concentration of about 20 to 30% (by weight, same hereinafter) at most.

前記のような濃度のアクリルアミドまたはアク
リルアミドを主体とした単量体溶液を重合させる
と、流動性の全くない、かたいまたは弾力性の強
いゲル状物としてえられる。それゆえ、たとえば
そのゲル状重合体の塊やシート状物を機械的に粗
砕することなしに、そのまま含有されている水を
揮散せしめようとすると、非常に長時間、高温下
に放置しなければならず、その結果、折角えられ
た高分子量重合体の分子量が低下したり、重合体
の熱変化に伴う架橋が促進され、商品価値が著し
く低下することになる。したがつて、一般的に
は、えられた重合体ゲルの塊やシート状物を何ら
かの機械的手段によつて粗砕して小塊粒子とした
のち、加熱により乾燥せしめて水を除去する方法
が採用されている。一般的には、重合によつてえ
られた重合体ゲルを肉挽機のごとき、押出成形機
を用いてストランド状に成形することによつて粗
砕する方法が広く採用されている。しかしなが
ら、肉挽機のごとき押出成形機を使用するばあ
い、重合体ゲルが著しくかたいばあいには、機械
壁面との摩擦が大きく、機械能率の損失をおこす
ばかりか、重合体ゲル自身が摩擦熱や物理力など
により劣化を受け、折角重合段階で高分子量化し
たものが分子切断されたりする結果、高分子量物
質がえられなくなつてしまつたりする。
When acrylamide or a monomer solution mainly consisting of acrylamide at the above concentration is polymerized, a hard or highly elastic gel-like material having no fluidity is obtained. Therefore, for example, if you try to volatilize the water contained in a mass or sheet of gel polymer without mechanically crushing it, you will have to leave it under high temperature for a very long time. As a result, the molecular weight of the high-molecular-weight polymer that has been painstakingly produced decreases, and crosslinking of the polymer due to thermal changes is promoted, resulting in a significant decrease in commercial value. Therefore, in general, the obtained polymer gel mass or sheet-like material is crushed by some mechanical means into small agglomerated particles, and then dried by heating to remove water. has been adopted. In general, a widely used method is to crush a polymer gel obtained by polymerization into strands using an extruder such as a meat grinder. However, when using an extrusion molding machine such as a meat grinder, if the polymer gel is extremely hard, there will be large friction with the machine wall, which will not only cause a loss of machine efficiency, but also cause the polymer gel itself to As a result of deterioration due to frictional heat, physical forces, etc., molecules that have been made to have high molecular weight during the polymerization stage are severed, and as a result, high molecular weight substances can no longer be obtained.

その改良法として、押出成形する際にポリエチ
レングリコール、ノニオン系界面活性剤などの滑
剤を用いて機械の摩擦抵抗を軽減する方法も提案
されているが、望ましい効果をうるためには多量
の薬剤を使用しなければならず、逆に純分の低下
ないしは粉末にしたときのヌメリ性増加、粉末の
自由流動性の低下などの好ましくない結果を招い
ている。
As an improvement method, a method has been proposed in which a lubricant such as polyethylene glycol or a nonionic surfactant is used during extrusion molding to reduce the frictional resistance of the machine, but in order to obtain the desired effect, a large amount of the agent is required. On the contrary, this results in unfavorable results such as a decrease in purity, an increase in sliminess when powdered, and a decrease in free-flowing properties of the powder.

かかる理由から、重合によつてえられる重合体
ゲルを摩擦熱や物理力などによる劣化を受けるこ
となく細粒化し、かつ分子量低下をもたらさない
破砕の方法が望まれている。
For these reasons, there is a desire for a method of crushing the polymer gel obtained by polymerization into fine particles without deterioration due to frictional heat, physical forces, etc., and without causing a decrease in molecular weight.

[発明が解決しようとする問題点] 本発明は、前記のごとき重合体ゲルを破砕する
際に生ずる摩擦熱や物理力などによる重合体の劣
化や、滑剤を用いて破砕するばあいに生ずる純分
の低下ないしは粉末にしたときのヌメリ性の増
加、粉末の自由流動性の低下などの問題を解決し
ようとするものである。
[Problems to be Solved by the Invention] The present invention solves the problem of deterioration of the polymer due to frictional heat and physical force generated when crushing the polymer gel as described above, and the deterioration of the polymer gel that occurs when crushing using a lubricant. This aims to solve problems such as a decrease in the content of the powder, an increase in sliminess when powdered, and a decrease in the free-flowing properties of the powder.

[問題点を解決するための手段] 本発明は、水溶性ビニル系単量体の水溶液に紫
外線を照射することによつて重合させてえられた
固形分率20〜90重量%の重合体ゲルを破砕するに
際して、可動式支持体を用いて前記重合体ゲルを
連続的に製造し、破砕機に供給し、25℃以下の冷
風下、互にかみあう方向に回転する1対のローラ
ー型カツターに重合体ゲルをくい込ませて短ざく
状に切断し、ついでえられた短ざく状の重合体ゲ
ルを回転刃と固定刃によつて細片状に切断するこ
とを特徴とする水溶性重合体ゲルの破砕方法に関
する。
[Means for Solving the Problems] The present invention provides a polymer gel having a solid content of 20 to 90% by weight obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer by irradiating it with ultraviolet rays. When crushing, the polymer gel is continuously produced using a movable support, fed to a crusher, and then passed through a pair of roller-type cutters that rotate in mutually interlocking directions under cold air at a temperature of 25°C or less. A water-soluble polymer gel characterized by inserting a polymer gel and cutting it into short pieces, and then cutting the obtained short pieces of polymer gel into strips using a rotating blade and a fixed blade. Concerning a crushing method.

