JPH02118079A - Silver coated spherical resin and production thereof - Google Patents

Silver coated spherical resin and production thereof

Info

Publication number
JPH02118079A
JPH02118079A JP63270750A JP27075088A JPH02118079A JP H02118079 A JPH02118079 A JP H02118079A JP 63270750 A JP63270750 A JP 63270750A JP 27075088 A JP27075088 A JP 27075088A JP H02118079 A JPH02118079 A JP H02118079A
Authority
JP
Japan
Prior art keywords
resin
silver
tin
soln
stannous chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63270750A
Other languages
Japanese (ja)
Other versions
JP2692182B2 (en
Inventor
Akira Nakabayashi
明 中林
Masahiro Sekiguchi
昌宏 関口
Motohiko Yoshizumi
素彦 吉住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP27075088A priority Critical patent/JP2692182B2/en
Publication of JPH02118079A publication Critical patent/JPH02118079A/en
Application granted granted Critical
Publication of JP2692182B2 publication Critical patent/JP2692182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals

Abstract

PURPOSE:To obtain a superior electrically conductive filler for electrically conductive resin or paste by immersing fine spherical resin in an aq. tin chloride soln. having a very low Pb content to form a tin coat and by forming a silver coat on the tin coat by electroless plating. CONSTITUTION:Hydrochloric acid is added to an aq. soln. contg. 30g/l stannous chloride and resin powder having cation exchange capacity is immersed in the soln. by 1-10g/l to adsorb Pb in the soln. on the resin powder and to prepare an aq. tin chloride soln. having <10ppb Pb content. Spherical resin of 0.5-1,000mum average grain size such as cross-linked polystyrene resin or phenol resin is immersed in the prepd. soln. to form a tin coat on the surface of the resin. This resin is then immersed in an electroless silver plating soln. to form a silver coat on the tin coat by electroless plating. An electrically conductive filler for electrically conductive resin or paste is produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、銀被覆球状樹脂に係わり、更に詳細には、導
電性樹脂や導電性ペースト等に用いられる導電性フィラ
ーとしての銀被覆球状樹脂に関す・る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a silver-coated spherical resin, and more particularly, to a silver-coated spherical resin as a conductive filler used in conductive resins, conductive pastes, etc. Regarding.

〔従来の技術〕[Conventional technology]

樹脂を導電化する一つの方法として、導電性フィラーを
樹脂中に混合する方法がある。
One method of making resin conductive is to mix a conductive filler into the resin.

導電性フィラーとしては、従来、カーボンブランク、金
属粉末ないし金属繊維、あるいは、金属酸化物の粉末等
が用いられる。また、新規なものとしては、ガラスピー
ズに銀を被覆したもの5粒状樹脂にニッケル等を被覆し
たものも提案されている。
As the conductive filler, carbon blank, metal powder or metal fiber, metal oxide powder, etc. are conventionally used. In addition, as novel products, glass beads coated with silver and resin particles coated with nickel or the like have also been proposed.

これらの導電性フィラーのうち、金属粉末や金属誠維が
最も導電性が高いが、比重が大きく樹脂に必要量混合す
ると樹脂全体の比重が増し、また、該組成物の強度も低
下する等の問題がある。
Among these conductive fillers, metal powder and metal fiber have the highest conductivity, but they have a large specific gravity and when mixed in the required amount with the resin, the specific gravity of the entire resin increases and the strength of the composition decreases. There's a problem.

カーボンブラックは比重が小さく、また、比較的少ない
混合量で樹脂組成物を導電化できるが、電磁波シールド
等に適する高い導電性を得るまでに至らず、しかも、樹
脂の種類によっては分散性が劣る。
Carbon black has a small specific gravity and can make a resin composition electrically conductive with a relatively small amount mixed, but it does not achieve high electrical conductivity suitable for electromagnetic shielding, etc., and furthermore, depending on the type of resin, the dispersibility is poor. .

金属酸化物は導電性が低く、帯電防止程度の導電性を有
するにとどまる。
Metal oxides have low conductivity, and only have a conductivity that is sufficient to prevent static electricity.

一方、ガラスピーズに銀を被覆したものは割れ易く、@
着性も悪いために樹脂と混合する際に割れたり剥離する
欠点があり、導電性が劣化するのでほとんど使用されて
いない。
On the other hand, glass beads coated with silver are easily broken.
Because of its poor adhesion, it has the disadvantage of cracking or peeling when mixed with resin, and its conductivity deteriorates, so it is rarely used.

