JPH02122077A - Device for forming deposited film - Google Patents

Device for forming deposited film

Info

Publication number
JPH02122077A
JPH02122077A JP27308388A JP27308388A JPH02122077A JP H02122077 A JPH02122077 A JP H02122077A JP 27308388 A JP27308388 A JP 27308388A JP 27308388 A JP27308388 A JP 27308388A JP H02122077 A JPH02122077 A JP H02122077A
Authority
JP
Japan
Prior art keywords
substrate
electrode
window
light
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27308388A
Other languages
Japanese (ja)
Inventor
Nobumasa Suzuki
伸昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27308388A priority Critical patent/JPH02122077A/en
Publication of JPH02122077A publication Critical patent/JPH02122077A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To uniformly form a good-quality insulating film on a substrate at low temp. by arranging a couple of parallel mesh electrodes across an optical path between a light inlet window and the substrate, grounding the electrode close to the window, and connecting the other electrode to a high-frequency power source. CONSTITUTION:Two parallel mesh electrodes 8 and 12 are provided across an optical path between the light inlet window 10 and the substrate 5 to form a plasma producing means, and the distance between the electrodes 8 and 12 is controlled to about 1/2-1/10 times the distance between the electrode 8 and the substrate 5. The electrode 12 close to the window 10 is grounded, and the other electrode 8 is connected to the high-frequency power source 9. The raw gases such as N2 and SiH4 are introduced into a reaction vessel 1 from inlet ports 2 and 3 to keep the inside of the vessel 1 at a specified pressure through an exhaust port 4. The substrate 5 is irradiated with the light from a light source 11 through the electrodes 8 and 12, a high-frequency output generated from the power source 9 is impressed on the electrode 8 to produce plasma, and the film of SiN, etc., is deposited on the substrate 5. by this method, a good-quality deposited film is formed in uniform thickness at low temp.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体素子の製造に用いられる堆積膜形成装置
に関し、特に低温で良質な絶縁膜を均一に形成する堆積
膜形成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a deposited film forming apparatus used for manufacturing semiconductor devices, and more particularly to a deposited film forming apparatus that uniformly forms a high quality insulating film at low temperatures.

[従来の技術] 半導体素子、特に超LSIの製造プロセスにおいて、絶
縁膜形成のためのCVD装置は重要な位置を占めている
。特に低温化の要請される最終保護膜の形成工程にはプ
ラズマCVD装置が用いられており、例えば、モノシラ
ンとアンモニア又は窒素との混合ガスを平行平板電極間
に導入し、その雰囲気内を0 、1 torr台に保ち
、基体の設置されていない方の電極に高周波電圧を印加
してプラズマを発生させ、これらのガスを励起、分解し
、250〜300℃に加熱した基体上にSiN膜を形成
する。
[Prior Art] In the manufacturing process of semiconductor devices, especially VLSIs, CVD equipment for forming insulating films occupies an important position. In particular, plasma CVD equipment is used in the process of forming the final protective film, which requires a low temperature. For example, a mixed gas of monosilane and ammonia or nitrogen is introduced between parallel plate electrodes, and the atmosphere is heated to zero or Maintaining the temperature at 1 Torr level, apply a high frequency voltage to the electrode on which the substrate is not installed to generate plasma, excite and decompose these gases, and form a SiN film on the substrate heated to 250 to 300°C. do.

しかしながら、これらの従来例のプラズマCVD装置で
は、以下のような問題点があった:(1)高速イオンの
くい打ち効果(peeningeffect)により生
じる膜の内部応力は、下地のA1配線のストレスマイグ
レーションによる断線の原因になる。
However, these conventional plasma CVD apparatuses have the following problems: (1) The internal stress of the film caused by the peening effect of high-speed ions is due to stress migration of the underlying A1 wiring. This may cause wire breakage.

(2)堆積膜中に大量に混入する水素原子がゲートに拡
散することにより、閾値電圧が変動する。
(2) The threshold voltage fluctuates as a large amount of hydrogen atoms mixed into the deposited film diffuse into the gate.

この問題を解決するためには500℃以上の高温が必要
である。
To solve this problem, a high temperature of 500° C. or higher is required.

(3)イオン衝撃によるダメージのために素子や膜の電
気的特性が劣化する。
(3) The electrical characteristics of elements and films deteriorate due to damage caused by ion bombardment.