[実施例] 本発明に用いる水溶性ビニル系単量体として
は、たとえばアクリルアミド、メタクリルアミ
ド、アクリル酸、メタクリル酸、ビニルスルホン
酸、アクリルアミド−メチルプロパンスルホン
酸、イタコン酸などの水溶性ビニル単量体または
それらの塩類、(メタ)アクリル酸ジアルキルア
ミノアルキルエステル類、その塩もしくは酸性塩
類またはその4級化物類、ジアルキルアミノアル
キルアクリルアミド類、その塩もしくは酸性塩類
またはその4級化物類、ジアリルアミン酸性塩、
ジアリルジアルキルアンモニウム塩などのジアリ
ルアミン類などがあげられるが、これらに限定さ
れるものではない。これらは単独で用いてもよ
く、2種以上混合して用いてもよい。
[Example] Examples of water-soluble vinyl monomers used in the present invention include water-soluble vinyl monomers such as acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinylsulfonic acid, acrylamide-methylpropanesulfonic acid, and itaconic acid. (meth)acrylic acid dialkylaminoalkyl esters, salts or acidic salts thereof, or quaternized products thereof, dialkylaminoalkylacrylamides, salts or acidic salts thereof, or quaternized products thereof, diallylamine acid salts ,
Examples include, but are not limited to, diallylamines such as diallyldialkylammonium salts. These may be used alone or in combination of two or more.

前記水溶性ビニル系単量体には、えられる重合
体が水溶性になるような範囲で水に本質的に不溶
性の単量体、たとえばアクリロニトリル、(メタ)
アクリル酸エステル類、酢酸ビニル、スチレンな
どの疎水性単量体を配合してもよい。
The water-soluble vinyl monomers include monomers that are essentially insoluble in water to the extent that the resulting polymer is water-soluble, such as acrylonitrile, (meth)
Hydrophobic monomers such as acrylic esters, vinyl acetate, and styrene may also be blended.

水溶性ビニル系単量体を重合させる方法のうち
好ましい方法としては、ベンゾインまたはベンゾ
インアルキルエーテルなどの光重合開始剤を用い
る光重合法があげられる。通常、このような方法
により、水溶性ビニル系単量体の所定の濃度の水
溶液が自由に流動しなくなるまで重合せしめられ
る。
Among the methods for polymerizing water-soluble vinyl monomers, a preferred method is a photopolymerization method using a photopolymerization initiator such as benzoin or benzoin alkyl ether. Usually, by such a method, an aqueous solution of a water-soluble vinyl monomer of a predetermined concentration is polymerized until it no longer flows freely.

前記のごとき水溶性ビニル系単量体水溶液の重
合を紫外線照射によつて行なうと、誘導時間がほ
とんどなしに重合が開始するばかりか、重合速度
が他法に比して著しく大である結果、重合に要す
る所要時間が短かくてすみ効率的である。とくに
高濃度での重合を行なうのに適した方法であり、
可動式支持体上で薄層状に重合させ、ひき続き本
発明に用いるような破砕機に連続的に供給するば
あいには、コンパクトな設備で生産性を大巾に低
下させることなく実施できる利点を有しているた
め、好ましい重合方式といえる。
When the above-mentioned aqueous solution of a water-soluble vinyl monomer is polymerized by ultraviolet irradiation, not only does the polymerization start with almost no induction time, but the polymerization rate is significantly higher than that of other methods. It is efficient because the time required for polymerization is short. This method is especially suitable for polymerization at high concentrations.
When the polymerization is carried out in a thin layer on a movable support and then continuously fed to a crusher such as the one used in the present invention, the advantage is that it can be carried out using compact equipment without significantly reducing productivity. This can be said to be a preferable polymerization method.

水溶性ビニル系単量体を使用してえられた重合
体ゲルは、できるだけ高濃度であることが生産性
向上という点から好ましく、また破砕時の粘着性
を低減し、破砕物の相互付着を防止する点からも
好ましい。一般に、アクリルアミドあるいはアク
リル酸を使用してえられるノニオン系あるいはア
ニオン系重合体のゲルは、20〜60%、望ましくは
30〜45%である。一方、ジアルキルアミノアルキ
ルアクリレートあるいはその酸性塩、4級塩を使
用するカチオン系重合体ゲルのばあいには、50〜
90%、望ましくは60〜80%である。
It is preferable for the polymer gel obtained using water-soluble vinyl monomers to have as high a concentration as possible from the viewpoint of improving productivity. It is also preferable from the viewpoint of prevention. In general, nonionic or anionic polymer gels obtained using acrylamide or acrylic acid have a content of 20 to 60%, preferably
It is 30-45%. On the other hand, in the case of a cationic polymer gel using dialkylaminoalkyl acrylate or its acid salt or quaternary salt,
90%, preferably 60-80%.

重合体ゲルの形態は、互いにかみある方向に回
転する1対のローラー型カツターで効率よく切断
されるためには、円滑に重合体ゲルを該ローラー
型カツターにくい込ませなくてはならないので、
厚さが2〜30mm、望ましくは5〜15mmのごとき薄
層状にすることが好ましい。たとえば可動式のベ
ルトなどを用いて水溶性ビニル系単量体水溶液を
重合させると、薄層状にすることができる。可動
式ベルト上で薄層状に重合する方法は、以降の破
砕が連続的になるので好ましい方法である。
In order for the polymer gel to be efficiently cut by a pair of roller-type cutters that rotate in mutually interlocking directions, the polymer gel must be smoothly inserted into the roller-type cutters.
It is preferable to form a thin layer with a thickness of 2 to 30 mm, preferably 5 to 15 mm. For example, when a water-soluble vinyl monomer aqueous solution is polymerized using a movable belt or the like, it can be formed into a thin layer. The method of polymerizing in a thin layer on a movable belt is a preferred method because subsequent crushing is continuous.

