JPH02117041A - Electrode material for vacuum interrupter - Google Patents

Electrode material for vacuum interrupter

Info

Publication number
JPH02117041A
JPH02117041A JP26935588A JP26935588A JPH02117041A JP H02117041 A JPH02117041 A JP H02117041A JP 26935588 A JP26935588 A JP 26935588A JP 26935588 A JP26935588 A JP 26935588A JP H02117041 A JPH02117041 A JP H02117041A
Authority
JP
Japan
Prior art keywords
weight
ranging
current
molybdenum
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26935588A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kashiwagi
佳行 柏木
Nobuyuki Yoshioka
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP26935588A priority Critical patent/JPH02117041A/en
Publication of JPH02117041A publication Critical patent/JPH02117041A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To contrive to improve characteristics such as fusion resistance, current breaking property and current chopping values by making an electrode consist of specified properties of copper, chromium carbonate, nickel, cobalt, iron, molybdenum and bismuth respectively. CONSTITUTION:Each electrode 13 and 14 is composed of copper ranging from 20 to 70% by weight, chromium carbonate ranging from 5 to 75% by weight, nickel ranging from 0.1 to 10% by weight, cobalt ranging from 0.1 to 10% by weight, iron ranging from 0.1 to 10% by weight, molybdenum ranging from 2 to 5% by weight and of bismuth ranging from 1 to 20% by weight. In this case, each powder of chromium carbonate, nickel, cobalt, iron and molybdenum is mixed uniformly so as to be heated at temperature below the melting points of nickel, chromium carbonate, cobalt, iron and molybdenum so that a sintered porous body is obtained, and furthermore, copper and bismuth are dissolved into the porous section of the sintered body. This constitution improves characteristics such as fusion resistance, current breaking property and current copping values.

Description

【発明の詳細な説明】 人、 産業上の利用公費 本発明は、電流しゃ断性能や電流さい断値等の特性を向
上させた安価な溶浸形の複合金属からなる真空インタラ
プタのTi極材料に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Ti electrode material for a vacuum interrupter made of an inexpensive infiltrated composite metal with improved characteristics such as current cutting performance and current cutting value. .

B 発明の概要 銅と炭化クロムとニッケルとコバルトと鉄とモリブデン
とビスマスとからなる真空インタラプタの電極材料であ
り、耐溶着性や電流しゃ断性能及び電流さい断値等の特
性を向上させたものである。
B. Summary of the Invention This is an electrode material for a vacuum interrupter made of copper, chromium carbide, nickel, cobalt, iron, molybdenum, and bismuth, and has improved properties such as welding resistance, current interrupting performance, and current interrupting value. be.

C従来の技術 一般に、真空インタラプタの電極材料として要求される
主な性能としては、 (1)耐溶着性が良いこと (2)電流しゃ断性能が高いこと (3)電流さい断値が低いこと 等を挙げることができる。
C. Conventional technology In general, the main performances required for electrode materials for vacuum interrupters are (1) good welding resistance, (2) high current cutting performance, (3) low current cutting value, etc. can be mentioned.

しかし、電極材料の電流しゃ断性能を高くすることと電
流さい断値を低くすることとは、互いに矛盾する物理的
特性に起因するため、単一の電極材料で上述した全ての
特性を満たすことは難しく、真空インタラプタの仕様に
最も適合17な電極材料を選択しているのが現状である
However, since increasing the current cutting performance and lowering the current cutting value of an electrode material are due to mutually contradictory physical properties, it is impossible to satisfy all of the above characteristics with a single electrode material. Currently, it is difficult to select the electrode material that best meets the specifications of the vacuum interrupter.