また、粒状樹脂にニッケル等を被覆した導電性フィラー
は導電性が低い問題がある。例えば、特公昭61−37
293号のフィラーは粒状樹脂粉末にニッケルを64w
t%被覆したものであり、この粉末を10kg/dの圧
力でプレスしながら測定した場合の体積抵抗は10’Ω
・Cra程度であり、一方、銀を40wt%被覆し同様
にプレスしながら測定した場合の値は10−”Ω・c程
度である。また特開昭61−64882号は、同じ粒状
樹脂にニッケルを4(ht%被覆して、エポキシ樹脂に
58wt%混合した樹脂組成物を開示するか、その体積
抵抗はlo−1Ω・Cl11程度であり、@30vt%
被覆後銀10vt%被覆し、同様にエポキシ樹脂に混合
したものは10−2Ω・cm程度であり、何れも導電性
が低い。
Further, a conductive filler in which granular resin is coated with nickel or the like has a problem of low conductivity. For example,
The filler of No. 293 is 64w of nickel in granular resin powder.
t% coating, and the volume resistivity when measured while pressing this powder at a pressure of 10 kg/d is 10'Ω.
・On the other hand, when coated with 40 wt% silver and measured while pressing in the same way, the value is about 10-''Ω・c.In addition, in JP-A-61-64882, nickel is coated on the same granular resin. Discloses a resin composition coated with 4 (h%) and mixed with epoxy resin at 58 wt%, and its volume resistivity is about lo-1Ω・Cl11, @30vt%
After coating, a material covered with 10 vt% silver and similarly mixed with an epoxy resin had a conductivity of about 10-2 Ω·cm, and both had low conductivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

信頼性のある導電性フィラーの条件としては、優れた導
電性、優れた環境安定性、優れた分散性、高密度充填可
能であること等が挙げられ、導電性と環境安定性を向上
する観点からは、銀被覆が選ばれ、分散性と充填性の観
点からは基材の形状として球状粒子が好ましい。ところ
が球状粒子に銀を被覆したものは前述したように何れも
満足できるものではなかった。
Conditions for a reliable conductive filler include excellent conductivity, excellent environmental stability, excellent dispersibility, and the ability to be packed at high density. From the viewpoint of dispersibility and filling properties, spherical particles are preferred as the shape of the substrate. However, as mentioned above, none of the spherical particles coated with silver were satisfactory.

〔問題点の解決に係わる着眼点、知見〕本発明者等は上
記事情に鑑み、鋭意研究を重ねた結果、導電性、環境安
定性1分散性、密着性等の優れた、これまでにない新規
な導電性フィラーを見いだした。
[Points of focus and knowledge related to solving the problems] In view of the above circumstances, the present inventors have conducted intensive research and have found a novel product with excellent conductivity, environmental stability, dispersibility, adhesion, etc. We have discovered a new conductive filler.

樹脂に金属を被覆することは一般的に行われており、無
電解めっき法により銀を被覆する際に前処理としてスズ
ないしスズ化合物の被覆(以下スズ被覆という)を設け
ることも一般的に行われている。
It is common practice to coat resin with metal, and when coating silver using electroless plating, it is also common practice to provide a coating with tin or a tin compound (hereinafter referred to as tin coating) as a pretreatment. It is being said.

しかし、樹脂に金属を被覆した場合密着性に問題があり
、−射的には、物理的、あるいは、化学的にエツチング
によって表面を荒し、アンカー効果によって密着性を向
上させている。ところが、導電性フィラーとして好適な
球状粒子はその形状を維持したままエツチングすること
が極めて困難である。
However, when a metal is coated on a resin, there is a problem in adhesion, and the surface is roughened by physical or chemical etching to improve adhesion due to the anchor effect. However, it is extremely difficult to etch spherical particles suitable as conductive fillers while maintaining their shape.

更に、ポリスチレン樹脂、フェノール樹脂からなる上記
球状樹脂の粉末についてスズによる前処理を行っても、
充分なめっき被膜を形成することが出来ない問題がある
。この理由は、上記球状樹脂が平均粒径1000μ以下
の微粉末であるとき、陽イオン交換能を有し、スズ溶液
中の不純物釦を優先的に吸着するためであると推察され
る。スズ溶液として常用される工業用の塩化第一スズに
は微量の鉛が不純物として混在している。鉛はスズと同
族であるため完全に除去することが疋しく、少なくでも
、0.003wt%の鉛が通常含まれている。
Furthermore, even if the spherical resin powder made of polystyrene resin and phenolic resin is pretreated with tin,
There is a problem that a sufficient plating film cannot be formed. The reason for this is presumed to be that when the spherical resin is a fine powder with an average particle size of 1000 μm or less, it has a cation exchange ability and preferentially adsorbs impurity particles in the tin solution. Industrial stannous chloride, which is commonly used as a tin solution, contains trace amounts of lead as an impurity. Since lead is in the same family as tin, it is difficult to completely remove it, and at least 0.003 wt% of lead is usually included.