本発明においては、上記のようにしてえられた
重合体ゲルが、第1図〜第3図に一実施態様を示
すような破砕機を用いて破砕される。
In the present invention, the polymer gel obtained as described above is crushed using a crusher as shown in one embodiment in FIGS. 1 to 3.

重合体ゲルは、第1図に示す破砕機の上方から
破砕機に供給される。供給された重合体ゲルは、
第1図と第2図に示す破砕機を上方から見た図面
である第3図に示すローラー型カツター3,4に
より切断され、短ざく状のストランドにされる。
The polymer gel is fed into the crusher from above the crusher as shown in FIG. The supplied polymer gel is
The material is cut into short strip-shaped strands by roller-type cutters 3 and 4 shown in FIG. 3, which is a top view of the crusher shown in FIGS. 1 and 2.

ローラー型カツター3,4の表面には、それぞ
れ第3図、より詳しくは第4図および第5図に示
すように、互いの凹凸がかみ合うように凹凸の形
状にカツターの刃が形成されている。この互いに
かみ合うローラ型カツターは、たとえば同じ寸法
を持ち、同じ回転速度でかみ合う方向に回転す
る。かみあうように形成された刃の凹凸の巾、深
さ、高さは、破砕された重合体ゲルに所望される
大きさにより決定すればよく、たとえば第5図に
おける巾X1が2〜10mm程度、凹部の深さX4が10
〜15mm程度、凸部の高さX5が10〜15mm程度で、
凹部と凸部とが最も深くかみあつたばあいでも、
切断された重合体ゲルが通過するのに必要な間隙
(第5図におけるX3)が10〜25mm程度あくように
通常は形成される。このような形状にローラー型
カツター3,4表面の刃を形成し、第3図に示す
ローラー型カツターの回転軸8,9を用いて2つ
のローラー型カツター3,4を第2図(第1図の
A−A′断面図)に示すように回転させ、上方か
ら供給された重合体ゲルをかみこんで切断して下
方に供給するようにすることにより、重合体ゲル
の切断を容易に行なうことができ、たとえばスト
ランド状の短ざくにすることができる。
As shown in FIG. 3, and more specifically in FIGS. 4 and 5, on the surfaces of the roller cutters 3 and 4, cutter blades are formed in a concave and convex shape so that the concave and convex portions engage with each other. . The intermeshed roller-type cutters, for example, have the same dimensions and rotate at the same rotational speed in the interlocking direction. The width, depth, and height of the unevenness of the blades formed to interlock with each other may be determined depending on the desired size of the crushed polymer gel. For example, the width X 1 in Fig. 5 is about 2 to 10 mm. , recess depth x 4 10
~15mm, the height of the convex part x 5 is about 10~15mm,
Even if the concave part and convex part are engaged most deeply,
The gap (X 3 in FIG. 5) necessary for the cut polymer gel to pass through is usually formed to be about 10 to 25 mm. The blades on the surfaces of the roller type cutters 3 and 4 are formed in such a shape, and the two roller type cutters 3 and 4 are cut as shown in FIG. The polymer gel can be easily cut by rotating it as shown in the A-A' cross section in the figure, biting and cutting the polymer gel supplied from above, and then feeding it downward. For example, it can be made into short strands.

なおローラー型カツター3,4に重合体ゲルを
供給するのに、可動式支持体、たとえばエンドレ
スベルトの他端より重合体ゲルを連続的に取出
し、ローラー型カツターにくい込ませる方法など
を用いて連続的に行なうことにより、工程全体を
連続化することができ、生産効率を向上させるこ
とができる。
In order to supply the polymer gel to the roller type cutters 3 and 4, the polymer gel is continuously taken out from the other end of a movable support, such as an endless belt, and then fed into the roller type cutters 3 and 4. By doing so, the entire process can be made continuous and production efficiency can be improved.

つぎに短ざく状にしたもののストランドを細片
状に切断する方法について説明する。
Next, a method of cutting the short strand into strips will be explained.

互いにかみ合う方向に回転するローラー型カツ
ター3,4により、たとえば短ざく状に切断され
た重合体ゲルのストランドは、第2図に示すくし
5,6の上端のエツジでローラー型カツターの内
刃Aの外周部より剥離され、くし5とくし6との
間を下降し、くし6の下端に設けられた固定刃2
の位置に到達する。通常、重合体ゲルのストラン
ドがローラー型カツターの外刃8にひつつくこと
はない。固定刃2の位置に到達し、該位置より下
方にでた短ざく状のストランドは、第1図および
第2図に示す7を回転軸とする回転体10の外周
部に設けられた回転刃1と固定刃2との間に働く
切断力により切断され、細片状、好ましくは約3
〜20mmの角状にされる。
The polymer gel strand cut into short pieces, for example, by the roller type cutters 3 and 4 rotating in the direction of interlocking with each other, is cut by the inner blade A of the roller type cutter at the upper edge of the combs 5 and 6 shown in FIG. The fixed blade 2 is peeled off from the outer periphery of the comb, descends between the combs 5 and 6, and is attached to the fixed blade 2 provided at the lower end of the comb 6.
reach the position. Normally, the polymer gel strands do not stick to the outer blade 8 of the roller cutter. The short strand-shaped strand that reaches the position of the fixed blade 2 and comes out below the position is a rotary blade provided on the outer periphery of the rotating body 10 whose rotation axis is 7 shown in FIGS. 1 and 2. The blade is cut by the cutting force acting between the fixed blade 1 and the fixed blade 2, and is cut into strips, preferably about 3
Squared to ~20mm.