例えば、特公昭41−12131号公報等に開示された
銅ビスマス合金は(鋼(Cu)に蒸気圧の高い低融点の
ビスマス(B i )を0.5重量%添加したものであ
り、耐溶着性や電流しゃ断性能が良好であること(よ周
知の通りである。又、特公昭54−3612I号公報等
に開示されたタングステン鋼焼結金属は、蒸気圧の低い
高融点のタングステン(W)に銅を20重1%添加した
ものであり、電流さい断値が低い利点を有する。この電
流さい断値が特に低い電極材料としては、実開昭55−
121429号公報等に開示された炭化タングステン銀
焼結金属、つまり炭化タングステン(WC)に!!i(
Ag)を30重量%添加したもの等がある。
For example, the copper-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131 is made by adding 0.5% by weight of bismuth (B i ), which has a high vapor pressure and a low melting point, to steel (Cu), and has excellent welding resistance. The tungsten steel sintered metal disclosed in Japanese Patent Publication No. 54-3612I etc. is made of tungsten (W), which has a low vapor pressure and a high melting point. It has the advantage of having a low current cut-off value.As an electrode material with a particularly low current cut-off value, Utility Model Application No. 55-
To the tungsten carbide silver sintered metal disclosed in Publication No. 121429 etc., that is, tungsten carbide (WC)! ! i(
There are also those containing 30% by weight of Ag).

D 発明が解決しようとする課題 鋼ビスマス合金は電流しゃ断性能が良好である反面、電
流さい断値が例えばIOAと高く、電流しゃ断時にさい
断サージを発生することがある。このため、遅れ小電流
を良好にしゃ断することが困難であり、負荷側の電気機
器の絶縁破壊を引き起こす虞がある。
D. Problems to be Solved by the Invention Although steel-bismuth alloys have good current cutting performance, their current cutting values are high, for example, IOA, and cutting surges may occur when the current is cut off. For this reason, it is difficult to cut off the delayed small current in a good manner, which may cause dielectric breakdown of the electrical equipment on the load side.

又、タングステン鋼焼結金属や炭化タングステン銀焼結
金属は電流さい断値が低い反面、電流しゃ断性能が悪く
、短絡電流の如き大電流をしゃ断することができない。
Furthermore, although tungsten steel sintered metal and tungsten silver carbide sintered metal have a low current cutoff value, they have poor current cutoff performance and cannot cut off large currents such as short circuit current.

更に、炭化タングステン銀焼結金属では銀を比較的多量
に含んでいることから、電極材料としては高価なもので
あり、真空インタラプタの製造単価を下げる際の障害と
なる。
Furthermore, since tungsten silver carbide sintered metal contains a relatively large amount of silver, it is expensive as an electrode material, which becomes an obstacle in reducing the manufacturing cost of vacuum interrupters.

E、 課題を解決するための手段 本発明による真空インタラプタの電極材料は、耐溶着性
や電流しゃ断性能及び電流さい断値等の特性を向上させ
るため、20から70重量%の範囲の銅と、5から75
重量%の範囲の炭化クロムと、0.1から10重量%の
範囲のニッケルと、0.1から10重量%の範囲のコバ
ルトと、0.1から10重量%の範囲の鉄と、2から7
5重量%の範囲のモリブデンと、1から20重量%の範
囲のビスマスとからなるものである。
E. Means for Solving the Problems The electrode material of the vacuum interrupter according to the present invention contains copper in a range of 20 to 70% by weight in order to improve properties such as welding resistance, current interrupting performance, and current interrupting value. 5 to 75
chromium carbide in the range of 0.1 to 10% by weight, nickel in the range of 0.1 to 10% by weight, cobalt in the range of 0.1 to 10% by weight, iron in the range of 0.1 to 10% by weight; 7
It consists of molybdenum in the range of 5% by weight and bismuth in the range of 1 to 20% by weight.

この場合、炭化クロム及びニッケル及びコバルト及び鉄
及びモリブデンの各粉末を均一に混合し、これをニッケ
ル(及び炭化クロム及びコバルト及び鉄及びモリブデン
)の融点す下の温度で加熱して多孔質の焼結体を得、更
にこの焼結体の空隙部分に鋼及びビスマスを溶浸させて
本発明の電極材料を得ろ。なお、これら焼結や溶浸工程
は、非酸化性雰囲気にて脱ガスしつつ行うことが望まし
い。
In this case, chromium carbide, nickel, cobalt, iron, and molybdenum powders are uniformly mixed and heated at a temperature below the melting point of nickel (and chromium carbide, cobalt, iron, and molybdenum) to form a porous sintered material. Obtain a compact, and further infiltrate steel and bismuth into the voids of this sintered compact to obtain the electrode material of the present invention. Note that these sintering and infiltration steps are desirably performed in a non-oxidizing atmosphere while degassing.