′s1量の鉛がスズめっき浴に混在しても、陽イオン交
換能を有しない担体にスズめっきを施す場合にはあまり
問題はない。ところが陽イオン交換能を有する上記球状
樹脂粉末の場合には、鉛の塩酸酸性における選択係数、
分離係数がスズに比べて非常に大きいため釦の交換吸着
が優先的に起こり、スズの交換吸着が妨げられ、従って
銀も均一に被覆されない。
Even if lead in an amount of 's1 is mixed in the tin plating bath, there is no problem when tin plating is applied to a carrier that does not have cation exchange ability. However, in the case of the above-mentioned spherical resin powder having cation exchange ability, the selectivity coefficient of lead in hydrochloric acid acidity,
Since the separation coefficient is very large compared to tin, the exchange adsorption of the buttons occurs preferentially, preventing the exchange adsorption of the tin, and therefore the silver is not evenly coated.

そこで、鉛を除去すれば均一な被覆が可能になるとの考
えから、該樹脂の鉛に対する選択的な交換吸着性を利用
して鈴を除去する方法を検討した。
Therefore, based on the idea that a uniform coating would be possible by removing lead, we investigated a method of removing bells by utilizing the selective exchange adsorption property of the resin for lead.

その結果、上記塩化第一スズ、溶液中の鉛の含有量を1
0ρpb以下に抑えて、球状樹脂にスズ処理を施し銀を
被覆したものは、走査電子顕微鏡での観察によって銀が
均一に被覆されていることが確認され、導電性も優れた
ものであった。
As a result, the content of lead in the stannous chloride solution was reduced to 1
When the spherical resin was tin-treated and coated with silver while suppressing the amount to 0 pb or less, it was confirmed by scanning electron microscopy that the silver was coated uniformly, and the conductivity was also excellent.

また、その製造方法として、塩酸を添加した塩化第一ス
ズ水溶液を調製し、この溶液に陽イオン交換能を有する
樹脂粉末を浸漬して液中の鉛を該樹脂に吸着させ、鉛含
有量をtoppb以下にしたスズ溶液を用いれば、前処
理のスズ被膜が良好に形−成され、密着性の良い優れた
銀被覆球状樹脂を製造出来ることを見出した。
In addition, as a manufacturing method, an aqueous solution of stannous chloride to which hydrochloric acid has been added is prepared, and a resin powder having cation exchange ability is immersed in this solution to adsorb the lead in the solution to the resin, reducing the lead content. It has been found that by using a tin solution with a concentration below TOPPB, a pre-treated tin film can be formed well and an excellent silver-coated spherical resin with good adhesion can be produced.

〔発明の構成〕[Structure of the invention]

本発明によれば、平均粒径0.5〜1000μの球状樹
脂を、鉛含有量が1oppb以下の塩化スズ溶液に昼潰
して該樹脂表面に予めスズ被膜を施し、更にその上に銀
を10〜70重量%被覆した銀被覆球状樹脂が提供され
る。
According to the present invention, a spherical resin having an average particle size of 0.5 to 1000 μm is soaked in a tin chloride solution having a lead content of 1 oppb or less to form a tin film on the surface of the resin, and then 10 μm of silver is applied on the surface of the resin. A silver-coated spherical resin with a coverage of ˜70% by weight is provided.

また、其の好適な製造方法として、塩化第一スズを30
g/ Q以上含む塩化第一スズ塩酸水溶液を調製し、該
塩化第一スズ塩酸水溶液に陽イオン交換能を有する樹脂
粉末を1〜Log/ Q浸漬し、該水溶液中の釦を該樹
脂に吸着させて液中の鉛含有量をlOρρb以下にした
後、該樹脂を取り出し、次いで、球状樹脂を該塩化第一
スズ塩酸水溶液に浸漬してスズ被覆を形成し、更にその
上に銀被覆を施す銀被覆球状樹脂の製造方法が提供され
る。
In addition, as a preferred method for producing it, stannous chloride is
A stannous chloride hydrochloric acid aqueous solution containing at least g/Q is prepared, a resin powder having cation exchange ability is immersed in the stannous chloride hydrochloric acid aqueous solution at a concentration of 1 to Log/Q, and the buttons in the aqueous solution are adsorbed to the resin. After reducing the lead content in the solution to 1Oρρb or less, the resin is taken out, and then the spherical resin is immersed in the stannous chloride hydrochloric acid aqueous solution to form a tin coating, and further a silver coating is applied thereon. A method of manufacturing a silver-coated spherical resin is provided.