短ざく状のものの横巾方向の断面形状は、ロー
ラー型カツター3,4の組立後の機械寸法、すな
わち刃の凹凸の巾X1、高さX4,X5、かみ合いの
深さX2およびローラー型カツター3,4の回転
速度により決定される。そしてローラー型カツタ
ー3,4の回転速度と、それに同調する速度で回
転する回転体10の回転速度および回転体10上
に設けられた回転刃1の数(第2図においては6
枚)とを調節により、細片状に切断される長さを
決定することができる。
The cross-sectional shape of the short piece in the width direction is based on the mechanical dimensions of the roller cutters 3 and 4 after assembly, that is, the width of the unevenness of the blades X 1 , the heights X 4 , X 5 , the depth of engagement X 2 and It is determined by the rotational speed of the roller type cutters 3 and 4. The rotational speed of the roller-type cutters 3 and 4, the rotational speed of the rotating body 10 that rotates at a speed synchronized therewith, and the number of rotary blades 1 provided on the rotating body 10 (6 in Fig. 2).
The length to be cut into strips can be determined by adjusting the length of the strip.

重合体ゲルを破砕機で切断するばあいに、切断
効率を高くし、かつえられた細片状の重合体ゲル
の再付着を防止するために、切断時の重合体ゲル
の温度をできるだけ低くして、切断に伴なう発熱
による重合体ゲルの昇温を防ぐことが好ましい。
When cutting polymer gel with a crusher, the temperature of the polymer gel at the time of cutting should be kept as low as possible in order to increase cutting efficiency and prevent redeposition of the resulting pieces of polymer gel. It is preferable to prevent the temperature of the polymer gel from increasing due to heat generated during cutting.

重合体ゲルの温度を低くする方法としては、重
合段階において冷却を充分行なう方法、重合によ
りえられた重合体ゲルを破砕機で破砕する以前
に、冷風などにより強制的に冷却する方法などに
よつて達成されるが、通常10〜30℃、好ましくは
20℃以下に調整することが好ましい。
Methods for lowering the temperature of the polymer gel include cooling sufficiently during the polymerization stage, and forcibly cooling the polymer gel obtained by polymerization with cold air before crushing it with a crusher. Usually achieved at 10-30°C, preferably
It is preferable to adjust the temperature to 20°C or lower.

また破砕時に25℃以下の冷風を通じて破砕工程
を冷却しながら、短ざく状にしたもののストラン
ドを製造し、ついで該ストランドをさらに細片状
に切断すると、切断時の摩擦熱、ローラー型カツ
ターなどの駆動熱などにより、重合体ゲルがべと
ついたり、切断された重合体ゲルの細片同士が相
互付着してブロツク状になつたりすることを軽減
することができる。
Furthermore, when the crushing process is cooled by blowing cold air below 25°C to produce short strands, and then the strands are further cut into strips, frictional heat during cutting and roller-type cutters etc. It is possible to reduce the possibility that the polymer gel becomes sticky or that cut pieces of the polymer gel adhere to each other and become block-like due to driving heat or the like.

このような方法を採用すると破砕効率が高めら
れるので有効である。
Adopting such a method is effective because it increases crushing efficiency.

なお必要によりポリエチレングリコール、ノニ
オン系界面活性剤、アニオン系界面活性剤などを
破砕機に投入したり、重合体ゲル表面に塗布した
りして、細片状の重合体ゲルの再付着を防止した
りしてもよい。
If necessary, polyethylene glycol, nonionic surfactants, anionic surfactants, etc. may be added to the crusher or applied to the surface of the polymer gel to prevent the pieces of polymer gel from re-adhering. You can also

つぎに本発明の方法を実施例にもとづき説明す
る。
Next, the method of the present invention will be explained based on examples.

比較例 1 チツ素ガスで密閉しうる箱型の小さな室内にジ
ヤケツト付重合装置(縦200mm、横300mm、高さ50
mmの角型容器、上部蓋なし)を設置した。脱酸素
槽(容量1の円筒型)において溶存酸素をチツ
素ガスにより充分除去したアクリルアミド150g、
アクリル酸38g、苛性ソーダ20gを脱イオン水
275gに溶解させた単量体水溶液に5%過硫酸カ
リウム水溶液5mlおよび5%亜硫酸ソーダ水溶液
5mlを添加し、数分間チツ素ガスで脱酸素を継続
したのち、チツ素ガスで密閉した室内に設置した
該重合装置に導入し、重合を開始させた。ジヤケ
ツト内には25℃の水を通しておいた。重合は約10
分後に開始し、単量体水溶液は徐々に増粘した。
重合開始後15分を経過した時点で単量体水溶液は
ゆるやかに流動する状態を呈した。
Comparative Example 1 A polymerization device with a jacket (length 200 mm, width 300 mm, height 50
mm square container (without top lid) was installed. 150 g of acrylamide from which dissolved oxygen was sufficiently removed using nitrogen gas in a deoxidizing tank (cylindrical type with a capacity of 1);
38g of acrylic acid, 20g of caustic soda in deionized water
Add 5 ml of 5% potassium persulfate aqueous solution and 5 ml of 5% sodium sulfite aqueous solution to the monomer aqueous solution dissolved in 275 g, continue deoxidizing with nitrogen gas for several minutes, and then place in a room sealed with nitrogen gas. was introduced into the polymerization apparatus, and polymerization was started. Water at 25°C was passed through the jacket. Polymerization is about 10
Starting after minutes, the aqueous monomer solution gradually thickened.
When 15 minutes had passed after the start of polymerization, the monomer aqueous solution was in a state of gradual fluidity.