ここで、銅が20重量%未満の場合には、導電率が低下
して発熱量が多(なり、逆に銅が70重量%を越えろと
、耐溶着性の低下や電流さい断値の増大をもたらす。炭
化クロムが5重量%未満の場合やモリブデンが2重量%
未満の場合或いはビスマスが1重量%未満の場合には、
電流さい断値がそれぞれ増大することとなる。更に、炭
化クロムが75重量%を越えたり、モリブデンが75重
量%を越える場合には、電流しゃ断性能がそれぞれ低下
してしまう。又、ニッケルやコバルトや鉄がそれぞれ1
0重重量を越える場合には、それぞれ銅との反応が進ん
で導電率の低下をもたらす。逆に、ニッケルやコバルト
や鉄がそれぞれ0.1重量%未満の場合には、炭化クロ
ムの影響に基づく硬化現象の抑制効果が現れず、切削加
工性が悪化する。一方、ビスマスが20重型部を越える
と電極及び真空インタラプタとしての耐久性が急激に低
下する。
If the copper content is less than 20% by weight, the conductivity will decrease and the amount of heat generated will increase (on the contrary, if the copper content exceeds 70% by weight, the welding resistance will decrease and the current cutoff value will increase). When chromium carbide is less than 5% by weight and molybdenum is 2% by weight.
or if bismuth is less than 1% by weight,
The current cutoff value will increase respectively. Furthermore, if the content of chromium carbide exceeds 75% by weight or the content of molybdenum exceeds 75% by weight, the current interrupting performance will deteriorate. Also, nickel, cobalt, and iron each have 1
If the weight exceeds 0 weight, the reaction with copper progresses, resulting in a decrease in electrical conductivity. On the other hand, if each of nickel, cobalt, and iron is less than 0.1% by weight, the effect of suppressing the hardening phenomenon due to the influence of chromium carbide is not exhibited, and the machinability deteriorates. On the other hand, if the content of bismuth exceeds 20 parts, the durability as an electrode and a vacuum interrupter decreases rapidly.

F  作    用 銅と炭化クロムとニッケルとコバルトと鉄とモリブデン
とビスマスとの最適な組成を見い出したので、全体とし
て耐溶着性や絶縁耐力及び電流しゃ断性能及び電流さい
断値等の真空インタラプタに要求される特性を向上させ
た電極材料が得られる。
F Effect We have found the optimal composition of copper, chromium carbide, nickel, cobalt, iron, molybdenum, and bismuth, so that we can meet the overall requirements for vacuum interrupters such as welding resistance, dielectric strength, current interrupting performance, and current interrupting value. An electrode material with improved properties can be obtained.

G実施例 真空インタラプタは、その概略構造の一例を表す第2図
に示すようなものであり、相互に一直線状をなす一対の
り−ド棒11,12の対向端面には、それぞれ電極13
.14が一体的に設けである。これら電極13,14を
囲む筒状のシールド15の外周中央部は、このシールド
15を囲む一対の絶縁筒16゜17の間に挾まれた状態
で保持されている。
Embodiment G The vacuum interrupter is as shown in FIG. 2, which shows an example of its schematic structure, and has electrodes 13 on opposing end surfaces of a pair of mutually straight line rods 11 and 12.
.. 14 is integrally provided. A central portion of the outer periphery of a cylindrical shield 15 surrounding these electrodes 13 and 14 is held between a pair of insulating cylinders 16 and 17 surrounding this shield 15.