本発明で使用される陽イオン交換能を有した球状樹脂は
、架橋ポリスチレン樹脂、または、フェノール樹脂の何
れかである。そのほかの樹脂、例えばメタクリル樹脂等
は樹脂に混合する際に熱が加わるので導電性フィラーの
担体としては耐熱性のあるものが望ましい。これらの樹
脂は、陽イオン交換材料としてカラムに高密度充填する
必要から球状、または1粒状のものが市販されているの
で、これをそのまま利用できる。
The spherical resin having cation exchange ability used in the present invention is either a crosslinked polystyrene resin or a phenol resin. Other resins, such as methacrylic resins, are heated when mixed with the resin, so it is desirable to use a carrier for the conductive filler that is heat resistant. These resins are commercially available in spherical or granular forms because they need to be packed in columns at high density as cation exchange materials, and can be used as they are.

球状樹脂の平均粒径は0.5〜1000μ、好ましくは
1〜800μで、その大きさは用途に応じて選ばれるが
、平均粒径が0.5μより小さいと銀の被覆量を多く必
要とするため比重が大きくなり、平均粒径が1000μ
より大きいと樹脂し混合した際に表面荒れを起こす恐れ
がある。
The average particle size of the spherical resin is 0.5 to 1000μ, preferably 1 to 800μ, and the size is selected depending on the application, but if the average particle size is smaller than 0.5μ, a large amount of silver coating is required. Therefore, the specific gravity increases and the average particle size becomes 1000μ.
If it is larger, the resin may become rough and the surface may become rough when mixed.

スズ及び/またはスズ化合物の被覆(スズ被覆)を設け
るには、塩化第一スズを30g/ Q以上、含み、かつ
、鉛含有量が1Oppb以下の塩酸水溶液からなるスズ
溶液に浸漬すればよいが、塩化第一スズが30g/ Q
より少ないと均一な被覆ができない、塩化第一スズの上
限は飽和溶液まで使用できるが、鉛の含有量もそれに伴
って増えるので鉛の除去効率から考えると通常100g
/ Qまでが好ましい。
To provide a coating of tin and/or a tin compound (tin coating), it is sufficient to immerse it in a tin solution consisting of an aqueous hydrochloric acid solution containing 30 g/Q or more of stannous chloride and a lead content of 1 Oppb or less. , stannous chloride 30g/Q
If the amount is less, uniform coating cannot be obtained.The upper limit of stannous chloride can be used up to a saturated solution, but the lead content increases accordingly, so considering the lead removal efficiency, it is usually 100g.
/Q is preferable.

塩酸の量が少な過ぎると塩化第一スズが溶解しに<<、
また、スズの談化が進み易く沈澱を生じて均一な被覆が
できない。塩酸の量が多すぎるとpHが低くなり過ぎて
スズが交換吸着しにくくなるので、塩化第一スズ1gあ
たり36wt%塩酸Q 、 5mu〜2m12が最も適
した量である。
If the amount of hydrochloric acid is too small, the stannous chloride will dissolve.
In addition, tin tends to clump and precipitate, making it impossible to coat uniformly. If the amount of hydrochloric acid is too large, the pH becomes too low and it becomes difficult for tin to be exchanged and adsorbed, so the most suitable amount is 36 wt % hydrochloric acid Q per 1 g of stannous chloride, 5 mu to 2 m12.

この水溶液の鉛含有量は通常用いられる工業用の塩化第
一スズ、塩酸を用いると最低でも1ppPa以上は含ま
れているので、これを10ρpb以下にするためには陽
イオン交換能を有する樹脂を水ls液に1〜10g/ 
Q 加え、釦を選択的に交換吸着させた後に系外に取り
出す方法を実施するとよい。高純度の金属スズ、塩酸を
用いてもよいが作業性、経済性から陽イオン交換を行う
方が好ましい。陽イオン交換樹脂の添加量は使用する塩
化第一スズ等の鉛含有量によって左右されるが、Ig/
lより少ないと鉛の交換吸着が不充分で水溶液中に残る
恐れがある。また、Log/ Qより多く添加しても構
わないが鉛の除去効率に変化はなく経済的に好ましくな
い。陽イオン交換樹脂として上記球状樹脂粉末・を用い
る二とができる。
The lead content of this aqueous solution is at least 1 ppPa when using normally used industrial stannous chloride or hydrochloric acid, so in order to reduce this to 10 pb or less, a resin with cation exchange ability is used. 1-10g/in water ls solution
Q: In addition, it is recommended to carry out a method of selectively exchanging and adsorbing the buttons and then taking them out of the system. Although high-purity metal tin or hydrochloric acid may be used, cation exchange is preferred from the viewpoint of workability and economy. The amount of cation exchange resin added depends on the lead content of the stannous chloride, etc. used, but Ig/
If the amount is less than 1, the exchange adsorption of lead may be insufficient and it may remain in the aqueous solution. Further, although it is possible to add more than Log/Q, there is no change in the lead removal efficiency and it is not economically preferable. The second method is to use the above spherical resin powder as the cation exchange resin.