重合開始後約2時間すると、重合体はかたいゲ
ル状となつた。該重合体ゲルは厚さ約8mmであつ
た。
Approximately 2 hours after the start of polymerization, the polymer became a hard gel. The polymer gel was approximately 8 mm thick.

えられた重合体ゲルを第1図〜第3図に示すご
とき破砕機で、ローラー型カツターの凹凸の巾5
mm、凹部の深さ15mm、凸部の高さ14mm、かみあい
の深さ7mm、固定刃と回転刃の回転外径とのスリ
ツト0.3mm、回転刃の回転数が20〜100r/分なる
破砕機をローラー型カツターの表面スピード30
cm/分で、回転刃の回転数を調節することにより
20℃で破砕し、約3×8×5mm角の細片状ゲルを
えた。
The obtained polymer gel is crushed by a crusher as shown in Figs.
A crusher with a concave depth of 15 mm, a convex height of 14 mm, a mesh depth of 7 mm, a slit between the fixed blade and the rotating outer diameter of the rotary blade of 0.3 mm, and a rotation speed of the rotary blade of 20 to 100 r/min. The surface speed of the roller type cutter is 30
By adjusting the rotation speed of the rotary blade in cm/min.
The gel was crushed at 20°C to obtain gel strips measuring approximately 3 x 8 x 5 mm square.

えられた細片状ゲルは重合体ゲル相互の付着が
ほとんどなく、バラバラの状態であつた。
The obtained strip-like gel had almost no adhesion between the polymer gels and was in pieces.

比較例 2 比較例1によりえられた重合体ゲルを小型肉挽
機により押出成形することを試みたが、重合体ゲ
ルがかたく、小型肉挽機の可動は不可能であつ
た。
Comparative Example 2 An attempt was made to extrude the polymer gel obtained in Comparative Example 1 using a small meat grinder, but the polymer gel was so hard that it was impossible to move the small meat grinder.

ポリエチレングリコール(MW600)を重合体
ゲルの表面に約1%塗布したのち、小型肉挽機で
押出成形したところ、かろうじて細片化しうる状
態であつたが、えられた重合体ゲルは、互にヒモ
状に結びつき、かつ粒子相互が互に練り合わされ
た状態を呈し、明らかに摩擦熱や物理力によつて
機械劣化を起こしていることがわかつた。
After applying approximately 1% polyethylene glycol (MW600) to the surface of the polymer gel, it was extruded using a small meat grinder. Although it could barely be cut into pieces, the resulting polymer gel It was found that the particles were tied together like a string and were kneaded together, and mechanical deterioration was clearly caused by frictional heat and physical forces.

比較例 3 N,N,N−トリメチルアミノエチルメタクリ
レートクロライド80%水溶液500gを採取し、10
%塩化水素水溶液を用いてPH4に調整したのち、
蒸溜水で全量を565gにした、そののち比較例1
で用いた重合容器に仕込み、比較例1と同様にし
て重合させ、重合開始後約2時間で9.4mmの厚さ
のかたい重合体ゲルをえた。
Comparative Example 3 500 g of an 80% aqueous solution of N,N,N-trimethylaminoethyl methacrylate chloride was collected and 10
After adjusting the pH to 4 using % hydrogen chloride aqueous solution,
The total amount was made 565g with distilled water, and then Comparative Example 1
The mixture was charged into the polymerization container used in Example 1, and polymerized in the same manner as in Comparative Example 1. A hard polymer gel with a thickness of 9.4 mm was obtained about 2 hours after the start of polymerization.

固定刃/回転刃のスリツトの巾0.5mmで、比較
例1の破砕機により比較例1と同様にして該重合
体ゲルを破砕すると、容易に3×8×5mm角の細
粒状ゲルがえられた。
When the polymer gel was crushed in the same manner as in Comparative Example 1 using the crusher of Comparative Example 1 with a fixed blade/rotary blade slit width of 0.5 mm, fine granular gel of 3 x 8 x 5 mm square could be easily obtained. Ta.

比較例 4 比較例3でえられた重合体ゲルを小型肉挽機で
破砕しようとしたところ、重合体ゲルがかたすぎ
るため、くい込み不良となり破砕できなかつた。
Comparative Example 4 When an attempt was made to crush the polymer gel obtained in Comparative Example 3 using a small meat grinder, the polymer gel was too hard and could not be crushed due to poor penetration.

比較例 5 表面に四フツ化エチレン−エチレン共重合体フ
イルム(厚さ50μm)を装着した巾450mm、有効長
3000mmのステンレス鋼製のエンドレスベルトの裏
面に温水〜冷水を噴霧しうる構造としたものを、
重合用の可動式の支持体としてチツ素ガスで完全
に充填された室内に設置し、30mm/分の定速度で
可動せしめ、ベルトの裏面に25℃の水を噴霧し
た。
Comparative Example 5 Width 450mm, effective length with tetrafluoroethylene-ethylene copolymer film (thickness 50μm) attached to the surface
A 3000 mm stainless steel endless belt with a structure that allows hot to cold water to be sprayed on the back side.
The movable support for polymerization was placed in a chamber completely filled with nitrogen gas, moved at a constant speed of 30 mm/min, and water at 25° C. was sprayed on the back side of the belt.

