JPH02116697A - Device for growing semiconductor single crystal - Google Patents

Device for growing semiconductor single crystal

Info

Publication number
JPH02116697A
JPH02116697A JP26788488A JP26788488A JPH02116697A JP H02116697 A JPH02116697 A JP H02116697A JP 26788488 A JP26788488 A JP 26788488A JP 26788488 A JP26788488 A JP 26788488A JP H02116697 A JPH02116697 A JP H02116697A
Authority
JP
Japan
Prior art keywords
single crystal
crucible body
crucible
cylinder
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26788488A
Other languages
Japanese (ja)
Other versions
JP2555714B2 (en
Inventor
Michio Kida
喜田 道夫
Naoki Ono
直樹 小野
Yoshiaki Arai
義明 新井
Tateaki Sahira
佐平 健彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63267884A priority Critical patent/JP2555714B2/en
Publication of JPH02116697A publication Critical patent/JPH02116697A/en
Application granted granted Critical
Publication of JP2555714B2 publication Critical patent/JP2555714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To improve the dischargeability of a carbon compd. in the vicinity of a melt by providing a gas flow straightnening cylinder at a position above a double crucible, and leaving spaces between the lower end of the cylinder and the inner crucible, outer crucible, and molten raw material. CONSTITUTION:The gas flow straightening cylinder 19 is provided above the double crucible 13 consisting of the outer crucible 13A and the inner crucible 13B coaxially with the crucible 13 and in the gap between the outer crucible 13A and the inner crucible 13B. Spaces are left respectively between the lower end of the cylinder 19 and the inner crucible 13B, outer crucible 13A, and the molten raw material Y. The lower end of the cylinder 19 should have the maximum wall thickness of 0.3-0.8times the distance between the inner crucible 13B and the outer crucible 13A, the surface of the lower end of the cylinder 19 is gently curved, the distance between the lower end of the cylinder 19 and the molten raw material Y is held at >=5mm, and the lower end is positioned lower than the upper end of the outer crucible 13A.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、2重構造のルツボを用いて単結晶を育成さ仕
る半導体単結晶育成装置に係わり、特に融液近傍におけ
る炭素化合物の排出性を高める改良に関′14゛ろ。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a semiconductor single crystal growth apparatus that grows a single crystal using a double-structured crucible. Regarding improvements to improve performance.

「従来の技術」 CZ法によってB 、P 、S b等のドーパントを添
加したシリコン単結晶を製造する場合には、これらドー
パント原子の偏析係数が1でないため、育成された単結
晶中のドーパント濃度が長手方向に不均一になり、その
一部分しか所望の品質にならない問題があった。
"Prior art" When producing a silicon single crystal to which dopants such as B, P, and Sb are added by the CZ method, the segregation coefficient of these dopant atoms is not 1, so the dopant concentration in the grown single crystal is There was a problem in that the quality was non-uniform in the longitudinal direction and only a portion of it had the desired quality.

その改善策として、特開昭49−10664号公報やU
SP4352784号では、外ルツボ体と内ルツボ体と
からなる2重ルツボを用い、各ルツボで区画された原料
融液のドーパント濃度差をfll用して、実質的に単結
晶中のドーパント濃度を均一にし、収率を向上させる技
術が開示されている。第9図はその装置例を示し、符号
lは炉体、2は外ルツボ体2Aに円筒形の内ルツボ体2
Bを収めた2重ルツボ、3は黒鉛サセプタ、4はヒータ
ー 5は保温筒で、炉体1内にはガス導入口6からアル
ゴンガスが供給され、原料融液Yから発生する不純物と
ともにガス排出ロアからυト出される。
As an improvement measure, Japanese Patent Laid-Open No. 49-10664 and U.S.
In SP4352784, a double crucible consisting of an outer crucible body and an inner crucible body is used, and the dopant concentration in the single crystal is substantially uniform by using the dopant concentration difference in the raw material melt divided by each crucible. A technique for improving the yield is disclosed. FIG. 9 shows an example of the device, where 1 is a furnace body, 2 is an outer crucible body 2A, and a cylindrical inner crucible body 2A.
3 is a graphite susceptor, 4 is a heater, and 5 is a heat insulating cylinder. Argon gas is supplied into the furnace body 1 from a gas inlet 6, and the gas is discharged together with impurities generated from the raw material melt Y. υto is ejected from Roa.

「発明が解決しようとする課題」 ところが、この種の2重ルツボを備えた装置でシリコン
単結晶を実際に製造すると、得られた単結晶中の炭素濃
度が育成開始側から終了側にかけて漸次増大し、部分的
に半導体素子として使用可能な炭素濃度の規格を越えて
しまい、単結晶の収率を悪化させる現象がしばしば確認
された。
``Problem to be solved by the invention'' However, when silicon single crystals are actually produced using an apparatus equipped with this type of double crucible, the carbon concentration in the resulting single crystal gradually increases from the start of growth to the end of growth. However, it has often been observed that the carbon concentration in some parts exceeds the standard for use in semiconductor devices, resulting in a deterioration in the yield of single crystals.