スス溶液中の鉛含有量が1ρρmより多いと前述したよ
うに銀の被覆が均一なものとならずに導電性の低いもの
しか得られなかったが、陽イオン交換樹脂を添加して前
述のように鉛を除去したものの鉛含有量は高周波誘導結
合プラズマ発光分光分新法により分析した結果10pp
b以下であった。
As mentioned above, when the lead content in the soot solution was more than 1ρρm, the silver coating was not uniform and the conductivity was low, but by adding a cation exchange resin, After removing lead, the lead content was analyzed using high-frequency inductively coupled plasma emission spectroscopy, and the lead content was 10pp.
It was below b.

銀を被覆する方法は無電解めっきが好適に実施される。Electroless plating is preferably carried out as a method for coating silver.

該無電解めっき法は、(1)錯化剤、還元剤等を含んだ
溶液中に浸漬し銀塩溶液を滴下する方法、(2)銀塩、
錯化剤等を含んだ溶液に浸漬し還元剤溶液を増化する方
法、(3)銀塩、錯化剤。
The electroless plating method includes (1) a method of immersing in a solution containing a complexing agent, a reducing agent, etc. and dropping a silver salt solution; (2) a method of dropping a silver salt solution;
A method of increasing the reducing agent solution by immersing it in a solution containing a complexing agent, etc. (3) Silver salt, complexing agent.

還元剤等を含んだ溶液に浸漬し苛性アルカリを滴化する
方法等、何れでもよい。
Any method may be used, such as immersing it in a solution containing a reducing agent or the like to form drops of caustic alkali.

銀塩としては、硝酸銀あるいは銀を硝酸に溶解したもの
等が用いられ、錯化剤としては、アンモニア及び/また
はエチレンジアミン四酢酸、ニトロ三酢酸、トリエチレ
ンテトラミン六酢酸等の塩類が用いられ、還元剤として
は、ホルマリン、ヒドラジン及びその誘導体、酒石酸、
ブドウ糖等が用いられる。
As the silver salt, silver nitrate or silver dissolved in nitric acid is used, and as the complexing agent, ammonia and/or salts such as ethylenediaminetetraacetic acid, nitrotriacetic acid, and triethylenetetraminehexaacetic acid are used. Agents include formalin, hydrazine and its derivatives, tartaric acid,
Glucose etc. are used.

銀の被覆量は、10〜70wt%、好ましくは、20〜
6(ht%である。銀の被N量が10−七%より少ない
と均一な被覆が難しく、70wt%より多いと比重が大
きくなり、樹脂への充填量を多く必要とし好ましくない
The coating amount of silver is 10 to 70 wt%, preferably 20 to 70 wt%.
6 (ht%). If the N content of silver is less than 10-7%, it is difficult to coat uniformly, and if it is more than 70wt%, the specific gravity becomes large and a large amount of resin is required to be filled, which is not preferable.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

1、.2.3び虻123 平均粒径20μmの球状フェノール樹脂、工業用塩化第
一スズ、工業用36−t%塩酸を使用して、以下のごと
く銀被覆球状樹脂を製造した。
1. 2.3 and 123 A silver-coated spherical resin was produced as follows using a spherical phenolic resin having an average particle size of 20 μm, industrial stannous chloride, and industrial 36-t% hydrochloric acid.

■) 工業用塩化第一スズを50g/ Q、工業用36
−t%塩酸を50mQ/ Q含んだ水溶液を6Q調整し
IQに6等分し、該樹脂を0.0.5.1.5.10.
20gずつ添加し、 10分間攪拌後濾別した9 2) それぞれの鉛含有量を高周波誘纏結合プラズマ発
光分光分析法(ICPA)で分析後、該樹脂60gを浸
漬し10分間攪拌して前処理を施した。
■) Industrial stannous chloride 50g/Q, industrial 36
An aqueous solution containing 50 mQ/Q of -t% hydrochloric acid was adjusted to 6Q, divided into 6 equal parts to IQ, and the resin was divided into 0.0.5.1.5.10.
20g of each resin was added, stirred for 10 minutes, and then filtered out. was applied.

