JPH02115396A - Composite plating method - Google Patents

Composite plating method

Info

Publication number
JPH02115396A
JPH02115396A JP26695188A JP26695188A JPH02115396A JP H02115396 A JPH02115396 A JP H02115396A JP 26695188 A JP26695188 A JP 26695188A JP 26695188 A JP26695188 A JP 26695188A JP H02115396 A JPH02115396 A JP H02115396A
Authority
JP
Japan
Prior art keywords
anode
plated
metal
cathode
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26695188A
Other languages
Japanese (ja)
Inventor
Heijiro Tarumoto
樽本 平二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26695188A priority Critical patent/JPH02115396A/en
Publication of JPH02115396A publication Critical patent/JPH02115396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To easily form a composite plating wherein the ratio of metal to nonmetal is fixed by placing a material to be plated as a cathode and a mixture of metal powder and a cationized org. polymer as an anode in an anode chamber of a porous member, and impressing a voltage between both electrodes. CONSTITUTION:The material 3 to be plated as a cathode and the anode 4 are arranged in a plating soln. 2. The metal powder 5 of Ni, etc., or short fibers and >=1 kind among an org. polymer such as a previously cationized fluororesin 6 and the inorg. nonmetallic fine particles or fine fibers are mixed in a specified ratio, and the mixture is packed into a case 7 of titanium, etc., to form the anode 4. The anode 4 is placed in the anode chamber 8 made of a porous synthetic-resin sheet, etc. A specified voltage is impressed between both electrodes 3 and 4 to apply a current, and the mixture is deposited on the surface of the material 3. As a result, a composite plating film contg. specified amts. of metal and nonmetal is formed in uniform thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は複合メッキ方法、即ち被メッキ物の表面に例え
ば金属と非金属とでなる被膜や合金被膜を形成する電気
メッキ法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a composite plating method, that is, an electroplating method for forming, for example, a metal and nonmetal coating or an alloy coating on the surface of an object to be plated.

(従来の技術) ワークの表面に金属被膜を形成する方法の一つに電気メ
ッキ法がある。これは、一般に知られているように、メ
ッキしようとする金属の塩を含むメッキ液(電解液)の
中で被メッキ物を陰極とする一方、メッキしようとする
金属を陽極として電気分解することにより、陰極の被メ
ッキ物の表面に金属を析出させて被膜を形成するもので
ある。
(Prior Art) Electroplating is one of the methods for forming a metal film on the surface of a workpiece. As is generally known, electrolysis is performed by using the object to be plated as a cathode in a plating solution (electrolyte) containing the salt of the metal to be plated, while the metal to be plated is used as an anode. In this method, metal is deposited on the surface of the cathode to be plated to form a film.

ところで、近年においては、上記のような電気メッキ法
を用いて合金被膜や金属と有機高分子等の非金属とでな
る被膜を被メッキ物の表面に同時に形成する所謂複合メ
ッキが行われる場合がある。
By the way, in recent years, so-called composite plating has been carried out in which an alloy film or a film made of a metal and a non-metal such as an organic polymer is simultaneously formed on the surface of the object to be plated using the electroplating method described above. be.

この複合メッキによって例えば金属と有機高分子とでな
る被膜を被メッキ物の表面に形成する場合、従来におい
ては、メッキ液として当該有機高分子を所定の割合で含
んだ溶液を使用すると共に、陽極として上記金属でなる
板状体或いは棒状体を用いるのが通例であった。
When forming a film made of, for example, a metal and an organic polymer on the surface of an object to be plated by this composite plating, conventionally, a solution containing the organic polymer in a predetermined ratio is used as the plating solution, and an anode is used. It was customary to use a plate-shaped body or a rod-shaped body made of the above-mentioned metals.

(発明が解決しようとする課題) しかしながら、上記のような従来の方法によると次のよ
うな問題が生じる。
(Problems to be Solved by the Invention) However, the conventional method as described above causes the following problems.