この種の炭素汚染は、炉体内に使用されている種々のグ
ラファイト部品(ヒータ4.保温筒5.サセプタ3.内
ルツボ体2Bの支持体等)に由来するもので、まず原料
融液Yと石英ルツボ2との反応により揮発性のSiOが
発生し、このSiOが高温のグラファイト部品の表面で
次式の通りCOを発生する。
This type of carbon contamination originates from various graphite parts used in the furnace body (heater 4, heat insulating cylinder 5, susceptor 3, support for inner crucible body 2B, etc.), and first of all, it is caused by the raw material melt Y and Volatile SiO is generated by the reaction with the quartz crucible 2, and this SiO generates CO on the surface of the high-temperature graphite component as shown in the following equation.

SiO+2O−SiC+CO したがって、1重ルツボよりも2重ルツボにおいて炭素
汚染が顕著であるとすれば、2重ルツボの場合には、発
生するCOを原料融液Y中により多く溶は込ませる何等
かの機構が存在することか予想される。
SiO+2O-SiC+CO Therefore, if carbon contamination is more pronounced in a double crucible than in a single crucible, in the case of a double crucible, there is some way to dissolve more CO generated into the raw material melt Y. It is expected that a mechanism exists.

そこで本発明者らはCOガスの挙動について詳細な検討
を試み、次のような知見を得るに至った。
Therefore, the present inventors conducted a detailed study on the behavior of CO gas, and came to the following findings.

すなわち、ガス導入口6から供給されたアルゴンガスは
、単結晶Tに沿って下方に流れ、内ルツボ体2Bと単結
晶Tの間隙を通った後、内ルツボ体2Bおよび外ルツボ
体2Aの上方を通過してガス排出ロアから排出される。
That is, the argon gas supplied from the gas inlet 6 flows downward along the single crystal T, passes through the gap between the inner crucible body 2B and the single crystal T, and then flows above the inner crucible body 2B and the outer crucible body 2A. and is discharged from the gas exhaust lower.

その際、内ルツボ体2Bと外ルツボ体2Aとの間隙にお
いて図示のようにガスが比較的長時間滞留し、このガス
中のCO高濃度上昇するとともに、そのCOが継続的に
融液Yに接触するため、効率良く融液Y中に溶は込み、
融液Yひいては単結晶TのCO高濃度高めてしまうので
ある。
At this time, gas remains in the gap between the inner crucible body 2B and the outer crucible body 2A for a relatively long time as shown in the figure, and the CO concentration in this gas increases, and the CO continues to flow into the melt Y. Because of the contact, the melt is efficiently injected into the melt Y,
This increases the CO concentration in the melt Y and, ultimately, in the single crystal T.

この現象の改善策としては、まず炉体1内に供給するア
ルゴンガス流量を増すことが考えられるが、その場合に
はガス供給に要するコストが著しく高くなるうえ、単結
晶Tの育成条件に与える悪影響も無視できなくなる。
As a measure to improve this phenomenon, it is conceivable to first increase the flow rate of argon gas supplied into the furnace body 1, but in that case, the cost required for gas supply would be significantly higher, and it would not affect the growth conditions of the single crystal T. The negative effects cannot be ignored either.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、2
重ルツボの上方に、これと同軸に円筒状のガス整流筒を
設け、このガス整流筒の下端部を内ルツボ体と外ルツボ
体の間隙に配置し、この下端部と、内ルツボ体、外ルツ
ボ体、原料融液との間にそれぞれ間隔を空けたことを特
徴とする。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and includes two
A cylindrical gas rectifying cylinder is provided above the heavy crucible and coaxially therewith, and the lower end of the gas rectifying cylinder is placed in the gap between the inner crucible body and the outer crucible body. It is characterized by leaving a space between the crucible body and the raw material melt.

なお、ガス整流筒の下端部の最大肉厚は、内ルツボ体と
外ルツボ体の離間距離の0.3〜0.8倍とされ、ガス
整流筒の下端部の表面は、なだらかな曲面であることが
望ましい。また、ガス整流筒の下端と原料融液との距離
は5!Jmより大きく、かっこの下端は外ルツボ体の上
端よりも低い位置にあることが望ましい。
The maximum thickness of the lower end of the gas rectifying tube is 0.3 to 0.8 times the distance between the inner crucible and the outer crucible, and the surface of the lower end of the gas rectifying tube is a gently curved surface. It is desirable that there be. Also, the distance between the lower end of the gas rectifying cylinder and the raw material melt is 5! Jm, and the lower end of the parentheses is desirably located at a lower position than the upper end of the outer crucible body.

さらに、内ルツボ体と単結晶との間に、その下端部が内
ルツボ体、融液、単結晶のそれぞれから離間するように
円筒状の筒体を同軸に配置し、この筒体を通して上から
不活性ガスが供給されろように構成してもよい。
Furthermore, a cylindrical body is coaxially arranged between the inner crucible body and the single crystal so that its lower end is spaced apart from each of the inner crucible body, the melt, and the single crystal, and the body is passed through the cylinder body from above. It may be configured such that an inert gas is supplied.

「作 用」 この半導体単結晶育成装置では、内ルツボ体と外ルツボ
体との間隙にガス整流筒を配置することにより、炉体上
方から炉体内に供給されたアルゴンガスが、内ルツボ体
とガス整流筒との間隙、ガス整流筒と原料融液との間隙
、外ルツボ体とガス整流筒との間隙を経て層流状に流れ
るようにし、内ルツボ体と外ルツボ体との間隙における
ガスの滞留を防ぎ、原料融液へのCO溶入を低減する。
"Function" In this semiconductor single crystal growth apparatus, by arranging a gas rectifying tube in the gap between the inner crucible body and the outer crucible body, the argon gas supplied into the furnace body from above the furnace body is connected to the inner crucible body. The gas in the gap between the inner crucible body and the outer crucible body is made to flow laminarly through the gap between the gas straightening tube, the gap between the gas straightening tube and the raw material melt, and the gap between the outer crucible body and the gas straightening tube. This prevents the stagnation of CO and reduces the infiltration of CO into the raw material melt.

また、内ルツボ体と単結晶の間に円筒状の筒体を同軸に
配置した場合には、単結晶と内ルツボ体との間隙でのガ
ス滞留も防止することができる。
Further, when a cylindrical body is coaxially arranged between the inner crucible body and the single crystal, gas retention in the gap between the single crystal and the inner crucible body can also be prevented.

「実施例」 第1図および第2図は、本発明に係わる半導体単結晶育
成装置の一実施例を示している。
Embodiment FIGS. 1 and 2 show an embodiment of a semiconductor single crystal growth apparatus according to the present invention.

図中符号IOは上体10Aおよび下体10Bからなる炉
体で、この炉体【0の中央には昇降および回転する下軸
11が配置され、この下軸11の上端には黒鉛サセプタ
12を介して石英製の2重ルツボ13が固定されている
。また、サセプタ12の外周を取り巻いてヒーター14
、保温筒I5が順に配置されている。
The symbol IO in the figure is a furnace body consisting of an upper body 10A and a lower body 10B. A lower shaft 11 that moves up and down and rotates is arranged in the center of this furnace body 0. A graphite susceptor 12 is connected to the upper end of this lower shaft 11. A double crucible 13 made of quartz is fixed thereto. In addition, a heater 14 is provided around the outer periphery of the susceptor 12.
, heat insulation cylinder I5 are arranged in this order.

前記2重ルツボ13は、有底円筒状の外ルツボ体13A
と、その中に同軸に配置された円筒形の内ルツボ体13
Bとからなり、この内ルツボ体13Bの下端には透孔(
図示路)が形成されている。
The double crucible 13 has a bottomed cylindrical outer crucible body 13A.
and a cylindrical inner crucible body 13 coaxially arranged therein.
B, and the lower end of this inner crucible body 13B has a through hole (
A path (as shown in the figure) is formed.

さらに炉体lOの上方には、種結晶16を保持するワイ
ヤ17を昇降・回転させ、内ルツボ体13Bの内側から
単結晶Tを育成させる引上機構(図示路)が設けられて
いる。
Furthermore, above the furnace body 10, a pulling mechanism (path shown) is provided that raises, lowers, and rotates a wire 17 holding a seed crystal 16 to grow a single crystal T from inside the inner crucible body 13B.

前記保温筒15の上端には、円環板形の取付板18を介
して、円筒部19Aとその上端に一体に形成された円環
板部19Bとからなるガス整流筒19が固定されている
。このガス整流筒19の円筒部19Aの下端は、内ルツ
ボ体13Bと外ルツボ体13Aとの間隙に差し入れられ
、その下端と内ルツボ体13B、原料融液Y1外ルツボ
体13Aとの間にはそれぞれ略同じ間隙が空けられてい
る。具体的には、第2図に示すように、ガス整流筒19
の下端と融液Yとの距離は5mmより大きく、かつ下端
は外ルツボ体13Aの上端よりも低い位置に設定されて
いる。融液Yからの距離が5mm未満だと、この間隙を
通るアルゴンガスの流速が過大となり、融液Yに不要な
振動を引き起こすおそれが生じるうえ、ガス整流筒19
が融液Yに接触するおそれもある。また、ガス整流筒1
9の下端が外ルツボ体+3Aの上端よりも高い位置にあ
ると整流効果が得られず、融液YへのCO溶入が低減で
きない。また、第2図に示すように、ガス整流筒19の
下端部の肉厚Pは、内ルツボ体13Bと外ルツボ体13
との離間距離Qの0.3〜0,8であることが望ましい
。0.3倍未満だと内ルツボ体13Bと外ルツボ体13
Aの近傍でガスが滞留しやすく、整流効果が弱くなる。
A gas rectifying cylinder 19 consisting of a cylindrical part 19A and an annular plate part 19B integrally formed at the upper end thereof is fixed to the upper end of the heat retaining cylinder 15 via an annular plate-shaped mounting plate 18. . The lower end of the cylindrical portion 19A of the gas rectifying cylinder 19 is inserted into the gap between the inner crucible body 13B and the outer crucible body 13A, and there is no space between the lower end and the inner crucible body 13B and the raw material melt Y1 outer crucible body 13A. Approximately the same gap is left in each. Specifically, as shown in FIG.
The distance between the lower end of the melt Y and the melt Y is greater than 5 mm, and the lower end is set at a lower position than the upper end of the outer crucible body 13A. If the distance from the melt Y is less than 5 mm, the flow velocity of the argon gas passing through this gap will be excessive, which may cause unnecessary vibrations in the melt Y, and the gas rectifier tube 19
There is also a possibility that the liquid may come into contact with the melt Y. In addition, the gas rectifier tube 1
If the lower end of 9 is located higher than the upper end of outer crucible body +3A, a rectifying effect cannot be obtained and CO infiltration into melt Y cannot be reduced. Furthermore, as shown in FIG.
It is desirable that the separation distance Q between the two ends is 0.3 to 0.8. If it is less than 0.3 times, the inner crucible body 13B and the outer crucible body 13
Gas tends to stay near A, weakening the rectifying effect.

他方0.8倍より大きいと、各ルツボ体13A、13B
と干渉するおそれが生じる。
On the other hand, if it is larger than 0.8 times, each crucible body 13A, 13B
There is a risk of interference.

ガス整流筒19の材質としては、Mo、Ta、W。The material of the gas rectifying cylinder 19 is Mo, Ta, and W.

C1SiC等の高耐熱材料の単体または複合材料が適し
、必要に応じてはSiC等の被覆層をさらに形成しても
よい。さらに炉体10内には、内ルツボ体13Bと外ル
ツボ体13Aとの間隙に原料を供給する原料供給管20
が、ガス整流筒■9の円環板部19Bを貫通し円筒部1
9Aの外面に沿って固定されている。なお、この原料供
給管2oは、円筒部19Aにスリットを形成してその中
に固定してもよいし、円筒部19Aの内面に沿って配置
してもよい。また、21はガス導入口、22はガス排出
口である。
A single or composite material of a highly heat-resistant material such as C1SiC is suitable, and a coating layer of SiC or the like may be further formed if necessary. Further, inside the furnace body 10, a raw material supply pipe 20 is provided which supplies raw materials to the gap between the inner crucible body 13B and the outer crucible body 13A.
passes through the annular plate portion 19B of the gas rectifying tube ■9 and the cylindrical portion 1
It is fixed along the outer surface of 9A. Note that the raw material supply pipe 2o may be fixed in a slit formed in the cylindrical portion 19A, or may be arranged along the inner surface of the cylindrical portion 19A. Further, 21 is a gas inlet, and 22 is a gas outlet.

この半導体単結晶育成装置を使用するには、まず2重ル
ツボ13内にシリコン原料を充填し、ヒーター14に通
電するとともにガス導入口21がらアルゴンガスを供給
し、原料を溶解する。次いで、2重ルツボ13を上昇さ
せてガス整流筒19との距離を最適値に合わせ、種結晶
16を融液Yに浸漬して単結晶Tを育成しつつ、原料供
給管20を通じて原料をルツボ13に供給し、融液の減
少分を補う。この時、融液とルツボとが反応してSiO
か生成し、さらにこのSiOの一部が炉体IO内のグラ
ファイト部品と反応してcoを生じろ。
To use this semiconductor single crystal growth apparatus, first, the double crucible 13 is filled with silicon raw material, the heater 14 is energized, and argon gas is supplied through the gas inlet 21 to melt the raw material. Next, the double crucible 13 is raised to adjust the distance to the gas rectifying tube 19 to the optimum value, and the seed crystal 16 is immersed in the melt Y to grow the single crystal T, while the raw material is fed to the crucible through the raw material supply pipe 20. 13 to compensate for the decrease in melt. At this time, the melt and the crucible react to form SiO
A part of this SiO reacts with the graphite parts in the furnace body IO to produce co.

一方、ガス導入口21から供給されたアルゴンガスは、
ガス整流筒19の円環板部19Bによって円筒部+9A
に全て集束され、単結晶Tに沿って下降し、内ルツボ体
13Bと円筒部19Aの間、円筒部19Aと融液Yの間
、円筒部19Aと外ルツボ体13Aの間を、滞ることな
く速やかに通過してガス排出口22から排出される。こ
れにより、前記SiOやCOは外ルツボ体13Aと内ル
ツボ体13Bとの間隙で滞留することなく排出されるか
ら、従来装置に比して融液に溶は込むCO総量が著しく
減少し、炭素濃度の小さい良質の単結晶を製造すること
が可能である。
On the other hand, the argon gas supplied from the gas inlet 21 is
Cylindrical part +9A by circular plate part 19B of gas rectifying cylinder 19
All of the liquid is concentrated in the same direction, descends along the single crystal T, and passes between the inner crucible body 13B and the cylindrical part 19A, between the cylindrical part 19A and the melt Y, and between the cylindrical part 19A and the outer crucible body 13A without stagnation. The gas quickly passes through and is discharged from the gas outlet 22. As a result, the SiO and CO are discharged without remaining in the gap between the outer crucible body 13A and the inner crucible body 13B, so the total amount of CO dissolved in the melt is significantly reduced compared to the conventional device, and the carbon It is possible to produce high quality single crystals with low concentration.

なお、上記実施例では、ガス整流筒19の下端が角張っ
ていたが、第3図のように角を丸く面取り加工したり、
第4図のように下端に厚肉の膨出部23を形成し、その
表面全面を曲面としてもよい。各部の寸法等は前記実施
例に準じる。このようにすれば、円筒部19Aの下端近
傍を通るガス気流に渦が生じにくく、前記の効果をより
高めることができる。また、原料供給管20を設けない
構成(バッチ式)も可能で、その場合には融液Yの減少
とともにルツボを上昇させ、融液Yとガス整流筒19と
の間隔を一定に保つ。
In the above embodiment, the lower end of the gas rectifying cylinder 19 was square, but the corners may be rounded and chamfered as shown in FIG.
As shown in FIG. 4, a thick bulge 23 may be formed at the lower end, and the entire surface thereof may be curved. The dimensions of each part are the same as in the previous embodiment. In this way, vortices are less likely to occur in the gas flow passing near the lower end of the cylindrical portion 19A, and the above-mentioned effect can be further enhanced. Further, a configuration (batch type) in which the raw material supply pipe 20 is not provided is also possible, and in that case, the crucible is raised as the melt Y decreases, and the distance between the melt Y and the gas rectifying cylinder 19 is kept constant.

次に、第5図は本発明の他の実施例を示し、この例では
前記実施例の構成に加え、ガス整流筒19の円環板部1
9Bを半径方向内方に延長し、この延長部30の内縁か
ら垂下する筒体31を同軸に設けたことを特徴とする。
Next, FIG. 5 shows another embodiment of the present invention. In this embodiment, in addition to the structure of the previous embodiment,
9B is extended inward in the radial direction, and a cylindrical body 31 that hangs down from the inner edge of this extension part 30 is coaxially provided.

この筒体31の下端は単結晶′rと内ルツボ体13Bの
間隙に挿入され、この下端部と、単結晶T1融液Y1内
ルツボ体13Bとの間にはそれぞれ路間等の間隔が形成
されている。なお、下端部と融液Yの間は5mm以上で
、かつ下端の位置は内ルツボ体13Bの上端よりら低く
設定されている。これは前記ガス整流筒19の場合と同
じ理由による。
The lower end of this cylinder 31 is inserted into the gap between the single crystal 'r and the inner crucible body 13B, and a gap such as a passage is formed between this lower end and the inner crucible body 13B for the single crystal T1 melt Y1. has been done. Note that the distance between the lower end and the melt Y is 5 mm or more, and the position of the lower end is set lower than the upper end of the inner crucible body 13B. This is due to the same reason as in the case of the gas rectifying tube 19.

この例によれば、供給されるアルゴンガスがまず、筒体
31の下端部と単結晶Tの間、筒体31と融液Yの間、
筒体3Iと内ルツボ体13Bの間を順次層流となって流
れるので、内ルツボ体13Bと外ルツボ体13Aの間隙
に加えて、単結晶Tと内ルツボ体13Bの間隙での滞留
をも防止することができ、単結晶Tの炭素濃度を一層低
減することができる。
According to this example, the supplied argon gas is first applied between the lower end of the cylinder 31 and the single crystal T, between the cylinder 31 and the melt Y, and between the cylinder 31 and the melt Y.
Since the flow flows sequentially between the cylinder 3I and the inner crucible 13B as a laminar flow, in addition to the gap between the inner crucible 13B and the outer crucible 13A, the flow also accumulates in the gap between the single crystal T and the inner crucible 13B. This can be prevented, and the carbon concentration of the single crystal T can be further reduced.

なお、筒体31の下端を、ガス整流筒の場合と同様に丸
く面取り加工すれば、層流効果をさらに増大させること
ができる。また、延長部30を設けずに第5図中二点鎖
線(イ)のように筒体31を下に向けて窄まる円錐状と
したり、二点鎖線(ロ)のように延長部30を下方に移
し、筒体31を短縮した構成ら可能であるし、延長部3
0に通気口を形成しガス整流筒19と筒体31の間にア
ルゴンガスの一部を通して、この部分でのガス滞留を防
いてもよい。さらにまた、第6図に示すように、ガス導
入口21から直接、内ルツボ体13Bの内側まで筒体3
1を延設することも可能である。
Note that if the lower end of the cylinder 31 is rounded and chamfered as in the case of the gas rectifying cylinder, the laminar flow effect can be further increased. Alternatively, the cylindrical body 31 may be formed into a conical shape that narrows downward as shown by the two-dot chain line (A) in FIG. It is possible to move it downward and shorten the cylindrical body 31.
A vent hole may be formed in the 0 part and a part of the argon gas may be passed between the gas rectifying cylinder 19 and the cylinder body 31 to prevent the gas from stagnation in this part. Furthermore, as shown in FIG.
1 can also be extended.

「実験例」 次に、実験例を挙げて本発明の効果を実証する。"Experiment example" Next, the effects of the present invention will be demonstrated by giving experimental examples.

第1図に示した装置を用い、次の育成条件において全長
700mtttの単結晶を作成した。
Using the apparatus shown in FIG. 1, a single crystal with a total length of 700 mttt was produced under the following growth conditions.

外ルツボ体の内径:334.va 内ルツボ体の外径:252m肩 原料の初期充填量:20に9 初期融液の深さ:110mm 単結晶の外径:1104t 外ルツボ体、内ルツボ体の融液からの高さ:共に120
貢肩 ガス整流筒の外径:320■ ガス整流筒の肉厚(一定):20mm ガス整流筒の融液からの高さ:lOmx10mmガス整
流筒ボ体からの距離:14mmガス整流筒の外ルツボ体
からの距離ニアRxアルゴンガスの供給量:50Q/分
(常圧)ルツボへの原料供給:なしくバッチ法)一方、
上記装置からガス整流筒を取り外したtJ4成により、
全く同じ育成条件で単結晶引き上げを行なった。
Inner diameter of outer crucible body: 334. va Outer diameter of inner crucible body: 252 m Initial filling amount of shoulder material: 20 to 9 Initial melt depth: 110 mm Outer diameter of single crystal: 1104 t Height of outer crucible body and inner crucible body from melt: Both 120
Outer diameter of the gas rectifying tube: 320 ■ Wall thickness of the gas rectifying tube (constant): 20 mm Height of the gas rectifying tube from the melt: lOm x 10 mm Distance from the gas rectifying tube body: 14 mm Outer crucible of the gas rectifying tube Distance from body Near Rx Argon gas supply rate: 50Q/min (normal pressure) Raw material supply to crucible: None (batch method) On the other hand,
By removing the gas rectifying tube from the above device and forming tJ4,
Single crystals were pulled under exactly the same growth conditions.

また同様に、原料供給管を用いて原料供給を行ないつつ
、ガス整流筒を用いた場合とガス整流筒を用いない場合
において、前記と同じ条件でそれぞれ単結晶を作成した
。ただし単結晶の長さはいずれも1000x次とした。
Similarly, while supplying raw materials using a raw material supply pipe, single crystals were produced under the same conditions as above in the case where a gas rectifying tube was used and in the case where a gas rectifying tube was not used. However, the length of each single crystal was set to 1000x order.

こうして得られた4本の単結晶について、fr(測定装
置(炭素検出限界0 、 I X I O”atoms
/ am3)を用い、その炭素濃度を長手方向に多点測
定した。
For the four single crystals obtained in this way, fr (measuring device (carbon detection limit 0, I
/ am3), and the carbon concentration was measured at multiple points in the longitudinal direction.

その結果を第7図(バッチ法の場合)および第8図(原
料を追加供給した場合)にそれぞれ示す。これらのグラ
フから明らかなように、ガス整流筒がない場合には育成
に伴い炭素濃度が漸次増加するのに比して、ガス整流筒
を用いた場合には、全長の大部分において炭素濃度が検
出限界以下に抑えられた。
The results are shown in FIG. 7 (in case of batch method) and FIG. 8 (in case of additional supply of raw materials), respectively. As is clear from these graphs, when there is no gas rectifier, the carbon concentration gradually increases as the growth progresses, but when the gas rectifier is used, the carbon concentration decreases over most of the entire length. suppressed below the detection limit.

「発明の効果」 以上説明したように、本発明に係わる半導体単結晶育成
装置によれば、炉体上方から炉体内に供給されたアルゴ
ンガスが、内ルツボ体とガス整流筒との間隙、ガス整流
筒と原料融液との間隙、外ルツボ体とガス整流筒との間
隙を経て層流状に速やかに流れるため、内ルツボ体と外
ルツボ体との間隙でガス滞留が生じず、原料融液へのC
O溶入を低減することができる。これにより、SiOや
CO等の不純物が外ルツボ体と内ルツボ体の間隙で滞留
することなく排出されるから、従来装置に比して融液に
溶は込むCO総量が著しく減少し、炭素濃度の小さい良
質の単結晶を製造することが可能である。
"Effects of the Invention" As explained above, according to the semiconductor single crystal growth apparatus according to the present invention, argon gas supplied into the furnace body from above the furnace body, the gap between the inner crucible body and the gas rectifying cylinder, Because the gas flows quickly in a laminar flow through the gap between the rectifying cylinder and the raw material melt and the gap between the outer crucible body and the gas rectifying cylinder, gas does not stagnate in the gap between the inner crucible body and the outer crucible body, and the raw material melt C to liquid
O infiltration can be reduced. As a result, impurities such as SiO and CO are discharged without remaining in the gap between the outer crucible body and the inner crucible body, so the total amount of CO dissolved in the melt is significantly reduced compared to conventional equipment, and the carbon concentration It is possible to produce small, high-quality single crystals.

また、内ルツボ体と単結晶の間に筒体を配置した場合に
は、単結晶と内ルツボ体との間隙でのガス滞留も防止し
、−層の炭素濃度低下が図れる。
Furthermore, when a cylinder is disposed between the inner crucible and the single crystal, gas retention in the gap between the single crystal and the inner crucible can be prevented, and the carbon concentration in the negative layer can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係わる半導体単結晶育成装置の一実
施例の縦断面図、第2図は同装置の要部の縦断面図、第
3図および第4図は本発明の池の実施例の要部の縦断面
図、第5図および第6図は、さらに他の実施例の縦断面
図、第7図および第8図は本発明の実験例の効果を示す
グラフである。 一方、第9図は従来の半導体単結晶育成装置の縦断面図
である。 T・・・単結晶、    Y・・・原料融液、IO・・
・炉体、     13・・・2重ルツボ、+3A・・
・外ルツボ体、13B・・・内ルツボ体、19・・・ガ
ス整流筒、 20・・・原料供給管、21・・・ガス導
入口、 22・・・ガス排出口、31・・・筒体。
FIG. 1 is a vertical cross-sectional view of an embodiment of a semiconductor single crystal growth apparatus according to the present invention, FIG. 2 is a vertical cross-sectional view of the main parts of the same apparatus, and FIGS. FIGS. 5 and 6 are vertical sectional views of main parts of the embodiment, and FIGS. 5 and 6 are longitudinal sectional views of still other embodiments. FIGS. 7 and 8 are graphs showing the effects of experimental examples of the present invention. On the other hand, FIG. 9 is a longitudinal sectional view of a conventional semiconductor single crystal growth apparatus. T...single crystal, Y...raw material melt, IO...
・Furnace body, 13...double crucible, +3A...
・Outer crucible body, 13B... Inner crucible body, 19... Gas rectifying tube, 20... Raw material supply pipe, 21... Gas inlet, 22... Gas outlet, 31... Cylinder body.

Claims (5)