10%塩酸水溶液でPH4に調整した濃度75%の
N,N,N−トリメチルアミノエチルメタクリレ
ートクロライドモノマー水溶液約30を、チツ素
ガスにより充分脱気し、稼働状態にある前記ベル
ト上に10/時間の速度で該ベルトの一端から定
量供給した。
Approximately 30 minutes of an aqueous solution of N,N,N-trimethylaminoethyl methacrylate chloride monomer with a concentration of 75%, adjusted to pH 4 with a 10% aqueous hydrochloric acid solution, was sufficiently degassed with nitrogen gas and placed on the belt in operation for 10 minutes. A fixed amount was fed from one end of the belt at a speed of .

なお、重合開始剤とモノマー水溶液の混合はベ
ルト上部に設置した2個の攪拌機付き一時貯槽
(5容量)に重合開始剤として5%過硫酸カリ
ウム溶液および亜硫酸ナトリウム溶液を別々に入
れ、それぞれ70ml/時間の速度で均一にモノマー
水溶液と混合しながら、前記ベルト上にモノマー
水溶液を供給後、20分で重合が開始した。ひきつ
づき連続的に供給した。
To mix the polymerization initiator and monomer aqueous solution, separately put 5% potassium persulfate solution and sodium sulfite solution as polymerization initiators into two temporary storage tanks (5 volumes) equipped with stirrers installed above the belt, and mix 70 ml/each. Polymerization started 20 minutes after supplying the monomer aqueous solution onto the belt while uniformly mixing it with the monomer aqueous solution at a constant speed. It continued to be supplied continuously.

モノマー水溶液がベルト上で重合に供される時
間は100分間、重合時におけるモノマー水溶液層
は約12mmおよび全重合所要時間は2時間であつ
た。
The time during which the monomer aqueous solution was subjected to polymerization on the belt was 100 minutes, the monomer aqueous solution layer during polymerization was about 12 mm, and the total polymerization time was 2 hours.

モノマー水溶液供給開始から、120分後にエン
ドレスベルトの他端より約12mmの厚さのシート状
の重合体がえられた。えられた重合体はベルト表
面から人力によつて容易に剥離される状態であつ
て、約3時間の連続重合が可能であった。
120 minutes after the start of supplying the monomer aqueous solution, a sheet-like polymer with a thickness of about 12 mm was obtained from the other end of the endless belt. The obtained polymer was easily peeled off from the belt surface by hand, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルの温度は約28℃であつた。 The temperature of the resulting polymer gel was about 28°C.

エンドレスベルトの他端より連続的にえられた
重合体ゲルシートを第1図〜第3図に示すごとき
破砕機で、巾5mm、凹部の深さ15mm、凸部の高さ
14mm、固定刃と回転刃の回転外径とのスリツト巾
0.5mm、回転刃の回転数が20〜100r/分なる回転
数の破砕機を用いてローラー型カツターの表面ス
ピード30cm/分で、回転刃の回転数を調節した破
砕機に連続的に供給し、細片化した。破砕機出口
より約5×12×5mm角に細片化された重合体ゲル
が連続的に取出された。細片化された重合体ゲル
相互間の付着は非常に少なく、互いにバラバラの
状態であつた。
The polymer gel sheet continuously obtained from the other end of the endless belt is crushed with a crusher as shown in Figs.
14mm, slit width between fixed blade and rotary blade outer diameter
0.5 mm, using a crusher with a rotary blade rotation speed of 20 to 100 r/min, and a roller-type cutter with a surface speed of 30 cm/min, continuously feeding it to a crusher whose rotary blade rotation speed was adjusted. , fragmented. Polymer gel cut into pieces of approximately 5 x 12 x 5 mm squares was continuously taken out from the crusher outlet. There was very little adhesion between the pieces of polymer gel, and they were in a separate state.

重合体ゲルシートを連続的に破砕する際に、破
砕機の入口に約15℃に調整された冷風を吹込みな
がら実施すると、細粒化された重合体ゲルがかた
くなり、切断機の摩擦熱の発生もほとんどなく、
細片化効率が著しく改善された。
When continuously crushing a polymer gel sheet, blowing cold air adjusted to approximately 15℃ into the inlet of the crusher will harden the finely divided polymer gel and reduce the frictional heat of the cutting machine. There are almost no occurrences,
The fragmentation efficiency was significantly improved.

実施例 1 ステンレス鋼製の巾450mm、有効長3000mmのエ
ンドレスベルトに、裏面がアルミニウムで蒸着さ
れた四フツ化エチレン−エチレン共重合体フイル
ムを装着し、下方向から温水〜冷水を前記エンド
レスベルトに噴霧しうる構造としたものを、重合
用の可動式支持体としてチツ素ガスで完全に充満
された室内に設置し、100mm/分の低速度で稼働
せしめ、ベルトの下方向から15℃の水を噴霧し
た。また、可動式支持体の上部には紫外線照射源
として低圧水銀ランプを設置し、紫外線の強度を
50W/m2とした。
Example 1 A tetrafluoroethylene-ethylene copolymer film whose back surface was vapor-deposited with aluminum was attached to an endless belt made of stainless steel with a width of 450 mm and an effective length of 3000 mm, and hot to cold water was applied to the endless belt from below. A device with a sprayable structure was installed as a movable support for polymerization in a chamber completely filled with nitrogen gas, operated at a low speed of 100 mm/min, and water at 15°C was applied from below the belt. was sprayed. In addition, a low-pressure mercury lamp is installed as an ultraviolet irradiation source on the top of the movable support to control the intensity of ultraviolet rays.
It was set to 50W/ m2 .

10%塩酸水溶液でPH4に調整した濃度75%の
N,N,N−トリメチルアミノエチルメタクリレ
ートクロリドモノマー水溶液約40をチツ素ガス
により充分脱気し、稼働状態にある前記ベルト上
に13.5/時間の速度で該ベルトの一端から定量
供給した。
A 75% aqueous N,N,N-trimethylaminoethyl methacrylate chloride monomer aqueous solution adjusted to pH 4 with a 10% aqueous hydrochloric acid solution was sufficiently degassed with nitrogen gas, and was placed on the belt in operation at a rate of 13.5/hour. The feed was metered from one end of the belt at a speed.