一方の前記リード棒11は一方の絶縁筒16の一端に接
合された金属端板18を気密に貫通した状態で、この金
属端板18に一体的に固定されている。図示しない駆動
装置に連結される他方のリード棒12は、他方の絶縁筒
17の他端に気密に接合された他方の金属端板19にベ
ローズ20を介して連結され、駆動装置の作動に伴って
電極13,14の対向方向に往復動可能に可動側の電極
14が固定側の電極13に対して開閉動作するようにな
っている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating tube 17. The movable electrode 14 is configured to open and close with respect to the fixed electrode 13 so that the electrodes 13 and 14 can reciprocate in opposing directions.

前記電極13.14は、20から70重量%の範囲の銅
(Cu)と、5から75重量%の範囲の炭化クロム(例
えばCr5C2)と、0.1から10重量%の範囲のニ
ッケル(Ni)と、0.1から10重量%の範囲のコバ
ルト(Co)と、0.1から10重量%の範囲の鉄(F
e)と、2から75重量%の範囲のモリブデン(Mo)
と、1から18重量%の範囲のビスマス(Bi)とから
なる複合金属で構成されろ。
The electrode 13.14 comprises copper (Cu) in the range of 20 to 70% by weight, chromium carbide (e.g. Cr5C2) in the range of 5 to 75% by weight, and nickel (Ni) in the range of 0.1 to 10% by weight. ), cobalt (Co) in the range of 0.1 to 10% by weight, and iron (F) in the range of 0.1 to 10% by weight.
e) and molybdenum (Mo) in the range of 2 to 75% by weight.
and bismuth (Bi) in a range of 1 to 18% by weight.

この電極材料の製造法の一例を息下に記すと、まず−1
00メツシユの粒径の炭化クロム及びニッケル及びコバ
ルト及び鉄及びモリブデンの粉末を機械的に混合し、こ
の混合粉末をアルミナセラミックス製の容器に所定量装
入すると共に該混合粉末上に銅ビスマス合金の塊を載置
した状態で容器に蓋を被せ、これらを真空炉内にて脱ガ
スしつつ加熱処理し、まず炭化クロム粒子及びニッケル
粒子及びコバルト粒子及び鉄粒子及びモリブデン粒子を
相互に拡散結合させ、多孔質の溶浸母材を得ろ。しかる
のち、この溶浸母材の空隙部分に銅及びビスマスを溶浸
させるが、この際、容器内はビスマス蒸気を多量に含ん
t!雰囲気となる。そして、得られる電極材料を容器か
ら出して所定の寸法形状に8!域加工する。
An example of the manufacturing method of this electrode material is as follows: -1
Powders of chromium carbide, nickel, cobalt, iron, and molybdenum having a particle size of 0.00 mesh are mechanically mixed, a predetermined amount of this mixed powder is charged into an alumina ceramic container, and a copper-bismuth alloy is placed on top of the mixed powder. A lid is placed on the container with the lumps placed thereon, and these are heated in a vacuum furnace while being degassed. First, chromium carbide particles, nickel particles, cobalt particles, iron particles, and molybdenum particles are diffused and bonded to each other. , obtain a porous infiltration matrix. After that, copper and bismuth are infiltrated into the voids of the infiltrated base material, but at this time, the inside of the container contains a large amount of bismuth vapor. It creates an atmosphere. Then, the obtained electrode material is taken out from the container and shaped into a predetermined size and shape. Process the area.

このようにして Cr、C2:30重重量 Ni:  2重厘% Co:   5重量% Fe:  1重量% Moニア重量% Bi:  15重量% Cu: 残り からなる電極材料を第一試料として作成し、この第一試
料の他に、 Cr、C2:18重量% Ni:   5重量% Co:   1重量% Fe:   1重量% Mo:18重量% Bi:12重量% Cu: 残り からなろ第二試料及び Cr、C2=  4重量% Ni:   1重量% Co:   2重量% Fe:   5重量% Mo:20重量% Bi:  10重1% Cu: 残り からなろ第三試料を用意し、それぞれ直径5゜職で厚さ
−が6.5mの円盤状に加工すると共にその外周縁に4
mの曲率半径の丸味を付けたものを第2図に示す真空イ
ンタラプタの′i4極13.14として組込み、耐溶着
性及び電流しゃ断性能及び電流さい断値を調べた。
In this way, an electrode material consisting of Cr, C2: 30% by weight, Ni: 2% by weight, Co: 5% by weight, Fe: 1% by weight, Monia% by weight, Bi: 15% by weight, and Cu: the remainder was prepared as a first sample. In addition to this first sample, Cr, C2: 18% by weight Ni: 5% by weight Co: 1% by weight Fe: 1% by weight Mo: 18% by weight Bi: 12% by weight Cu: The remaining second sample and Cr, C2 = 4% by weight Ni: 1% by weight Co: 2% by weight Fe: 5% by weight Mo: 20% by weight Bi: 10% by weight Cu: A third sample was prepared from the rest, and each sample was made with a diameter of 5°. It was machined into a disk shape with a thickness of 6.5 m, and 4.
The rounded one with a radius of curvature of m was incorporated into the vacuum interrupter shown in FIG.