【特許請求の範囲】[Claims] (1)内ルツボ体および外ルツボ体からなる2重ルツボ
を炉体内に備え、前記内ルツボ体の内側から単結晶を引
き上げ育成する半導体単結晶育成装置において、 前記2重ルツボの上方に、これと同軸に円筒状のガス整
流筒を設け、このガス整流筒の下端部を前記内ルツボ体
と外ルツボ体の間隙に配置し、この下端部と、内ルツボ
体、外ルツボ体、原料融液との間にそれぞれ間隔を空け
たことを特徴とする半導体単結晶育成装置。
(1) In a semiconductor single crystal growth apparatus that includes a double crucible consisting of an inner crucible body and an outer crucible body in a furnace body and pulls and grows a single crystal from inside the inner crucible body, above the double crucible body, this A cylindrical gas rectifying cylinder is provided coaxially with the gas rectifying cylinder, and the lower end of the gas rectifying cylinder is arranged in the gap between the inner crucible body and the outer crucible body, and the lower end, the inner crucible body, the outer crucible body, and the raw material melt A semiconductor single crystal growth apparatus characterized in that a space is provided between the two.
(2)前記ガス整流筒の下端部の最大肉厚は、内ルツボ
体と外ルツボ体の離間距離の0.3〜0.8倍であるこ
とを特徴とする第1項記載の半導体単結晶育成装置。
(2) The semiconductor single crystal according to item 1, wherein the maximum wall thickness of the lower end of the gas rectifying tube is 0.3 to 0.8 times the separation distance between the inner crucible body and the outer crucible body. Cultivation equipment.
(3)前記ガス整流筒の下端部の表面は、なだらかな曲
面であることを特徴とする第1項または第2項記載の半
導体単結晶育成装置。
(3) The semiconductor single crystal growth apparatus according to item 1 or 2, wherein the surface of the lower end of the gas rectifying tube is a gently curved surface.
(4)前記ガス整流筒の下端と原料融液との距離は5m
mより大きく、かつこの下端は外ルツボ体の上端よりら
低い位置にあることを特徴とする第1項または第2項ま
たは第3項記載の半導体単結晶育成装置。
(4) The distance between the lower end of the gas rectifying tube and the raw material melt is 5 m
3. The semiconductor single crystal growth apparatus according to item 1, item 2, or item 3, wherein the semiconductor single crystal growth apparatus is larger than m, and the lower end thereof is located at a lower position than the upper end of the outer crucible body.
(5)前記内ルツボ体と単結晶との間に、その下端部が
内ルツボ体、融液、単結晶のそれぞれから離間するよう
に円筒状の筒体を同軸に配置し、この筒体を通して上か
ら不活性ガスが供給されるように構成したことを特徴と
する第1項または第2項または第3項または第4項記載
の半導体単結晶育成装置。
(5) A cylindrical body is coaxially arranged between the inner crucible body and the single crystal so that its lower end is spaced apart from each of the inner crucible body, the melt, and the single crystal, and the cylinder body is passed through the body. 5. The semiconductor single crystal growth apparatus according to item 1, 2, 3, or 4, characterized in that the inert gas is supplied from above.
JP63267884A 1988-10-24 1988-10-24 Semiconductor single crystal growth equipment Expired - Lifetime JP2555714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63267884A JP2555714B2 (en) 1988-10-24 1988-10-24 Semiconductor single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63267884A JP2555714B2 (en) 1988-10-24 1988-10-24 Semiconductor single crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH02116697A true JPH02116697A (en) 1990-05-01
JP2555714B2 JP2555714B2 (en) 1996-11-20

Family

ID=17450968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63267884A Expired - Lifetime JP2555714B2 (en) 1988-10-24 1988-10-24 Semiconductor single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2555714B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221779A (en) * 1992-02-04 1993-08-31 Shin Etsu Handotai Co Ltd Device for pulling up single crystal
CN104955991A (en) * 2012-11-29 2015-09-30 索拉克斯有限公司 Weir for improved crystal growth in a continuous Czochralski process
EP3960910A1 (en) * 2020-08-28 2022-03-02 Jinko Green Energy (Shanghai) Management Co., Ltd Apparatus and method for continuous crystal pulling

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05221779A (en) * 1992-02-04 1993-08-31 Shin Etsu Handotai Co Ltd Device for pulling up single crystal
CN104955991A (en) * 2012-11-29 2015-09-30 索拉克斯有限公司 Weir for improved crystal growth in a continuous Czochralski process
EP3960910A1 (en) * 2020-08-28 2022-03-02 Jinko Green Energy (Shanghai) Management Co., Ltd Apparatus and method for continuous crystal pulling
US11739436B2 (en) 2020-08-28 2023-08-29 Jinko Green Energy (Shanghai) Management Co., LTD Apparatus and method for continuous crystal pulling

Also Published As

Publication number Publication date
JP2555714B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JPH0859386A (en) Semiconductor single crystal growing device
JP5413354B2 (en) Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
WO2017159028A1 (en) Method for producing silicon monocrystal
EP0388503A1 (en) Method for pulling single crystals
EP1722014A1 (en) Method for manufacturing nitrogen-doped silicon single crystal
JPH0559874B2 (en)
JP2580197B2 (en) Single crystal pulling device
JPH02116697A (en) Device for growing semiconductor single crystal
US5840116A (en) Method of growing crystals
JP4862836B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP3750174B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH07277887A (en) Appartus and process for producing single crystal
JP2007261868A (en) Apparatus for and method of growing single crystal
JP6485286B2 (en) Method for producing silicon single crystal
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
JPH08751B2 (en) Method for producing silicon ingot with high oxygen content by crucible-free zone tension method
JP2504875B2 (en) Single crystal manufacturing equipment
JPH0825831B2 (en) Silicon single crystal manufacturing equipment
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JP3760680B2 (en) Single crystal pulling device
JP2755452B2 (en) Silicon single crystal pulling equipment
JP4122696B2 (en) Method for manufacturing an epitaxial wafer
JP2825938B2 (en) Single crystal pulling device
JPH0632692A (en) Quartz crucible for lifting silicon single crystal
JPH10167891A (en) Device for producing single crystal silicon and production of single crystal silicon, using the same