即ち、陰極の被メッキ物の表面に複合メッキによる被膜
が形成されるに従ってメッキ液中における金属と有機高
分子等の非金属との割合(合金の場合は該合金を構成す
る2種以上の金属の割合)が変化することから、その割
合を一定に保って良好な複合メッキ被膜を形成するため
には当該成分についてメッキ液の濃度測定を頻繁に行う
必要があるだけでなく、その都度、測定結果に基づいて
非金属等を含む溶液を補充しなければならないという問
題があった。
That is, as a composite plating film is formed on the surface of the cathode to be plated, the ratio of metal to non-metal such as organic polymer in the plating solution (in the case of an alloy, the ratio of two or more metals constituting the alloy increases). In order to keep the ratio constant and form a good composite plating film, it is not only necessary to frequently measure the concentration of the plating solution for the relevant component, but also to There was a problem in that a solution containing non-metals etc. had to be replenished based on the results.

また、棒状或いは板状の陽極金属を使用する従来方法に
おいては、被メッキ物の形状が比較的複雑であった場合
に、該被メッキ物の表面形状に沿って陽極金属を配置す
るのが困難であるという問題があった。
In addition, in the conventional method of using rod-shaped or plate-shaped anode metal, when the shape of the object to be plated is relatively complex, it is difficult to arrange the anode metal along the surface shape of the object to be plated. There was a problem that.

本発明は、複合メッキ方法における上記のような問題に
対処するもので、複合メッキ被膜を形成する金属その他
の成分のメッキ液中における濃度及び析出時における濃
度を比較的簡単に一定に保つことができ、しかも被メッ
キ物の形状に応じて陽極の形状を自由に設定することが
できる複合メッキ方法を提供することを目的とする。
The present invention addresses the above-mentioned problems in composite plating methods, and makes it possible to relatively easily keep the concentration of metals and other components forming a composite plating film constant in the plating solution and during precipitation. An object of the present invention is to provide a composite plating method in which the shape of an anode can be freely set according to the shape of an object to be plated.

(課題を解決するための手段) 上記目的達成のため、本発明の複合メッキ方法は次のよ
うに構成したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the composite plating method of the present invention is characterized by being configured as follows.

即ち、所定のメッキ液の中で陰極である被メッキ物の表
面に所定厚さのメッキ被膜を形成するに当たり、1種又
は2種以上の金属の粉末若しくは短繊維と少なくともカ
チオン化した有機高分子又はカチオン化した無機質の非
金属微粒子若しくは非金属微繊維の一種又は2種以上と
を予め所定の割合で混合し、この混合物を陽極として用
いて多孔性部材でなる陽極室に収納した状態で両極間に
電圧を印加することにより、上記被メッキ物の表面に上
記混合物を共析させる。
That is, in forming a plating film of a predetermined thickness on the surface of an object to be plated, which is a cathode, in a predetermined plating solution, one or more metal powders or short fibers and at least a cationized organic polymer are used. Alternatively, one or more types of cationized inorganic nonmetallic fine particles or nonmetallic fine fibers are mixed in advance in a predetermined ratio, and this mixture is used as an anode and placed in an anode chamber made of a porous member to form both electrodes. By applying a voltage between them, the mixture is eutectoid on the surface of the object to be plated.

ここで、上記多孔性部材としては、上記有機高分子や無
機質の非金属微粒子或いは非金属繊維を通過させ得る多
数の孔が設けられているものを使用する。
Here, the porous member used is one provided with a large number of pores through which the organic polymer, inorganic nonmetal fine particles, or nonmetallic fibers can pass.