これらの問題は、基体がプラズマ最強部中に配置される
ために基体シース電位が高いことと、水素脱離を促進す
る表面励起手段が加熱以外に用いられていないことに起
因している。
These problems are caused by the fact that the substrate sheath potential is high because the substrate is placed in the strongest plasma region, and that no surface excitation means other than heating is used to promote hydrogen desorption.

また、最近、シース電位を下げるために基体をプラズマ
最強部から離し、且つ表面反応を促進するために光を基
体に照射する混成励起CVD装置が提案され、光照射に
よる基体の温度上昇が300℃になる条件で、上記従来
例の問題点をほぼ解決している。
Recently, a hybrid excitation CVD system has been proposed in which the substrate is separated from the strongest plasma part to lower the sheath potential and irradiated with light to promote surface reactions. Under these conditions, the problems of the conventional example described above are almost solved.

最近の従来例の混成励起CVD装置の概要断面図を第2
図に示す0図中、1は反応容器、2はN。
A schematic cross-sectional view of a recent conventional hybrid excitation CVD device is shown in the second figure.
In the 0 diagram shown in the figure, 1 is a reaction vessel and 2 is N.

など単独ではプラズマ反応で堆積し得ない原料ガスの導
入口、3はSiH<など単独でもプラズマ反応で堆積し
得る原料ガスの導入口、4はターボ分子ポンプなどに接
続された排気口、5はSiなどの基体、6は基体5のた
めの支持体、7は石英管、8は石英管7を通して該管内
に高周波出力を投入する電極、9は電極8に接続された
周波数13.56MHzなどの高周波電源、10は石英
窓、11は石英窓゛10を通して基体5に光を照射する
Xeランプなどの光源である。
3 is an inlet for a source gas that cannot be deposited by a plasma reaction alone, 3 is an inlet for a source gas that can be deposited by a plasma reaction, such as SiH<, 4 is an exhaust port connected to a turbo molecular pump, etc., 5 is an exhaust port connected to a turbo molecular pump, etc. A substrate such as Si, 6 a support for the substrate 5, 7 a quartz tube, 8 an electrode for injecting high frequency output into the tube through the quartz tube 7, and 9 connected to the electrode 8 with a frequency of 13.56 MHz, etc. A high frequency power source, 10 a quartz window, and 11 a light source such as a Xe lamp that irradiates light onto the base 5 through the quartz window 10.

第2図に示す装置を用いる場合には、まず、導入口2.
3よりN2やSiH,などの原料ガスを反応容器1中に
導入し、排気口4とポンプとの間に設置されたコンダク
タンスバルブを調節して反応容器内の圧力を1〜100
 mtorrに保つ。Xeランプなどの光源11からの
光をSiなどの基体5に0.1〜IW/Clm2の照度
で照射する。この時基体表面温度は100〜500℃に
上昇する。基体用支持体6を10〜1100rpの回転
数で回転させる。高周波電源9で発生した100〜10
00Wの高周波出力を電極8に印加し、反応容器1内に
プラズマを発生させ、SiNなどの膜を堆積させる。
When using the apparatus shown in FIG. 2, first, the inlet 2.
3, a raw material gas such as N2 or SiH is introduced into the reaction vessel 1, and the pressure inside the reaction vessel is adjusted to 1 to 100 by adjusting the conductance valve installed between the exhaust port 4 and the pump.
Keep it at mtorr. A substrate 5 made of Si or the like is irradiated with light from a light source 11 such as a Xe lamp at an illuminance of 0.1 to IW/Clm2. At this time, the substrate surface temperature rises to 100 to 500°C. The base support 6 is rotated at a rotation speed of 10 to 1100 rpm. 100 to 10 generated by high frequency power supply 9
A high frequency output of 00 W is applied to the electrode 8 to generate plasma in the reaction vessel 1 and deposit a film of SiN or the like.

この場合には、プラズマ密度は石英管内部で最も濃く、
基体5付近では薄くなり、基体シース電位は5〜50V
になるので、高速イオンに起因するダメージ及びストレ
スは低減する。また、光で水素脱離などの表面反応を促
進しているので、低温で低水素含有率で、緻密な膜が形
成できる。
In this case, the plasma density is highest inside the quartz tube,
It becomes thin near the base 5, and the base sheath potential is 5 to 50V.
Therefore, damage and stress caused by fast ions are reduced. Furthermore, since surface reactions such as hydrogen desorption are promoted by light, dense films can be formed at low temperatures and with low hydrogen content.

[発明が解決しようとする課題] しかしながら、これらの最近の提案例の混成励起CVD
装置の場合には、プラズマ最強部を基体5から離すため
に電極8の表面積を反応容器1の内壁面積の1710以
下に小さくしているので、プラズマが中央に集中し、反
応容器1内に基体支持体6の径方向にプラズマ密度勾配
ができ、それで実用的な膜厚均一性を得るためには、シ
ステムを複雑にする回転機構を導入しなければならない
、更に、基体が大口径化すると、回転させても均一にな
りにくいという問題があった。
[Problems to be solved by the invention] However, these recently proposed examples of hybrid excitation CVD
In the case of this device, in order to separate the strongest part of the plasma from the substrate 5, the surface area of the electrode 8 is made smaller to 1710 or less of the inner wall area of the reaction vessel 1, so that the plasma is concentrated in the center and the substrate is heated inside the reaction vessel 1. A plasma density gradient is generated in the radial direction of the support 6, and in order to obtain practical film thickness uniformity, it is necessary to introduce a rotation mechanism that complicates the system.Furthermore, as the diameter of the substrate increases, There was a problem in that it was difficult to achieve uniformity even when rotated.

本発明の目的は、低温で良質な堆積膜の形成を可能にす
る混成励起CVD装置による堆積膜形成の膜厚均一性を
向上させることである。
An object of the present invention is to improve the film thickness uniformity of deposited film formation using a hybrid excitation CVD apparatus that enables the formation of high-quality deposited films at low temperatures.

[課題を解決するための手段] 本発明の堆積膜形成装置は、プラズマ発生手段及び基体
への可視・紫外光照射手段を有する混成励起CVD装置
である堆積膜形成装置において、該プラズマ発生手段が
光導入窓と基体との間に配置された2枚の平行メツシュ
電極で構成されており、該メツシュ電極が光路を横切っ
ていて、該光導入窓に近い方のメツシュ電極が接地され
ており、そして他方のメツシュ電極が高周波電源に接続
されていることを特徴とする。
[Means for Solving the Problems] The deposited film forming apparatus of the present invention is a hybrid excitation CVD apparatus having a plasma generating means and a means for irradiating visible/ultraviolet light onto a substrate, in which the plasma generating means is It consists of two parallel mesh electrodes arranged between a light introduction window and a base, the mesh electrodes crossing the optical path, and the mesh electrode closer to the light introduction window being grounded, The other mesh electrode is connected to a high frequency power source.

本発明の堆積膜形成装置においては、電極と基体との距
離は該電極相互間の距離の2〜10倍であることが好ま
しい。
In the deposited film forming apparatus of the present invention, the distance between the electrode and the substrate is preferably 2 to 10 times the distance between the electrodes.

本発明を以下に図面を参照して説明する。The invention will be explained below with reference to the drawings.

第1図は本発明の堆積膜形成装置の実施例を示す説明概
要図であり、1は反応容器、2はN2など単独ではプラ
ズマ反応で堆積し得ない原料ガスの導入口、3は5i8
4など単独でもプラズマ反応で堆積し得る原料ガスの導
入口、4はターボ分子ポンプなどに接続された排気口、
5はSiなどの基体、6は基体5のための支持体、8は
反応容器1内に高周波出力を投入するメツシュ電極、9
は電極8に接続された周波数13.56MHzなどの高
周波電源、10は石英窓、11は石英窓10を通して基
体5に光を照射するXeランプなどの光源、12は接地
されたメツシュ電極である。メツシュ電8i!8はスパ
ッタ効果による汚染防止のなめに堆積膜と同種の膜でコ
ーティングされていることが望ましく、また基体シース
電位が50V以下になるように電極8と電極12との間
隔は電極8と基体5との間隔の1/2〜1/10の範囲
の適当な位置に保つことが好ましい、光源11の波長は
、基体に付着した反応中間体が吸収して水素脱離などの
表面反応を促進することができる波長、例えば、SiN
の場合には25C)−450nmであることが適してい
る。
FIG. 1 is an explanatory schematic diagram showing an embodiment of the deposited film forming apparatus of the present invention, where 1 is a reaction vessel, 2 is an inlet for a source gas such as N2 that cannot be deposited by plasma reaction alone, and 3 is a 5i8
4 is an inlet for raw material gas that can be deposited by plasma reaction even when it is alone; 4 is an exhaust port connected to a turbo molecular pump, etc.;
5 is a substrate such as Si, 6 is a support for the substrate 5, 8 is a mesh electrode for inputting high frequency output into the reaction vessel 1, 9
10 is a quartz window, 11 is a light source such as a Xe lamp that irradiates light onto the base 5 through the quartz window 10, and 12 is a grounded mesh electrode. Metshu Den 8i! It is desirable that electrode 8 be coated with the same type of film as the deposited film in order to prevent contamination due to sputtering effects, and the distance between electrode 8 and electrode 12 should be set so that the substrate sheath potential is 50 V or less. It is preferable to maintain the wavelength of the light source 11 at an appropriate position in the range of 1/2 to 1/10 of the distance between the substrate and the substrate. wavelengths that can be used, for example, SiN
In this case, 25C)-450 nm is suitable.

この装置においては、導入口2.3よりN2やSiH,
などの原料ガスを反応容器1中に導入し。
In this device, N2, SiH,
A raw material gas such as is introduced into the reaction vessel 1.

排気口4とポンプとの間に設置されたコンダクタンスバ
ルブを調節して反応容器内の圧力を1〜100mtor
rに保つ、Xeランプなどの光源11からの光をメツシ
ュ電極を通してSiなどの基体5に0.1〜IW/am
2の照度で照射する。この時基体表面温度は100〜5
00℃に上昇するので、支持体内のヒータ又はクーラを
用いて所望の温度に設定する。高周波電源9で発生した
100〜1000Wの高周波出力を電極8に印加し、反
応容器1内にプラズマを発生させ、SiNなどの膜を堆
積させる。
Adjust the conductance valve installed between the exhaust port 4 and the pump to maintain the pressure inside the reaction vessel from 1 to 100 mtor.
The light from the light source 11 such as a Xe lamp is passed through the mesh electrode and applied to the substrate 5 such as Si at a rate of 0.1 to IW/am.
Irradiate at an illuminance of 2. At this time, the substrate surface temperature is 100-5
Since the temperature rises to 00°C, a heater or cooler inside the support is used to set the desired temperature. A high frequency output of 100 to 1000 W generated by a high frequency power source 9 is applied to the electrode 8 to generate plasma in the reaction vessel 1 and deposit a film of SiN or the like.

電界は主として高周波電極8と接地電極12との間にか
かり、濃いプラズマが生じる。基体5付近には電極面積
程度の広さで均一で且つ薄いプラズマが生じる。基体シ
ース電位は5〜50Vになるので、高速イオンに起因す
るダメージやスト1/スは低減し、且つ均一な膜厚分布
が得られる。接地電極12は光導入窓付近に電界をもら
さないシールドの役目も果たしており、窓上べの膜付着
による曇りを低減する効果もある。また、導入口2から
のガス導入は窓上べの膜付着を防止するパージの効果も
持っている。
The electric field is mainly applied between the high frequency electrode 8 and the ground electrode 12, and a dense plasma is generated. A uniform and thin plasma is generated in the vicinity of the base 5 with an area approximately equal to the area of the electrode. Since the substrate sheath potential is 5 to 50 V, damage and stress caused by high-speed ions are reduced, and a uniform film thickness distribution can be obtained. The ground electrode 12 also serves as a shield to prevent an electric field from passing near the light introduction window, and also has the effect of reducing fogging caused by film adhesion on the top of the window. Furthermore, the gas introduced through the inlet 2 also has a purging effect that prevents film buildup on the window surface.

し発明の効果] 本発明の堆積膜形成装置によれば、低温で良質な堆積膜
の形成を可能にする混成励起CVD装置による堆積膜形
成の膜厚均一性を向上させることができる。
Effects of the Invention] According to the deposited film forming apparatus of the present invention, it is possible to improve the film thickness uniformity of the deposited film formed by the hybrid excitation CVD apparatus that enables the formation of high quality deposited films at low temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の堆積膜形成装置の実施例を示す説明概
要図である。 第2図は最近の従来例の混成励起CVD装置の概要断面
図である。 図中51は反応容器、2はN2など単独ではプラズマ反
応で堆積し得ない原料ガスの導入口、3はSiH,など
単独でもプラズマ反応で堆積し得る原料ガスの導入口、
4はターボ分子ポンプなどに接続された排気口、5はS
iなどの基体、6は基体5のための支持体、7は石英管
、8は反応容器1内に高周波出力を投入する電極、9は
電極8に接続された周波数13.56MHzなどの高周
波電源、10は石英窓、11は石英窓10を通して基体
5に光を照射するXeランプなどの光源、12は接地さ
れた電極である。
FIG. 1 is an explanatory schematic diagram showing an embodiment of the deposited film forming apparatus of the present invention. FIG. 2 is a schematic sectional view of a recent conventional hybrid excitation CVD apparatus. In the figure, 51 is a reaction vessel, 2 is an inlet for a raw material gas such as N2 which cannot be deposited by a plasma reaction alone, and 3 is an inlet for a raw material gas such as SiH which can be deposited by a plasma reaction by itself;
4 is an exhaust port connected to a turbo molecular pump, etc., 5 is S
6 is a support for the substrate 5; 7 is a quartz tube; 8 is an electrode for supplying high frequency output into the reaction vessel 1; 9 is a high frequency power source connected to the electrode 8, such as a frequency of 13.56 MHz; , 10 is a quartz window, 11 is a light source such as a Xe lamp that irradiates light onto the base 5 through the quartz window 10, and 12 is a grounded electrode.

Claims (1)

【特許請求の範囲】[Claims] プラズマ発生手段及び基体への可視・紫外光照射手段を
有する堆積膜形成装置において、該プラズマ発生手段が
光導入窓と基体との間に配置された2枚の平行メッシュ
電極で構成されており、該メッシュ電極が光路を横切っ
ていて、該光導入窓に近い方のメッシュ電極が接地され
ており、そして他方のメッシュ電極が高周波電源に接続
されていることを特徴とする堆積膜形成装置。
A deposited film forming apparatus having a plasma generation means and a means for irradiating visible/ultraviolet light onto a substrate, wherein the plasma generation means is composed of two parallel mesh electrodes arranged between a light introduction window and the substrate, A deposited film forming apparatus characterized in that the mesh electrodes cross the optical path, the mesh electrode closer to the light introduction window is grounded, and the other mesh electrode is connected to a high frequency power source.
JP27308388A 1988-10-31 1988-10-31 Device for forming deposited film Pending JPH02122077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27308388A JPH02122077A (en) 1988-10-31 1988-10-31 Device for forming deposited film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27308388A JPH02122077A (en) 1988-10-31 1988-10-31 Device for forming deposited film

Publications (1)

Publication Number Publication Date
JPH02122077A true JPH02122077A (en) 1990-05-09

Family

ID=17522906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27308388A Pending JPH02122077A (en) 1988-10-31 1988-10-31 Device for forming deposited film

Country Status (1)

Country Link
JP (1) JPH02122077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433787A (en) * 1991-12-12 1995-07-18 Canon Kabushiki Kaisha Apparatus for forming deposited film including light transmissive diffusion plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433787A (en) * 1991-12-12 1995-07-18 Canon Kabushiki Kaisha Apparatus for forming deposited film including light transmissive diffusion plate
US5585148A (en) * 1991-12-12 1996-12-17 Canon Kabushiki Kaisha Process for forming a deposited film using a light transmissive perforated diffusion plate

Similar Documents

Publication Publication Date Title
US5015330A (en) Film forming method and film forming device
JP4382265B2 (en) Method and apparatus for forming silicon oxide film
JP3514186B2 (en) Thin film forming method and apparatus
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
KR930006857A (en) Silicon oxide film production method and device
JPH03111578A (en) Method for forming thin film and device for forming thin film
JPH0864540A (en) Thin film forming method and device
JPH06333857A (en) Device and method for forming film
JPH0766186A (en) Anisotropic depositing method of dielectric
JPH02122077A (en) Device for forming deposited film
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JP3084395B2 (en) Semiconductor thin film deposition method
JPH0587171B2 (en)
JPH0831753A (en) Method and equipment for vhf plasma processing
JP3137532B2 (en) Plasma CVD equipment
JP2723053B2 (en) Method and apparatus for forming thin film
JP3310875B2 (en) Plasma CVD equipment
JPS6063376A (en) Apparatus for producing deposited film by vapor phase method
JP3615919B2 (en) Plasma CVD equipment
JP2500412B2 (en) Method of forming silicon film
JPH0456771A (en) Thin film forming device
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JP3189400B2 (en) Method of forming polycrystalline silicon film
JP3980274B2 (en) Chemical vapor deposition apparatus and film forming method using the same
JP3802990B2 (en) Plasma CVD equipment