耐溶着性に関しては、可動側の電極13を固定側の電極
14に対して130 kgfで加圧し、この状態で25
 kA (r、ms、 )の電流を3秒間通電した後、
200 kgfの静的な引張り力を′:4極13に加え
た所、三つの試料とも電極14から電極13を問題なく
引き離すことができた。又、その後の接触抵抗の増加は
三つの試料とも20%以内に収まった。
Regarding the welding resistance, the movable side electrode 13 is pressurized against the fixed side electrode 14 at 130 kgf, and in this state 25 kgf is applied.
After applying a current of kA (r, ms, ) for 3 seconds,
When a static tensile force of 200 kgf was applied to the 4-pole 13, the electrode 13 could be separated from the electrode 14 in all three samples without any problem. Further, the subsequent increase in contact resistance was within 20% for all three samples.

又、電流しゃ断性能に関しては、?、2kVの電圧条件
にて第一試料では20 kA (r、ag、)の電流を
しゃ断でき、第二試料では21 kA(、、、!、)の
電流をしゃ断でき、第三試料では23 kA (r、m
s、)の電流をしゃ断することができた。
Also, what about current cutoff performance? , Under a voltage condition of 2 kV, the first sample can cut off a current of 20 kA (r, ag,), the second sample can cut off a current of 21 kA (,,,!,), and the third sample can cut off a current of 23 kA. (r, m
s,) could be cut off.

一方、電流さい断値に関しては、200V。On the other hand, the current cutoff value is 200V.

120Aで真空インタラプタを負荷開閉し、百回後、千
回後、−万回後、十万回後の電流さい断値をそれぞれ求
めた結果、第1図に示すように十万回後でもIA以下に
収まる好結果が得られた。なお、この第1図に示すO印
The vacuum interrupter was loaded and closed at 120A, and the current cutoff values after 100, 1,000, -0,000, and 100,000 cycles were calculated, and as shown in Figure 1, even after 100,000 cycles, IA The following good results were obtained. Note that the O mark shown in FIG.

Δ印、x印はそれぞれ50回測定の平均値を表しており
、σつが第一試料、八・るが第二試料、 X−−−−X
が第三試料の各電流さい断値の推移を示す。
The Δ and x marks each represent the average value of 50 measurements, σ is the first sample, 8 is the second sample, X----X
shows the transition of each current cutoff value of the third sample.

H発明の効果 本発明の真空インタラプタの電極材料によると、20か
ら70重量%の範囲の銅と、5から75重量%の範囲の
炭化クロムと、0.1から10重量%の範囲のニッケル
と、0.1から10重量%の範囲のコバルトと、0.1
から10重量%の範囲の鉄と、2から75重量%の範囲
のモリブデンと、1から20重量%の範囲のビスマスと
で構成しているため、従来の銅ビスマス合金よりも電流
さい断値が低く、しかもタングステン銅焼結金属や炭化
タングステン址焼結金属よゆも電流しゃ断性能が高く、
耐溶着性や電流しゃ断性能及び電流さい断値等の特性が
全体的に向上した電極材料を得ることが可能である。具
体的には、十万回の開閉後でも電流さい断値をIA以下
の低い値に保つことが可能な真空インタラプタを提供で
きろ。更に、高価な銀を全く使用していないことから電
極材料自体のコストを下げることができる。
According to the electrode material of the vacuum interrupter of the present invention, copper in the range of 20 to 70% by weight, chromium carbide in the range of 5 to 75% by weight, and nickel in the range of 0.1 to 10% by weight. , cobalt in the range of 0.1 to 10% by weight, and 0.1
It is composed of iron ranging from 10% to 10% by weight, molybdenum ranging from 2% to 75% by weight, and bismuth ranging from 1% to 20% by weight, resulting in a lower current cutoff value than conventional copper-bismuth alloys. It has a low current interrupting performance, and has a higher current interrupting performance than tungsten copper sintered metal or tungsten carbide sintered metal.
It is possible to obtain an electrode material that has overall improved properties such as welding resistance, current cutoff performance, and current cutoff value. Specifically, it is possible to provide a vacuum interrupter that can maintain a current cutoff value at a low value below IA even after 100,000 times of opening and closing. Furthermore, since no expensive silver is used, the cost of the electrode material itself can be reduced.

【図面の簡単な説明】 第1図は本発明を真空インタラプタに応用した場合の電
流さい断値の特性を表すグラフ、第2図はその真空イン
タラプタの一例を表す断面図である。 図中の符号で11,12はリード棒、13゜14は電極
である。 第1図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the characteristics of a current cutoff value when the present invention is applied to a vacuum interrupter, and FIG. 2 is a sectional view showing an example of the vacuum interrupter. In the figure, 11 and 12 are lead rods, and 13 and 14 are electrodes. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 20から70重量%の範囲の銅と、5から75重量%の
範囲の炭化クロムと、0.1から10重量%の範囲のニ
ッケルと、0.1から10重量%の範囲のコバルトと、
0.1から10重量%の範囲の鉄と、2から75重量%
の範囲のモリブデンと、1から20重量%の範囲のビス
マスとからなる真空インタラプタの電極材料。
copper in the range of 20 to 70% by weight, chromium carbide in the range of 5 to 75% by weight, nickel in the range of 0.1 to 10% by weight, and cobalt in the range of 0.1 to 10% by weight;
Iron ranging from 0.1 to 10% by weight and 2 to 75% by weight
vacuum interrupter electrode material comprising molybdenum in the range of 1 to 20% by weight bismuth.
JP26935588A 1988-10-27 1988-10-27 Electrode material for vacuum interrupter Pending JPH02117041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26935588A JPH02117041A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26935588A JPH02117041A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Publications (1)

Publication Number Publication Date
JPH02117041A true JPH02117041A (en) 1990-05-01

Family

ID=17471225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26935588A Pending JPH02117041A (en) 1988-10-27 1988-10-27 Electrode material for vacuum interrupter

Country Status (1)

Country Link
JP (1) JPH02117041A (en)

Similar Documents

Publication Publication Date Title
EP2081200B1 (en) Electrical contact for vacuum interrupter
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP4759987B2 (en) Electrode and electrical contact and its manufacturing method
EP1742238B1 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
JP3428416B2 (en) Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method
US4546222A (en) Vacuum switch and method of manufacturing the same
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JPH02117041A (en) Electrode material for vacuum interrupter
JPH02117040A (en) Electrode material for vacuum interrupter
JP2661203B2 (en) Electrode materials for vacuum interrupters
JP2661201B2 (en) Electrode materials for vacuum interrupters
JPH02117033A (en) Electrode material of vacuum interrupter
JPH02117032A (en) Electrode material of vacuum interrupter
JPH0510782B2 (en)
JP2661202B2 (en) Electrode materials for vacuum interrupters
JP2661199B2 (en) Electrode materials for vacuum interrupters
JP2661200B2 (en) Electrode materials for vacuum interrupters
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JPH02117038A (en) Electrode material for vacuum interrupter
JPH02117034A (en) Electrode material of vacuum interrupter
JPH0435545B2 (en)
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JP3810955B2 (en) Manufacturing method of contact material for vacuum valve
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH02117030A (en) Electrode material of vacuum interrupter