なお、ベルト上部に設置した攪拌機付き一時貯
槽(5容量)から重合開始剤としてベンゾイン
イソプロピルエーテル5%メタノール溶液を30
ml/時間の速度で上記モノマー水溶液中に供給
し、モノマー水溶液と重合開始剤とを均一に混合
させながらベルト上に供給して紫外線照射による
重合を行なつた。
In addition, 30% benzoin isopropyl ether 5% methanol solution was added as a polymerization initiator from a temporary storage tank (5 volumes) with a stirrer installed above the belt.
The monomer aqueous solution was fed into the above monomer aqueous solution at a rate of 1 ml/hour, and the monomer aqueous solution and the polymerization initiator were uniformly mixed while being fed onto the belt to carry out polymerization by ultraviolet irradiation.

前記条件においては、モノマー水溶液がベルト
上で重合に供される時間は30分間、重合時におけ
るモノマー水溶液層は約5mmであつた。
Under the above conditions, the time during which the aqueous monomer solution was subjected to polymerization on the belt was 30 minutes, and the layer of the aqueous monomer solution during polymerization was about 5 mm.

モノマー水溶液供給開始から30分後にエンドレ
スベルトの他端より5mmの厚さのシート状の重合
体がえられた。えられた重合体はベルト表面から
人力で容易に剥離される状態にあり、約3時間の
連続重合が可能であつた。
Thirty minutes after the start of supplying the monomer aqueous solution, a sheet-like polymer having a thickness of 5 mm was obtained from the other end of the endless belt. The obtained polymer could be easily peeled off from the belt surface by hand, and continuous polymerization for about 3 hours was possible.

えられた重合体ゲルの温度は20℃であつた。 The temperature of the obtained polymer gel was 20°C.

エンドレスベルトの他端より連続的にえられた
重合体ゲルシートを、第1図〜第3図に示すごと
き、凸凹の巾5mm、凹部の深さ15mm、凸部の高さ
14mm、固定刃と回転刃のスリツト巾0.5mm、回転
刃の回転数が20〜100r/分なる破砕機を用いて、
ローラー型カツターの表面スピード100mm/分で、
回転刃の回転数を調節した破砕機に連続的に供給
して細粒化したところ、破砕機出口より約3×5
×5mm角の相互付着のない細片化した重合体ゲル
が連続的に取出された。重合体ゲルシートを連続
的に破砕する際に、比較例5のばあいと同様に約
15℃の冷風を吹込み、同様の効果をえた。
The polymer gel sheet obtained continuously from the other end of the endless belt was as shown in Figs.
Using a crusher with a slit width of 14 mm, a slit width of fixed blade and rotating blade of 0.5 mm, and a rotating speed of the rotary blade of 20 to 100 r/min,
At a roller cutter surface speed of 100 mm/min,
When the particles were continuously fed to a crusher with the rotating speed of the rotary blade adjusted to make the particles finer, approximately 3 x 5 particles were produced from the crusher outlet.
Polymer gel pieces of 5 mm square pieces with no mutual adhesion were continuously taken out. When continuously crushing the polymer gel sheet, as in the case of Comparative Example 5, approximately
A similar effect was obtained by blowing cold air at 15℃.

[発明の効果] 本発明の方法は、 (1) 非常にかたい重合体ゲルであつても、機械摩
擦もしくは物理的な力によつて重合体の分子量
を低下させることなく、容易に細片化ゲルが取
得できるので、高分子量の重合体がえられる (2) 細片化ゲルは相互に付着せずに、バラバラ状
態を呈し、かつ微細化されているので、乾燥時
における乾燥効率を著しく改良しうる (3) 重合工程から乾燥行程までを連続化プロセス
となしうる (4) 紫外線を照射することによる重合方法を採用
することにより設備のコンパクト化がはかられ
る などの点で優れたものである。
[Effects of the Invention] The method of the present invention has the following advantages: (1) Even a very hard polymer gel can be easily broken into pieces without reducing the molecular weight of the polymer by mechanical friction or physical force. Since fragmented gel can be obtained, a polymer with high molecular weight can be obtained. (2) Because fragmented gel does not stick to each other and is in pieces, and is finely divided, it significantly improves the drying efficiency during drying. (3) It is possible to make the process from the polymerization process to the drying process a continuous process. (4) It is superior in that the equipment can be made more compact by adopting a polymerization method that uses ultraviolet irradiation. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる破砕機の一実施態様の
正面図、第2図は第1図に示す破砕機のA−
A′断面図、第3図は第1図に示す破砕機の平面
図、第4図はローラー型カツターのかみ合い部分
に関する説明図、第5図は第4図に示すかみ合い
部分の拡大説明図である。 図面の主要符号、1……回転刃、2……固定
刃、3,4……ローラー型カツター。
FIG. 1 is a front view of an embodiment of the crusher used in the present invention, and FIG. 2 is a front view of an embodiment of the crusher used in the present invention.
A' sectional view, Figure 3 is a plan view of the crusher shown in Figure 1, Figure 4 is an explanatory diagram of the engaging part of the roller type cutter, and Figure 5 is an enlarged explanatory diagram of the engaging part shown in Figure 4. be. Main symbols in the drawing: 1...rotary blade, 2...fixed blade, 3, 4...roller type cutter.