3)エチレンジアミン四酢酸四ナトリウムを200g/
 Q 、水酸化ナトリウムを50g/ 0 、37%ホ
ルマリンを1oOtQ/ Q含む水溶液8Qに前処理を
施した該樹脂60gを浸漬し攪拌しながら、硝酸銀を3
1.6g/fl、25%アンモニア水を100taQI
 Qを含んだ水溶液2Qを滴下して銀を40i+t%被
覆した。
3) 200g/tetrasodium ethylenediaminetetraacetate
60 g of the pretreated resin was immersed in an aqueous solution 8Q containing 50 g/0 of sodium hydroxide and 100 tQ/Q of 37% formalin, and while stirring, 30 g of silver nitrate was added.
1.6g/fl, 25% ammonia water at 100taQI
An aqueous solution 2Q containing Q was dropped to coat 40i+t% of silver.

4)水洗・乾燥後1体積抵抗測定、密着性試験。4) Volume resistance measurement and adhesion test after washing and drying.

走査電子顕微鏡による観察を行った。体積抵抗は。Observation was performed using a scanning electron microscope. What is the volume resistance?

断面積2CI11の電極に試料を挟み10kg/adの
圧力でプレスしながら抵抗値を測定し、その厚さから体
積抵抗に換算した。密着性試験は、試料をガムテープに
はさんで接着し、テープを剥離する操作を10回繰り返
し、樹脂からの銀の剥離を観察した。
A sample was sandwiched between electrodes having a cross-sectional area of 2 CI11, and the resistance was measured while being pressed at a pressure of 10 kg/ad, and the resistance was converted into volume resistance from the thickness. In the adhesion test, the operation of adhering the sample with packing tape and peeling off the tape was repeated 10 times, and the peeling of silver from the resin was observed.

結果を1表1に示す。The results are shown in Table 1.

・実施例4.5.6及び比較例4.5.6平均粒径10
μmの球状架橋ポリスチレン樹脂、試薬特級塩化第一ス
ス、試薬特R36wt%塩酸を使用して、以下のごとく
銀被覆球状樹脂を習造した31)試薬特級塩化第一スズ
を50g/ Q、試薬特級36wt%塩酸を5(lnQ
/ Q含んだ水溶液を6Q調整しIQ、に6等分し、該
樹脂を0.0.5.1.5.10.20gずつ添加し、
10分間攪拌後濾別した。
・Example 4.5.6 and Comparative Example 4.5.6 Average particle size 10
Using μm spherical cross-linked polystyrene resin, reagent special grade stannous chloride, and reagent special grade 36 wt% hydrochloric acid, silver-coated spherical resin was prepared as follows.31) Reagent special grade stannous chloride 50g/Q, reagent special grade Add 36 wt% hydrochloric acid to 5 (lnQ
/ Adjust the aqueous solution containing Q to 6Q, divide it into 6 equal parts, add the resin in 0.0.5.1.5.10.20g each,
After stirring for 10 minutes, the mixture was filtered.

2) それぞれの鉛含有量を高周波誘導結合プラズマ発
光分光分析法(ICPA)で分析後、該樹脂60gを浸
漬し10分間攪拌して前処理を施した。
2) After analyzing each lead content by high-frequency inductively coupled plasma emission spectroscopy (ICPA), 60 g of the resin was immersed and stirred for 10 minutes to perform pretreatment.

3)エチレンジアミン四酢酸四ナトリウムを200g/
 Q +水酸化ナトリウムを50g/ Q、37%ホル
マリンを10On+Q/ Q含む水溶液8Qに前処理を
施した該樹脂60gを浸漬し攪拌しながら、硝酸銀を3
1.6[/ R125%アンモニア水を100m12/
 Qを含んだ水溶液2Qを層下して銀を40wt%被覆
した。
3) 200g/tetrasodium ethylenediaminetetraacetate
60 g of the pretreated resin was immersed in 8Q aqueous solution containing 50 g/Q of Q+sodium hydroxide and 10 On+Q/Q of 37% formalin, and while stirring, 3 g of silver nitrate was added.
1.6[/R125% ammonia water 100m12/
An aqueous solution 2Q containing Q was deposited to coat 40 wt% of silver.

4)水洗・乾燥後、体積抵抗測定、密着性試験。4) After washing and drying, measure volume resistance and test adhesion.

走査電子顕微鏡によるa察を行った。体積抵抗は、断面
積2(!I+の電極に試料を挟み10kg/allの圧
力でプレスしながら抵抗値を測定し、その厚さから体積
抵抗に換算した。密着性試験は、試料をガムテープには
さんで接着し、テープを剥離する操作を10回繰り返し
、樹脂からの銀の剥離を観察した。
A scanning electron microscopy examination was performed. The volume resistivity was determined by sandwiching the sample between electrodes with a cross-sectional area of 2 (! The operation of sandwiching and peeling the tape was repeated 10 times, and the peeling of the silver from the resin was observed.

結果を、表2に示す。The results are shown in Table 2.