(作  用) 上記の構成によれば、陽極と陰極の両極間に所定電圧を
印加して電流を流した時に、陽極を構成している金属粉
末が電気分解されて、多孔性部材でなる陽極室における
多数の孔を通ってメッキ液中に熔解し始める。そして、
これに伴ってカチオン化処理済の非金属(有機高分子又
は無機物質)の微粒子又は微繊維が陽極表面から受ける
電気的な反発力によってメッキ液中に放出され、最終的
には陰極に吸寄せられてその表面で共析することにより
、該陰極を構成している被メッキ物の表面に所定厚さの
複合メッキ被膜が形成される。その場合、上記金属粉末
及び非金属微粒子等は予め一定の割合で混合されている
から、メッキ液中に溶出する金属イオンと非金属微粒子
等との割合も一定となり、更にはそれらの物質が陰極表
面において共析することによって形成される被膜におけ
る当該物質の割合も一定となる。
(Function) According to the above configuration, when a predetermined voltage is applied between the anode and the cathode and a current is caused to flow, the metal powder constituting the anode is electrolyzed, and the anode made of the porous material is It passes through a number of holes in the chamber and begins to dissolve into the plating solution. and,
As a result, cationized nonmetallic particles or fibers (organic polymers or inorganic substances) are released into the plating solution by the electrical repulsion received from the anode surface, and are eventually attracted to the cathode. By eutectoiding on the surface of the plating material, a composite plating film of a predetermined thickness is formed on the surface of the object to be plated that constitutes the cathode. In that case, since the metal powder and non-metal fine particles, etc. are mixed in advance at a certain ratio, the ratio of metal ions eluted into the plating solution to non-metal fine particles, etc. is also constant, and furthermore, these substances are mixed at the cathode. The proportion of the substance in the film formed by eutectoid deposition on the surface is also constant.

従って、従来のようにメッキ液の濃度を頻繁に測定して
絶えず所定の濃度を維持するように注意していなくても
、被メッキ物の表面に2種以上の金属や所定の金属と非
金属とが一定の割合で含まれている複合メッキ被膜を比
較的容易に形成することができ、その分だけ濃度管理の
手間が省けることになる。
Therefore, even if the concentration of the plating solution is not frequently measured and care is taken to constantly maintain a predetermined concentration as in the past, two or more metals or a predetermined metal and non-metal may be present on the surface of the object to be plated. It is possible to relatively easily form a composite plating film containing a certain proportion of and, and the effort of concentration control can be saved accordingly.

また、金属粉末等を陽極として使用しているので、いか
なる形状の陽極室にも収納することができる。つまり、
従来のように板状ないし棒状の陽極を用いた場合には、
該陽極を被メッキ物に対応させて一々形成するのが困難
であるか相当面倒であったのであるが、本発明のように
粉末金属等を使用した場合は、いかなる形状の陽極室(
所謂バスケット)にも収納することができるから、被メ
ッキ物の形状に応じた陽極室を用いるだけで陽極自体を
被メッキ物の形状に対応する形状とすることができる。
Furthermore, since metal powder or the like is used as the anode, it can be housed in any shape of anode chamber. In other words,
When using a plate-shaped or rod-shaped anode as in the past,
It was difficult or quite troublesome to form the anode one by one to correspond to the object to be plated, but when powdered metal or the like is used as in the present invention, it is possible to form an anode chamber of any shape (
Since the anode can also be stored in a so-called basket, the anode itself can be shaped to match the shape of the object to be plated by simply using an anode chamber that corresponds to the shape of the object to be plated.

そして、このようにして陽極形状を被メッキ物形状に対
応させた場合は、被メッキ物の表面と陽極表面との間の
距離が各部位で略一定となるから、その分だけ被メッキ
物表面に均一厚さの被膜を形成し易くなる。
If the anode shape corresponds to the shape of the object to be plated in this way, the distance between the surface of the object to be plated and the anode surface will be approximately constant at each location, so the surface of the object to be plated will be It becomes easier to form a film of uniform thickness.

尚、被メッキ物の表面に有機高分子を含む被膜を形成し
た場合、必要に応じて該被膜を更に熱処理することは自
由である。
Incidentally, when a film containing an organic polymer is formed on the surface of the object to be plated, the film can be further heat-treated if necessary.

(実 施 例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.

この実施例は、ニッケル及びフッソ樹脂(PTFE:ポ
リテトラフルオロエチレン)を80%(容量%、以下同
様)及び20%の割合で夫々含有する被膜(厚さ20μ
m)を被メッキ物表面に形成する場合のものである。
In this example, a coating (thickness 20μ
m) is formed on the surface of the object to be plated.

先ず、第1図に示すように、メッキ槽1内に硫酸ニッケ
ル、塩酸ニッケル、ホウ酸等を含んだ所定のメ・ンキ液
2を満たす。そして、このメッキ液2の中に被メッキ物
3を入れて陰極とし、その両側に陽極4.4を夫々配置
する。これらの陽極4.4は、夫々、ニッケルの粉末5
と予めカチオン化したフッソ樹脂の粉末6とを所定の割
合で混合して、その混合物をチタンケース7内に収納し
た構成である。そして、各陽極4.4は、上記フッソ樹
脂の粉末6が通過するに足る大きさの孔(図示せず)が
多数形成された多孔性の合成樹脂板でなる陽極室8に夫
々収納されている。
First, as shown in FIG. 1, a plating bath 1 is filled with a predetermined coating solution 2 containing nickel sulfate, nickel hydrochloride, boric acid, and the like. Then, the object 3 to be plated is placed in this plating solution 2 to serve as a cathode, and anodes 4.4 are placed on both sides of the object 3, respectively. These anodes 4.4 are each made of nickel powder 5.
and fluorine resin powder 6 which has been cationized in advance are mixed at a predetermined ratio, and the mixture is housed in a titanium case 7. Each anode 4.4 is housed in an anode chamber 8 made of a porous synthetic resin plate having a large number of holes (not shown) large enough for the fluorine resin powder 6 to pass through. There is.

次に、このようにして陽極4.4と陰極(被メッキ物)
3とをメッキ液2の中にセットした状態で、両極4.3
間に所定電圧を印加して電流を流すことにより、被メッ
キ物3の表面に上記混合物を共析させる。
Next, in this way, the anode 4.4 and the cathode (object to be plated)
4 and 3 are set in plating solution 2.
By applying a predetermined voltage between them and causing a current to flow, the mixture is eutectoid on the surface of the object to be plated 3.

ここで、上記の陽極4.4となるニッケル粉末5とフッ
ソ樹脂粉末6との混合量は、前者が1416gで後者が
84gであるが、これは両粉末がメッキ液2中に均等に
溶出した場合に、その液中における陽イオンであるニッ
ケルとフッソ樹脂とが8:2の割合で存在することとな
る量である。
Here, the mixing amount of the nickel powder 5 and the fluorocarbon resin powder 6, which form the above anode 4.4, is 1416 g for the former and 84 g for the latter, but this is because both powders were evenly dissolved into the plating solution 2. In this case, nickel, which is a cation, and fluorocarbon resin are present in the liquid at a ratio of 8:2.

上記の構成によれば、陽極4.4及び陰極3の両極間に
所定電圧を印加して電流を流した時に、陽極4.4を構
成しているニッケルの粉末5が電気分解されて、多孔性
部材でなる陽極室8.8における多数の孔を通ってメッ
キ液2中に溶解し始める。そして、これに伴ってカチオ
ン化処理済のフッソ樹脂(PTFE)の粉末6が上記ニ
ッケル粉末5の表面から受ける電気的な反発力によって
メッキ液2中に放出され、最終的には陰極3に吸引され
てその表面で共析することにより、該陰極3を構成して
いる被メッキ物の表面に第1図の鎖線で示すように所定
厚さ(20μm)の複合メッキ被膜9が形成される。
According to the above configuration, when a predetermined voltage is applied between the anode 4.4 and the cathode 3 and a current is caused to flow, the nickel powder 5 constituting the anode 4.4 is electrolyzed and the porous It begins to dissolve into the plating solution 2 through a number of holes in the anode chamber 8.8 made of a magnetic material. Along with this, the cationized fluorocarbon resin (PTFE) powder 6 is released into the plating solution 2 by the electrical repulsive force received from the surface of the nickel powder 5, and is finally attracted to the cathode 3. As a result, a composite plating film 9 of a predetermined thickness (20 μm) is formed on the surface of the object to be plated constituting the cathode 3, as shown by the chain line in FIG.