Claims (1)

【特許請求の範囲】[Claims] 1 水溶性ビニル系単量体の水溶液に紫外線を照
射することによつて重合させてえられた固形分率
20〜90重量%の重合体ゲルを破砕するに際して、
可動式支持体を用いて前記重合体ゲルを連続的に
製造し、破砕機に供給し、25℃以下の冷風下、互
いにかみあう方向に回転する1対のローラー型カ
ツターに重合体ゲルをくい込ませて短ざく状に切
断し、ついでえられた短ざく状の重合体ゲルを回
転刃と固定刃によつて細片状に切断することを特
徴とする水溶性重合体ゲルの破砕方法。
1 Solid content obtained by polymerizing an aqueous solution of a water-soluble vinyl monomer by irradiating it with ultraviolet light
When crushing 20-90% by weight polymer gel,
The polymer gel is continuously produced using a movable support, supplied to a crusher, and then bitten into a pair of roller-type cutters that rotate in a mutually interlocking direction under cold air at a temperature of 25°C or less. 1. A method for crushing a water-soluble polymer gel, which comprises cutting the polymer gel into short pieces using a rotary blade and a fixed blade.
JP23356084A 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel Granted JPS61110510A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP23356084A JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel
CA000494151A CA1253833A (en) 1984-11-06 1985-10-29 Process for preparing water-soluble polymer gel particles
CN85109717A CN1007796B (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
FR858516383A FR2572671B1 (en) 1984-11-06 1985-11-05 PROCESS FOR THE PREPARATION OF WATER-SOLUBLE POLYMER GEL PARTICLES
US06/795,263 US4690788A (en) 1984-11-06 1985-11-05 Process for preparing water-soluble polymer gel particles
FI854352A FI84448C (en) 1984-11-06 1985-11-05 FOERFARANDE FOR FRAMSTAELLNING AV VATTENLOESLIGA POLYMERPARTIKLAR.
DE19853539385 DE3539385A1 (en) 1984-11-06 1985-11-06 METHOD FOR PRODUCING POLYMER GEL PARTICLES
GB8530862A GB2184054B (en) 1984-11-06 1985-12-14 Process for preparing water-soluble polymer gel particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23356084A JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel

Publications (2)

Publication Number Publication Date
JPS61110510A JPS61110510A (en) 1986-05-28
JPH047887B2 true JPH047887B2 (en) 1992-02-13

Family

ID=16956978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23356084A Granted JPS61110510A (en) 1984-11-06 1984-11-06 Crushing method of water-soluble polymer gel

Country Status (1)

Country Link
JP (1) JPS61110510A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ID20756A (en) * 1996-10-24 1999-02-25 Nippon Catalytic Chem Ind WATER ABSORPTION RESIN PRODUCTION PROCESS
JP4920182B2 (en) * 2003-09-01 2012-04-18 株式会社日本触媒 Method for producing water absorbent resin particles
EP1510317B1 (en) * 2003-09-01 2007-02-21 Nippon Shokubai Co., Ltd. Process for production of water-absorbent resin particles from hydrogel particles
SE526184C2 (en) * 2004-10-07 2005-07-19 Goesta Larssons Mek Verkst Ab Roller is for scraping potatoes and manioc roots and along its periphery are a number of axial tracks for retention of strip-shaped scraping tools axially inserted in tracks
TWI383008B (en) 2005-08-17 2013-01-21 Nippon Catalytic Chem Ind Production method of water-absorbent resin, water-absorbent resin, and usage of water-absorbent resin
EP2104601B1 (en) * 2007-01-16 2019-09-25 Basf Se Production of superabsorbent polymers on a continuous belt reactor
CN110402267A (en) * 2017-03-24 2019-11-01 住友精化株式会社 The preparation method of water-absorbing resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071745A (en) * 1973-10-27 1975-06-13
JPS541954U (en) * 1977-06-07 1979-01-08

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071745A (en) * 1973-10-27 1975-06-13
JPS541954U (en) * 1977-06-07 1979-01-08

Also Published As

Publication number Publication date
JPS61110510A (en) 1986-05-28

Similar Documents

Publication Publication Date Title
US4690788A (en) Process for preparing water-soluble polymer gel particles
EP0497623B1 (en) Method for production of particulate hydrated gel polymer and absorbent resin
US7638078B2 (en) Process for production of hydrogel particles and process for cutting of high-concentration hydrogel sheet
US4762862A (en) Process for preparing high molecular weight acrylic polymers
US6140395A (en) Method of producing hydrophilic resin
JPH0764897B2 (en) Continuous production method of crosslinked fine gel polymer.
JPH047887B2 (en)
JP4920182B2 (en) Method for producing water absorbent resin particles
JP5298288B2 (en) Method for producing powdery polymer
JPH032042B2 (en)
JPS6316402B2 (en)
US4535131A (en) Process for producing partially hydrolyzed acrylamide polymer
JP2652431B2 (en) Method for producing partially hydrolyzed acrylamide polymer powder
JP3469007B2 (en) Grinding method of adhesive hydrogel polymer
JP2000189794A (en) Production of water absorbing material
JPH11140193A (en) Production of hydrophilic polymer
JPS6139323B2 (en)
JPS63273609A (en) Production of high-molecular weight cationic acrylic polymer
JP4097754B2 (en) Method for producing water absorbent resin
JP2003251106A (en) Manufacturing method for granular polymeric flocculant
JP2847249B2 (en) Method for producing granular water-soluble polymer
JPH04220407A (en) Continuous production of highly water-absorbing polymer
JP2023064963A (en) Method for producing water-absorbing resin, and water-absorbing resin
US20070167548A1 (en) Process for preparing water-soluble polymer gels
JPS588339B2 (en) Molding method for hydrated acrylamide polymer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees