JP2661199B2 - Electrode materials for vacuum interrupters - Google Patents

Electrode materials for vacuum interrupters

Info

Publication number
JP2661199B2
JP2661199B2 JP63269345A JP26934588A JP2661199B2 JP 2661199 B2 JP2661199 B2 JP 2661199B2 JP 63269345 A JP63269345 A JP 63269345A JP 26934588 A JP26934588 A JP 26934588A JP 2661199 B2 JP2661199 B2 JP 2661199B2
Authority
JP
Japan
Prior art keywords
weight
copper
current
bismuth
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63269345A
Other languages
Japanese (ja)
Other versions
JPH02117031A (en
Inventor
佳行 柏木
信行 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP63269345A priority Critical patent/JP2661199B2/en
Publication of JPH02117031A publication Critical patent/JPH02117031A/en
Application granted granted Critical
Publication of JP2661199B2 publication Critical patent/JP2661199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】 A. 産業上の利用分野 本発明は、電流しゃ断性能や電流さい断値等の特性を
向上させた安価な溶浸形の複合金属からなる真空インタ
ラプタの電極材料に関する。
Description: TECHNICAL FIELD The present invention relates to an electrode material for a vacuum interrupter made of an inexpensive infiltration type composite metal with improved characteristics such as current breaking performance and current breaking value.

B. 発明の概要 銅とクロムとモリブデンとビスマスとからなる真空イ
ンタラプタの電極材料であり、耐溶着性や電流しゃ断性
能及び電流さい断値等をバランス良く設定したものであ
る。
B. Summary of the Invention An electrode material for a vacuum interrupter composed of copper, chromium, molybdenum, and bismuth, in which welding resistance, current breaking performance, current breaking value, and the like are set in a well-balanced manner.

C. 従来の技術 一般に、真空インタラプタの電極材料として要求され
る主な性能としては、 (1) 耐溶着性が良いこと (2) 電流しゃ断性能が高いこと (3) 電流さい断値が低いこと 等を挙げることができる。
C. Conventional technology In general, the main performances required as electrode materials for vacuum interrupters are (1) good welding resistance (2) high current breaking performance (3) low current breaking value And the like.

しかし、電極材料の電流しゃ断性能を高くすることと
電流さい断値を低くすることとは、互いに矛盾する物理
的特性に起因するため、単一の電極材料で上述した全て
の特性を満たすことは難しく、真空インタラプタの仕様
に最も適合した電極材料を選択しているのが現状であ
る。
However, increasing the current breaking performance of the electrode material and lowering the current breaking value are caused by physical properties that contradict each other.Therefore, it is impossible for a single electrode material to satisfy all the properties described above. At present, it is difficult to select an electrode material that best meets the specifications of the vacuum interrupter.

例えば、特公昭41−12131号公報等に開示された銅ビ
スマス合金は、銅(Cu)に蒸気圧の高い低融点のビスマ
ス(Bi)を0.5重量%添加したものであり、耐溶着性や
電流しゃ断性能が良好であることは周知の通りである。
又、特公昭54−36121号公報等に開示されたタングステ
ン銅焼結金属は、蒸気圧の低い高融点のタングステン
(W)に銅を20重量%添加したものであり、電流さい断
値が低い利点を有する。この電流さい断値が特に低い電
極材料としては、実開昭55−121429号公報等に開示され
た炭化タングステン銀焼結金属、つまり炭化タングステ
ン(WC)に銀(Ag)を30重量%添加したもの等がある。
For example, a copper-bismuth alloy disclosed in Japanese Patent Publication No. 41-12131 is obtained by adding 0.5% by weight of bismuth (Bi) having a high vapor pressure and a low melting point to copper (Cu), and has a high resistance to welding and electric current. It is well known that the breaking performance is good.
The tungsten copper sintered metal disclosed in Japanese Patent Publication No. 54-36121 is obtained by adding 20% by weight of copper to tungsten (W) having a low vapor pressure and a high melting point, and has a low current breaking value. Has advantages. As an electrode material having a particularly low current interruption value, a silver-silver tungsten sintered metal disclosed in Japanese Utility Model Application Laid-Open No. 55-121429, that is, tungsten carbide (WC) was added with 30% by weight of silver (Ag). There are things.

D. 発明が解決しようとする課題 銅ビスマス合金は電流しゃ断性能が良好である反面、
電流さい断値が例えば10Aと高く、電流しゃ断時にさい
断サージを発生することがある。このため、遅れ小電流
を良好にしゃ断することが困難であり、負荷側の電気機
器の絶縁破壊を引き起こす虞がある。
D. Problems to be Solved by the Invention Copper-bismuth alloy has good current breaking performance,
The current interruption value is as high as 10 A, for example, and an interruption surge may occur when the current is interrupted. For this reason, it is difficult to satisfactorily cut off the small delay current, and there is a possibility that the electric equipment on the load side may be broken down.

又、タングステン銅焼結金属や炭化タングステン銀焼
結金属は電流さい断値が低い反面、電流しゃ断性能が悪
く、短絡電流の如き大電流をしゃ断することができな
い。更に、炭化タングステン銀焼結金属では銀を比較的
多量に含んでいることから、電極材料としては高価なも
のであり、真空インタラプタの製造単価を下げる際の障
害となる。
Further, although the sintered copper tungsten metal and the sintered silver silver tungsten metal have low current breaking values, they have poor current breaking performance and cannot break large currents such as short-circuit currents. Furthermore, since the tungsten silver carbide sintered metal contains a relatively large amount of silver, it is expensive as an electrode material, which is an obstacle to reducing the unit cost of manufacturing a vacuum interrupter.

E. 課題を解決するための手段 本発明による真空インタラプタの電極材料は、耐溶着
性や電流しゃ断性能及び電流さい断値等の特性を向上さ
せるため、20から70重量%の範囲の銅と、2から75重量
%の範囲のクロムと、2から75重量%の範囲のモリブデ
ンと、1から20重量%の範囲のビスマスとからなるもの
である。
E. Means for Solving the Problems The electrode material of the vacuum interrupter according to the present invention includes copper in the range of 20 to 70% by weight to improve properties such as welding resistance, current breaking performance, and current breaking value. Chromium in the range of 2 to 75% by weight, molybdenum in the range of 2 to 75% by weight, and bismuth in the range of 1 to 20% by weight.

この場合、クロムの粉末とモリブデンの粉末とを均一
に混合し、これをクロム(及びモリブデン)の融点以下
の温度で加熱して多孔質の焼結体を得、更にこの焼結体
の空隙部分に銅及びビスマスを溶浸させて本発明の電極
材料を得る。なお、これら焼結や溶浸工程は、非酸化性
雰囲気にて脱ガスしつつ行うことが望ましい。
In this case, the chromium powder and the molybdenum powder are uniformly mixed and heated at a temperature equal to or lower than the melting point of chromium (and molybdenum) to obtain a porous sintered body. Is infiltrated with copper and bismuth to obtain the electrode material of the present invention. The sintering and infiltration steps are desirably performed while degassing in a non-oxidizing atmosphere.

ここで、銅が20重量%未満の場合には、導電率が低下
して発熱量が多くなり、逆に銅が70重量%を越えると、
耐溶着性の低下や電流さい断値の増大をもたらす。クロ
ムが2重量%未満の場合やビスマスが1重量%未満の場
合には、電流さい断値がそれぞれ増大することとなる。
更に、クロムやモリブデンがそれぞれ75重量%を越える
場合には、電流しゃ断性能が低下してしまう。又、モリ
ブデンが2重量%未満の場合には、耐電圧特性が低下す
る。一方、ビスマスが20重量%を越えると電極及び真空
インタラプタとしての耐久性が急激に低下する。
Here, when the copper content is less than 20% by weight, the electric conductivity decreases and the calorific value increases. Conversely, when the copper content exceeds 70% by weight,
This results in a decrease in welding resistance and an increase in current breaking value. If the chromium content is less than 2% by weight or the bismuth content is less than 1% by weight, the current cutoff increases.
Further, when chromium and molybdenum each exceed 75% by weight, the current breaking performance is reduced. If the molybdenum content is less than 2% by weight, the withstand voltage characteristics deteriorate. On the other hand, when bismuth exceeds 20% by weight, the durability as an electrode and a vacuum interrupter rapidly decreases.

F. 作用 銅とクロムとモリブデンとビスマスとの最適な組成を
見い出したので、全体として耐溶着性や絶縁耐力及び電
流しゃ断性能及び電流さい断値等の真空インタラプタに
要求される特性を向上させた電極材料が得られる。
F. Action Since the optimum composition of copper, chromium, molybdenum, and bismuth was found, the characteristics required for vacuum interrupters, such as welding resistance, dielectric strength, current breaking performance, and current breaking value, were improved as a whole. An electrode material is obtained.

G. 実施例 真空インタラプタは、その概略構造の一例を表す第7
図に示すようなものであり、相互に一直接状をなす一対
のリード棒11,12の対向端面には、それぞれ電極13,14が
一体的に設けてある。これら電極13,14を囲む筒状のシ
ールド15の外周中央部は、このシールド15を囲む一対の
絶縁筒16,17の間に挾まれた状態で保持されている。一
方の前記リード棒11は一方の絶縁筒16の一端に接合され
た金属端板18を気密に貫通した状態で、この金属端板18
に一体的に固定されている。図示しない駆動装置に連結
される他方のリード棒12は、他方の絶縁筒17の他端に気
密に接合された他方の金属端板19にベローズ20を介して
連結され、駆動装置の作動に伴って電極13,14の対向方
向に往復動可能に可動側の電極14が固定側の電極13に対
して開閉動作するようになっている。
G. Embodiment The vacuum interrupter has a seventh structure representing an example of its schematic structure.
As shown in the figure, electrodes 13 and 14 are integrally provided on opposing end surfaces of a pair of lead rods 11 and 12 which are directly formed with each other. The center of the outer periphery of the cylindrical shield 15 surrounding the electrodes 13 and 14 is held in a state sandwiched between a pair of insulating cylinders 16 and 17 surrounding the shield 15. One of the lead rods 11 hermetically penetrates a metal end plate 18 joined to one end of one insulating cylinder 16, and
It is fixed integrally to. The other lead rod 12 connected to a driving device (not shown) is connected via a bellows 20 to the other metal end plate 19 airtightly joined to the other end of the other insulating cylinder 17, and is associated with the operation of the driving device. The movable electrode 14 opens and closes with respect to the fixed electrode 13 so that the movable electrode 14 can reciprocate in the direction opposite to the electrodes 13 and 14.

前記電極13,14は、20から70重量%の範囲の銅(Cu)
と、2から75重量%の範囲のクロム(Cr)と、2から75
重量%の範囲のモリブデン(Mo)と、1から20重量%の
範囲のビスマス(Bi)とからなるものである。
The electrodes 13, 14 are made of copper (Cu) in the range of 20 to 70% by weight.
Chromium (Cr) in the range of 2 to 75% by weight;
It consists of molybdenum (Mo) in the range of 1% by weight and bismuth (Bi) in the range of 1 to 20% by weight.

この電極材料の製造法の一例を以下に記すと、まず−
100メッシュの粒径のクロム及びモリブデンの粉末を機
械的に混合し、この混合粉末をアルミナセラミックス製
の容器に所定量装入すると共に該混合粉末上に銅ビスマ
ス合金の塊を装置した状態で容器に蓋を被せ、これらを
真空炉内にて脱ガスしつつ加熱処理し、まずクロム粒子
とモリブデン粒子とを拡散結合させ、多孔質の溶浸母材
を得る。しかるのち、この溶浸母材の空隙部分に銅及び
ビスマスを溶浸させるが、この際、容器内はビスマス蒸
気を多量に含んだ雰囲気となる。そして、得られる電極
材料を容器から出して所定の寸法形状に機械加工する。
An example of a method for producing this electrode material is described below.
A powder of chromium and molybdenum having a particle size of 100 mesh is mechanically mixed, a predetermined amount of the mixed powder is charged into a container made of alumina ceramics, and a container of copper-bismuth alloy is mounted on the mixed powder. And heat-treating them while degassing in a vacuum furnace. First, chromium particles and molybdenum particles are diffusion-bonded to obtain a porous infiltration base material. Thereafter, copper and bismuth are infiltrated into the void portions of the infiltration base material. At this time, the interior of the container has an atmosphere containing a large amount of bismuth vapor. Then, the obtained electrode material is taken out of the container and machined into a predetermined shape.

このようにして Cr:30重量% Mo:10重量% Bi:12重量% Cu:残り からなる電極材料を第一試料として作成し、その金属組
織の状態をX線マイクロアナライザにて調べた。金属組
織の二次電子像は第1図に示す通りであり、この試料に
おける銅の分布状態を表すX線像が第2図、クロムの分
布状態を表すX線像が第3図、モリブデンの分布状態を
表すX線像が第4図、ビスマスの分布状態を表すX線像
が第5図にそれぞれ示されている。第2図〜第5図で点
状に分布する白い部分が各金属元素の存在箇所であり、
クロムとモリブデンとからなる多孔質の溶浸母材の空隙
部分に銅及びビスマスか溶浸し、全体として強固な結合
体を構成していることが判る。
In this way, an electrode material consisting of Cr: 30% by weight, Mo: 10% by weight, Bi: 12% by weight, and Cu: balance was prepared as a first sample, and the state of its metal structure was examined with an X-ray microanalyzer. The secondary electron image of the metal structure is as shown in FIG. 1, the X-ray image showing the distribution state of copper in this sample is shown in FIG. 2, the X-ray image showing the distribution state of chromium is FIG. An X-ray image showing the distribution state is shown in FIG. 4, and an X-ray image showing the distribution state of bismuth is shown in FIG. In FIGS. 2 to 5, the white portions distributed in a dotted manner are the locations where the respective metal elements exist.
It can be seen that copper and bismuth are infiltrated into the voids of the porous infiltration base material composed of chromium and molybdenum to form a strong bonded body as a whole.

以上の第一試料の他に、 Cr:10重量% Mo:25重量% Bi:15重量% Cu:残り からなる第二試料及び Cr:10重量% Mo:30重量% Bi:15重量% Cu:残り からなる第三試料を用意し、それぞれ直径50mmで厚さが
6.5mmの円盤状に加工すると共にその外周縁に4mmの曲率
半径の丸味を付けたものを第7図に示す真空インタラプ
タの電極13,14として組込み、耐溶着性及び電流しゃ断
性能及び電流さい断値を調べた。
In addition to the above first sample, Cr: 10% by weight, Mo: 25% by weight, Bi: 15% by weight, Cu: the remaining second sample and Cr: 10% by weight, Mo: 30% by weight, Bi: 15% by weight Cu: Prepare the remaining third samples, each having a diameter of 50 mm and a thickness of 50 mm.
Processed into a 6.5 mm disk shape and rounded with a 4 mm radius of curvature on the outer periphery, these were assembled as electrodes 13 and 14 of the vacuum interrupter shown in FIG. 7 to achieve welding resistance, current breaking performance and current breaking. The value was checked.

耐溶着性に関しては、可動側の電極13を固定側の電極
14に対して130kgfで加圧し、この状態で25kA(r.m.s.)
の電流を3秒間通電した後、200kgfの静的な引張り力を
電極13に加えた所、三つの試料とも電極14から電極13を
問題なく引き離すことができた。又、その後の接触抵抗
の増加は三つの試料とも20%以内に収まった。
Regarding the welding resistance, the movable electrode 13 is fixed to the fixed electrode.
Pressurized at 130kgf against 14, 25kA (rms) in this state
After applying the current for 3 seconds, a static tensile force of 200 kgf was applied to the electrode 13, and the electrode 13 could be separated from the electrode 14 without any problem in all three samples. The subsequent increase in contact resistance was within 20% for all three samples.

又、電流しゃ断性能に関しては、7.2kVの電圧条件に
て第一試料では20kA(r.m.s.)の電流をしゃ断でき、第
二試料では25kA(r.m.s.)の電流をしゃ断でき、第三試
料では23kA(r.m.s.)の電流をしゃ断することができ
た。
Regarding the current breaking performance, a current of 20 kA (rms) can be cut off for the first sample, a current of 25 kA (rms) can be cut off for the second sample, and a current of 23 kA (rms) for the third sample under a voltage condition of 7.2 kV. ) Was able to cut off the current.

一方、電流さい断値に関しては、200V,120Aで真空イ
ンタラプタを負荷開閉し、百回後,千回後,一万回後,
十万回後の電流さい断値をそれぞれ求めた結果、第6図
に示すように十万回後でも1A以下に収まる好結果が得ら
れた。なお、この第6図に示す○印,△印,×印はそれ
ぞれ50回測定の平均値を表しており、 ×……×が第三試料の各電流さい断値の推移を示す。
On the other hand, regarding the current interruption value, the vacuum interrupter was switched on and off at 200 V and 120 A, and after 100 times, 1000 times, 10,000 times,
As a result of calculating the current break values after 100,000 times, as shown in FIG. 6, good results were obtained, which were less than 1 A even after 100,000 times. The circles, triangles, and crosses shown in FIG. 6 represent the average values of 50 measurements, respectively. ... × indicate the transition of each current break value of the third sample.

H. 発明の効果 本発明の真空インタラプタの電極材料によると、20か
ら70重量%の範囲の銅と、2から75重量%の範囲のクロ
ムと、2から75重量%の範囲のモリブデンと、1から20
重量%の範囲のビスマスとで構成しているため、従来の
銅ビスマス合金よりも電流さい断値が低く、しかもタン
グステン銅焼結金属や炭化タングステン銀焼結金属より
も電流しゃ断性能が高く、耐溶着性や電流しゃ断性能及
び電流さい断値等の特性が全体的に向上した電極材料を
得ることができる。具体的には、十万回の開閉後でも電
流さい断値を1A以下の低い値に保つことが可能な真空イ
ンタラプタを提供できる。更に、高価な銀を全く使用し
ていないことから電極材料自体のコストを下げることが
できる。
H. Effect of the Invention According to the electrode material of the vacuum interrupter of the present invention, copper in the range of 20 to 70% by weight, chromium in the range of 2 to 75% by weight, molybdenum in the range of 2 to 75% by weight, From20
Since it is composed of bismuth in the range of weight percent, the current breaking value is lower than that of the conventional copper-bismuth alloy, and the current breaking performance is higher than that of tungsten copper sintered metal or tungsten silver carbide sintered metal. It is possible to obtain an electrode material in which properties such as weldability, current breaking performance, and current breaking value are improved as a whole. Specifically, it is possible to provide a vacuum interrupter capable of maintaining a current break value at a low value of 1 A or less even after 100,000 switching operations. Further, since no expensive silver is used, the cost of the electrode material itself can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による真空インタラプタの電極材料の一
実施例において、X線マイクロアナライザによる金属組
織の二次電子像を表す顕微鏡写真、第2図はその銅の金
属組織の分布状態を表す顕微鏡写真、第3図はクロムの
金属組織の分布状態を表す顕微鏡写真、第4図はモリブ
デンの金属組織の分布状態を表す顕微鏡写真、第5図は
ビスマスの金属組織の分布状態を表す顕微鏡写真、第6
図は本発明を真空インタラプタに応用した場合の電流さ
い断値の特性を表すグラフ、第7図はその真空インタラ
プタの一例を表す断面図である。 図中の符号で11,12はリード棒、13,14は電極である。
FIG. 1 is a micrograph showing a secondary electron image of a metal structure by an X-ray microanalyzer in an embodiment of an electrode material of a vacuum interrupter according to the present invention, and FIG. 2 is a microscope showing a distribution state of the copper metal structure. FIG. 3 is a micrograph showing the distribution of the metal structure of chromium, FIG. 4 is a micrograph showing the distribution of the metal structure of molybdenum, FIG. 5 is a micrograph showing the distribution of the metal structure of bismuth, Sixth
FIG. 7 is a graph showing the characteristics of a current interruption value when the present invention is applied to a vacuum interrupter, and FIG. 7 is a sectional view showing an example of the vacuum interrupter. In the figure, reference numerals 11 and 12 are lead rods, and 13 and 14 are electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】20から70重量%の範囲の銅と、2から75重
量%の範囲のクロムと、2から75重量%の範囲のモリブ
デンと、1から20重量%の範囲のビスマスとからなり、
クロムの粉末とモリブデンの粉末とを混合し、それをク
ロム及びモリブデンの融点以下の温度で加熱して多孔質
の焼結体を得、この焼結体の空隙部分に銅及びビスマス
を溶浸させて得られることを特徴とする真空インタラプ
タの電極材料。
1. A composition comprising copper in the range of 20 to 70% by weight, chromium in the range of 2 to 75% by weight, molybdenum in the range of 2 to 75% by weight, and bismuth in the range of 1 to 20% by weight. ,
A powder of chromium and a powder of molybdenum are mixed and heated at a temperature equal to or lower than the melting point of chromium and molybdenum to obtain a porous sintered body, and copper and bismuth are infiltrated into voids of the sintered body. An electrode material for a vacuum interrupter characterized by being obtained by:
JP63269345A 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters Expired - Lifetime JP2661199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269345A JP2661199B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269345A JP2661199B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Publications (2)

Publication Number Publication Date
JPH02117031A JPH02117031A (en) 1990-05-01
JP2661199B2 true JP2661199B2 (en) 1997-10-08

Family

ID=17471087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269345A Expired - Lifetime JP2661199B2 (en) 1988-10-27 1988-10-27 Electrode materials for vacuum interrupters

Country Status (1)

Country Link
JP (1) JP2661199B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160369373A1 (en) * 2014-03-04 2016-12-22 Meidensha Corporation Alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211717A (en) * 1984-04-04 1985-10-24 株式会社日立製作所 Method of producing electrode for vacuum breaker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160369373A1 (en) * 2014-03-04 2016-12-22 Meidensha Corporation Alloy
US9719155B2 (en) * 2014-03-04 2017-08-01 Meidensha Corporation Alloy

Also Published As

Publication number Publication date
JPH02117031A (en) 1990-05-01

Similar Documents

Publication Publication Date Title
EP0227973B1 (en) Contact electrode material for vacuum interrupter and method of manufacturing the same
EP2586882B1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
EP1742238B1 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
US4546222A (en) Vacuum switch and method of manufacturing the same
JP2661199B2 (en) Electrode materials for vacuum interrupters
JP2661200B2 (en) Electrode materials for vacuum interrupters
JP2661202B2 (en) Electrode materials for vacuum interrupters
JP2661201B2 (en) Electrode materials for vacuum interrupters
JP2661203B2 (en) Electrode materials for vacuum interrupters
JP4621336B2 (en) Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JPH0510782B2 (en)
JPH02117032A (en) Electrode material of vacuum interrupter
JPH02117033A (en) Electrode material of vacuum interrupter
JPH02117030A (en) Electrode material of vacuum interrupter
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JPH02117038A (en) Electrode material for vacuum interrupter
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP2853308B2 (en) Manufacturing method of electrode material
JPH02117040A (en) Electrode material for vacuum interrupter
JPH02117041A (en) Electrode material for vacuum interrupter
JPH02117034A (en) Electrode material of vacuum interrupter
JPH02117029A (en) Electrode material of vacuum interrupter and its manufacture
JPH0487230A (en) Electrode material of vacuum interrupter
JPH0510774B2 (en)
JP2002161327A (en) Contact material for circuit breaker, manufacturing method therefor, and circuit breaker