以上の結果から明らかなように、本発明によって提供さ
れる銀被覆球状樹脂は、′*導電性密着性が優れた。従
来にないfJTMtな導電性フィラーであることが確認
できた、
As is clear from the above results, the silver-coated spherical resin provided by the present invention had excellent conductive adhesion. It was confirmed that this is an unprecedented fJTMt conductive filler.

Claims (1)

【特許請求の範囲】 1、平均粒径0.5〜1000μの球状樹脂を、鉛含有
量が10ppb以下の塩化スズ水溶液に浸漬して該樹脂
表面に予めスズ被膜を施し、更にその上に銀を10〜7
0重量%被覆した銀被覆球状樹脂。 2、球状樹脂が、架橋ポリスチレン樹脂、フェノール樹
脂である第1請求項の銀被覆球状樹脂。 3、塩化第一スズを30g/l以上含む塩化第一スズ塩
酸水溶液を調製し、該塩化第一スズ塩酸水溶液に陽イオ
ン交換能を有する樹脂粉末を1〜10g/l浸漬し、該
水溶液中の鉛を該樹脂に吸着させて液中の鉛含有量を1
0ppb以下にした後、該樹脂を取り出し、次いで、球
状樹脂を該塩化第一スズ水溶液に浸漬してスズ被覆を形
成し、更にその上に銀被覆を施す銀被覆球状樹脂の製造
方法。
[Claims] 1. A spherical resin with an average particle size of 0.5 to 1000 μm is immersed in an aqueous tin chloride solution with a lead content of 10 ppb or less to form a tin film on the resin surface, and then a tin film is applied on the surface of the resin. 10-7
Silver-coated spherical resin coated with 0% by weight. 2. The silver-coated spherical resin according to claim 1, wherein the spherical resin is a crosslinked polystyrene resin or a phenol resin. 3. Prepare a stannous chloride hydrochloric acid aqueous solution containing 30 g/l or more of stannous chloride, and immerse 1 to 10 g/l of a resin powder having cation exchange ability in the stannous chloride hydrochloric acid aqueous solution. of lead is adsorbed onto the resin to reduce the lead content in the liquid to 1.
A method for producing a silver-coated spherical resin, which comprises taking out the resin after reducing the concentration to 0 ppb or less, then immersing the spherical resin in the stannous chloride aqueous solution to form a tin coating, and further applying a silver coating thereon.
JP27075088A 1988-10-28 1988-10-28 Method for producing silver-coated spherical resin Expired - Lifetime JP2692182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27075088A JP2692182B2 (en) 1988-10-28 1988-10-28 Method for producing silver-coated spherical resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27075088A JP2692182B2 (en) 1988-10-28 1988-10-28 Method for producing silver-coated spherical resin

Publications (2)

Publication Number Publication Date
JPH02118079A true JPH02118079A (en) 1990-05-02
JP2692182B2 JP2692182B2 (en) 1997-12-17

Family

ID=17490458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27075088A Expired - Lifetime JP2692182B2 (en) 1988-10-28 1988-10-28 Method for producing silver-coated spherical resin

Country Status (1)

Country Link
JP (1) JP2692182B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022639A3 (en) * 1994-02-18 1995-10-12 Univ Karlsruhe Process for producing coated polymer microparticles
GB2301117A (en) * 1995-05-23 1996-11-27 Fraunhofer Ges Forschung Manufacturing metallised polymeric particles
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
WO2006065009A1 (en) * 2004-12-16 2006-06-22 Cheil Industries Inc. Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
JP2011086631A (en) * 2010-11-24 2011-04-28 Sekisui Chem Co Ltd Conductive particulate, and anisotropic conductive material
WO2012023566A1 (en) 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
CN104439271A (en) * 2013-09-17 2015-03-25 Oci有限公司 Method for preparing multilayer metal complex having excellent surface properties
WO2015093597A1 (en) * 2013-12-20 2015-06-25 三菱マテリアル株式会社 Silver-coated conductive particles, conductive paste and conductive film
EP3125254A4 (en) * 2014-03-28 2017-11-08 Mitsubishi Materials Corporation Conductive paste
WO2022004541A1 (en) * 2020-07-03 2022-01-06 三菱マテリアル電子化成株式会社 Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022639A3 (en) * 1994-02-18 1995-10-12 Univ Karlsruhe Process for producing coated polymer microparticles
GB2301117A (en) * 1995-05-23 1996-11-27 Fraunhofer Ges Forschung Manufacturing metallised polymeric particles
GB2301117B (en) * 1995-05-23 1998-12-30 Fraunhofer Ges Forschung Method of manufacturing metallised polymeric particles, and polymeric material manufactured according to the method
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
WO2006065009A1 (en) * 2004-12-16 2006-06-22 Cheil Industries Inc. Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
US8129023B2 (en) 2004-12-16 2012-03-06 Cheil Industries Inc. Polymer particles, conductive particles, and an anisotropic conductive packaging materials containing the same
US8828543B2 (en) 2005-07-05 2014-09-09 Cheil Industries Inc. Conductive particles comprising complex metal layer with density gradient, method for preparing the particles, and anisotropic conductive adhesive composition comprising the particles
US9093192B2 (en) 2010-08-20 2015-07-28 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
WO2012023566A1 (en) 2010-08-20 2012-02-23 三菱マテリアル株式会社 Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
US20130140501A1 (en) * 2010-08-20 2013-06-06 Mitsubishi Materials Corporation Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
JP5497183B2 (en) * 2010-08-20 2014-05-21 三菱マテリアル株式会社 Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP2011086631A (en) * 2010-11-24 2011-04-28 Sekisui Chem Co Ltd Conductive particulate, and anisotropic conductive material
JP2015059271A (en) * 2013-09-17 2015-03-30 オーシーアイ カンパニー リミテッドOCI Company Ltd. Method of manufacturing multistep metal composite body with superior surface quality
CN104439271A (en) * 2013-09-17 2015-03-25 Oci有限公司 Method for preparing multilayer metal complex having excellent surface properties
US9574273B2 (en) 2013-09-17 2017-02-21 Oci Company Ltd. Method for preparing multilayer metal complex having excellent surface properties
WO2015093597A1 (en) * 2013-12-20 2015-06-25 三菱マテリアル株式会社 Silver-coated conductive particles, conductive paste and conductive film
KR20160101009A (en) 2013-12-20 2016-08-24 미쓰비시마테리알덴시카세이가부시키가이샤 Silver-coated conductive particles, conductive paste and conductive film
JPWO2015093597A1 (en) * 2013-12-20 2017-03-23 三菱マテリアル電子化成株式会社 Silver-coated conductive particles, conductive paste, and conductive film
US9982144B2 (en) 2013-12-20 2018-05-29 Mitsubishi Materials Electronic Chemicals Co., Ltd. Silver-coated conductive particles, conductive paste and conductive film
EP3125254A4 (en) * 2014-03-28 2017-11-08 Mitsubishi Materials Corporation Conductive paste
US10332649B2 (en) 2014-03-28 2019-06-25 Mitsubishi Materials Corporation Conductive paste
WO2022004541A1 (en) * 2020-07-03 2022-01-06 三菱マテリアル電子化成株式会社 Metal coated resin particles, method for producing same, conductive paste containing metal coated resin particles, and conductive film
JP7049536B1 (en) * 2020-07-03 2022-04-06 三菱マテリアル電子化成株式会社 Metal-coated resin particles and their manufacturing method, conductive paste containing metal-coated resin particles, and conductive film

Also Published As

Publication number Publication date
JP2692182B2 (en) 1997-12-17

Similar Documents

Publication Publication Date Title
EP2607520B1 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
US7410698B2 (en) Conductive particle with protrusions and anisotropic conductive material therefrom
CN108817377B (en) Preparation method of conductive flaky silver-coated copper powder
JPS6285500A (en) Electromagnetic interference shielding material
JPH02118079A (en) Silver coated spherical resin and production thereof
CN103594146A (en) Conductive particle and method for producing conductive particle
US4719145A (en) Catalytic process and systems
Cui et al. The evolution of Pd∕ Sn catalytic surfaces in electroless copper deposition
KR20090001161A (en) Tin-nanodiamond composite electroless plating solution, and plated film using the same
CA1303436C (en) Nickel particle plating system
Cohen et al. The chemistry of palladium—tin colloid sensitizing processes
JP4864195B2 (en) Coated copper powder
US4888209A (en) Catalytic process and systems
Fujiwara et al. Adsorption promotion of Ag nanoparticle using cationic surfactants and polyelectrolytes for electroless Cu plating catalysts
KR101985581B1 (en) Composite conductive particles, conductive resin composition containing same and conductive coated article
JP5934317B2 (en) Method for producing multi-stage metal composite with excellent surface quality
EP2902529B1 (en) Substrate processing method for supporting a catalyst particle for plating process
KR101205041B1 (en) Conductive particle
KR101088667B1 (en) Conductive fine particle and anisotropic conductive material
CN100563878C (en) Manufacture method with metal fine powder of uniform grading
CN103998651B (en) Chemical silvering on graphite
Fujiwara et al. Ag nanoparticle catalyst for electroless Cu deposition and promotion of its adsorption onto epoxy substrate
JPS63153280A (en) Production of electrically conductive inorganic siliceous material
KR20090010406A (en) Tin-nanodiamond composite electroplating solution and plating method using the same
JPH02312300A (en) Gold-coated resin ball

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 12