その場合、上記ニッケル粉末5及びフッソ樹脂粉末6は
、メッキ液中に溶出したときに当該ニッケルイオン及び
フッソ樹脂イオンの比率が8=2となるように予め一定
の割合で混合されているから、上記両イオンが陰極3の
表面において共析する量はニッケルが80%でフンソ樹
脂が20%となる。換言すると、被メッキ物の表面には
、ニッケルを80%、フッソ樹脂を20%夫々含有する
複合メッキ被膜9が形成されることになる。
In that case, the nickel powder 5 and the fluorocarbon resin powder 6 are mixed in advance at a certain ratio so that the ratio of the nickel ions to the fluorocarbon resin ions is 8=2 when eluted into the plating solution. The amount of the above-mentioned ions eutectoided on the surface of the cathode 3 is 80% for nickel and 20% for Funso resin. In other words, a composite plating film 9 containing 80% nickel and 20% fluorocarbon resin is formed on the surface of the object to be plated.

従って、上記の方法によれば、従来のようにメッキ液の
濃度を頻繁に測定して絶えず所定の濃度を維持するよう
に注意していなくても、被メッキ物の表面にニッケルと
フッソ樹脂とが一定の割合で含まれている複合メッキ被
膜を比較的容易に形成することができ、その分だけ濃度
管理の手間が省けることになる。
Therefore, according to the above method, nickel and fluorocarbon resin can be deposited on the surface of the object to be plated, without having to frequently measure the concentration of the plating solution and constantly maintain a predetermined concentration as in the past. It is possible to relatively easily form a composite plating film containing a certain proportion of , and the effort of concentration control can be saved accordingly.

また、陽極4がニッケル粉末5とカチオン化済のフッソ
樹脂粉末6との混合物によって構成されているので、チ
タンケース7や陽極室8がどのような形状をしていても
、当該ケースないし室内に収納することができる。つま
り、従来のように板状ないし棒状の陽極を用いた場合に
は、該陽極を被メッキ物に対応させて一々形成するのが
困難であるか相当面倒であったのであるが、上記のよう
に粉末状のニッケル等を使用した場合は、いかなる形状
の陽極室(及びチタンケース)にも収納することができ
るから、被メッキ物の形状に応じた陽極室を用いること
により、陽極自体を被メッキ物の形状に対応する形状と
することができる。そして、このようにして陽極形状を
被メッキ物形状に対応させた場合は、被メッキ物が比較
的複雑な形状をしていても、その表面と陽極表面との間
の距離が各部位で略一定となるから、その分だけ被メッ
キ物表面に均一厚さの被膜を形成し易くなる。
In addition, since the anode 4 is composed of a mixture of nickel powder 5 and cationized fluorocarbon resin powder 6, no matter what shape the titanium case 7 or the anode chamber 8 has, there will be no leakage inside the case or chamber. It can be stored. In other words, when a plate-shaped or rod-shaped anode was used as in the past, it was difficult or quite troublesome to form the anode one by one to correspond to the object to be plated. If powdered nickel or the like is used, it can be stored in any shape of anode chamber (and titanium case), so by using an anode chamber that matches the shape of the object to be plated, the anode itself can be covered. The shape can be made to correspond to the shape of the plated object. If the shape of the anode corresponds to the shape of the object to be plated in this way, even if the object to be plated has a relatively complex shape, the distance between the surface of the object and the surface of the anode will be approximately the same at each location. Since the thickness is constant, it becomes easier to form a film of uniform thickness on the surface of the object to be plated.

尚、上記の実施例では、陽極4は陰極3の両側に夫々配
置したが、陽極4の数は上記の例に限られず任意である
。また、陽極としてニッケル粉末5とフッソ樹脂粉末6
との混合物を使用したが、陽極に使用する金属は上記の
ようなニッケルに限らず、また該金属に対する被混合物
も上記のようなフッソ樹脂に限らないことは勿論である
。つまり、上記フッソ樹脂に代えて、別種の金属や他の
有機高分子或いは無機質の被金属物質であってもよい、
また、これらの場合において、各物質は微粒子状だけで
なく短繊維状であってもよい。
In the above embodiment, the anodes 4 were arranged on both sides of the cathode 3, but the number of anodes 4 is not limited to the above example and may be arbitrary. In addition, nickel powder 5 and fluorocarbon resin powder 6 were used as an anode.
However, the metal used for the anode is not limited to nickel as mentioned above, and it goes without saying that the material to be mixed with the metal is not limited to the fluorocarbon resin as mentioned above. That is, instead of the above-mentioned fluorocarbon resin, another type of metal, other organic polymer, or inorganic metallized substance may be used.
Furthermore, in these cases, each substance may be not only in the form of fine particles but also in the form of short fibers.

更に、必要ならば上記のような陽極に金属板や金属チッ
プ等でなる陽極を併用することも可能である。
Furthermore, if necessary, it is also possible to use an anode made of a metal plate, a metal chip, or the like in combination with the above-mentioned anode.

(発明の効果) 以上のように本発明によれば、金属粉末及び非金属微粒
子等を予め一定の割合で混合してなる混合物を陽極とし
て使用しているから、該陽極からメッキ液中に溶出する
金属イオンと非金属微粒子等との割合も一定となり、更
にはそれらの物質が陰極表面において共析することによ
って形成される被膜における当該物質の割合も一定とな
る。これにより、従来のようにメッキ液の濃度を頻繁に
測定して絶えず所定の濃度を維持するように注意してい
なくても、被メッキ物の表面に2種以上の金属や所定の
金属と非金属とが一定の割合で含まれている複合メッキ
被膜を比較的容易に形成することができ、その分だけ濃
度管理の手間が省けることになる。
(Effects of the Invention) As described above, according to the present invention, since a mixture prepared by pre-mixing metal powder and non-metal fine particles at a certain ratio is used as an anode, elution from the anode into the plating solution is possible. The proportion of metal ions and non-metal fine particles, etc., becomes constant, and furthermore, the proportion of the substance in the film formed by eutectoid deposition of these substances on the cathode surface also becomes constant. This eliminates the need to frequently measure the concentration of the plating solution and constantly maintain a predetermined concentration as in the past. A composite plating film containing a certain proportion of metal can be formed relatively easily, and the effort of concentration control can be saved accordingly.

また、上記のように金属粉末等を陽極として使用したこ
とにより、いかなる形状の陽極室(所謂バスケット)に
も収納し得るようになるので、被メッキ物の形状に応じ
た陽極室を用いるだけで陽極自体を被メッキ物の形状に
対応する形状とすることができる。そして、このように
して陽極形状を被メッキ物形状に対応させた場合は、被
メッキ物の表面と陽極表面との間の距離が各部位で略−
定となるから、その分だけ被メッキ物表面に均一厚さの
被膜を形成し易くなる。
In addition, by using metal powder etc. as the anode as described above, it can be stored in any shape of anode chamber (so-called basket), so just use the anode chamber according to the shape of the object to be plated. The anode itself can be shaped to correspond to the shape of the object to be plated. When the anode shape is made to correspond to the shape of the object to be plated in this way, the distance between the surface of the object to be plated and the surface of the anode is approximately -
Therefore, it becomes easier to form a film of uniform thickness on the surface of the object to be plated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すもので、メッキ液中に
陽極及び陰極(被メッキ物)をセットして該被メッキ物
の表面に複合メッキ被膜を形成している状態を示す工程
図である。 2・・・メッキ液、3・・・陰極(被メッキ物)、4・
・・陽極、5・・・金属にニッケル粉末)、6・・・有
機高分子(フッソ樹脂粉末)、8・・・陽極室、9・・
・被膜。 第1囮
FIG. 1 shows an embodiment of the present invention, showing a process in which an anode and a cathode (object to be plated) are set in a plating solution to form a composite plating film on the surface of the object to be plated. It is a diagram. 2... Plating solution, 3... Cathode (object to be plated), 4...
...Anode, 5...Nickel powder on metal), 6...Organic polymer (fluorine resin powder), 8...Anode chamber, 9...
・Coating. 1st decoy

Claims (1)

【特許請求の範囲】[Claims] (1)所定のメッキ液の中で陰極である被メッキ物の表
面に所定厚さのメッキ被膜を形成するに当たり、1種又
は2種以上の金属の粉末若しくは短繊維と少なくともカ
チオン化した有機高分子又はカチオン化した無機質の非
金属微粒子若しくは非金属微繊維の一種又は2種以上と
を予め所定の割合で混合し、この混合物を陽極として用
いて多孔性部材でなる陽極室に収納した状態で両極間に
電圧を印加することにより、上記被メッキ物の表面に上
記混合物を共析させることを特徴とする複合メッキ方法
(1) In forming a plating film of a predetermined thickness on the surface of the object to be plated, which is a cathode, in a predetermined plating solution, one or more metal powders or short fibers are combined with at least a cationized organic polymer. One or more types of molecules or cationized inorganic non-metal fine particles or non-metal fine fibers are mixed in a predetermined ratio in advance, and this mixture is used as an anode and stored in an anode chamber made of a porous member. A composite plating method characterized in that the mixture is eutectoided on the surface of the object to be plated by applying a voltage between the two electrodes.
JP26695188A 1988-10-21 1988-10-21 Composite plating method Pending JPH02115396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26695188A JPH02115396A (en) 1988-10-21 1988-10-21 Composite plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26695188A JPH02115396A (en) 1988-10-21 1988-10-21 Composite plating method

Publications (1)

Publication Number Publication Date
JPH02115396A true JPH02115396A (en) 1990-04-27

Family

ID=17437955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26695188A Pending JPH02115396A (en) 1988-10-21 1988-10-21 Composite plating method

Country Status (1)

Country Link
JP (1) JPH02115396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085331A (en) * 2001-05-08 2002-11-16 안재우 Process for plating brass-metalloid composite
CN104195621A (en) * 2014-08-29 2014-12-10 郑州磨料磨具磨削研究所有限公司 Plating bath for composite plating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020085331A (en) * 2001-05-08 2002-11-16 안재우 Process for plating brass-metalloid composite
CN104195621A (en) * 2014-08-29 2014-12-10 郑州磨料磨具磨削研究所有限公司 Plating bath for composite plating

Similar Documents

Publication Publication Date Title
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
US4204918A (en) Electroplating procedure
US20150354077A1 (en) Electrodeposition of chromium from trivalent chromium using modulated electric fields
JP2017503926A (en) Electroplating bath containing trivalent chromium and method for depositing chromium
AU6898187A (en) Electroplating metal foil
KR920000974A (en) Copper plating
KR100596992B1 (en) Method for depositing lead-free tin alloy
US9631282B2 (en) Method for depositing a nickel-metal layer
US5489368A (en) Insoluble electrode structural material
JP2006249450A (en) Plating method and plating device
JPH02115396A (en) Composite plating method
US3994796A (en) Electrolytic plating apparatus for discrete microsized particles
JPH02175894A (en) Method and device for tin or tin alloy electroplating
GB1013673A (en) Improvements in or relating to electroplating processes
JPS585983B2 (en) Method and apparatus for stably producing metal complexes for electroless metal deposition
JPS6224520B2 (en)
US3775267A (en) Electrodeposition of rhodium
CN112501595A (en) Method for forming metal plating film
BR9911167A (en) Process for galvanizing a metallic coating, and apparatus for depositing metallic coating by galvanizing on at least a part of the surface area of an article
DE10357174B3 (en) Continuous deposition of adherent coatings on e.g. smooth copper foil comprises passing foil through bath containing copper ions and applying double pulses consisting of short, steep pulse followed by longer, flatter pulse
US3463708A (en) Electrolytic bath for magnetic deposition
US20160177455A1 (en) Single Solution for Electro-Electroless Deposition of Metals
JPH0390589A (en) Electroplating method
JPH03243797A (en) Electroplating device
US494231A (en) Charles b