JPH02104996A - Compound vane for compressor and manufacture thereof - Google Patents

Compound vane for compressor and manufacture thereof

Info

Publication number
JPH02104996A
JPH02104996A JP63259109A JP25910988A JPH02104996A JP H02104996 A JPH02104996 A JP H02104996A JP 63259109 A JP63259109 A JP 63259109A JP 25910988 A JP25910988 A JP 25910988A JP H02104996 A JPH02104996 A JP H02104996A
Authority
JP
Japan
Prior art keywords
vane
wear resistance
composite
compressor
excellent wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63259109A
Other languages
Japanese (ja)
Inventor
Takuya Suzuki
卓哉 鈴木
Michio Okuno
奥野 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63259109A priority Critical patent/JPH02104996A/en
Publication of JPH02104996A publication Critical patent/JPH02104996A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To lighten the weight as well as to improve abrasion resistance by forming a sliding surface of a compressor compound vane with abrasion resistive material and the other surface with light-weight material respectively after compoundedness by means of schremann extrusion or conform extrusion. CONSTITUTION:A compressor compound vane is made up of compounding a strip (abrasion resistive material A) of high-speed steel and mixed powder (lightweight material B) mixing an Al2O3 short fiber and graphite powder in 4032 alloy powder by means of conform extrusion. On a sliding surface A-1, the whole high-speed steel (A) is exposed there. In this case, the ratio (A/B) of A to B is set to one-third, thus it is made lighter in weight as much as 45% as compared with a vane made of high-speed steel. In this connection, it may be made of compound material with an alumina rod (A) and a carbon fiber FRM (B) by means of a schremann extruder. Thus, such a vane that is excellent in abrasion resistance and lighter in weight is securable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷蔵庫等コンプレッサーに用いられる、軽量
で耐摩耗性に優れた複合型ベーン及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite vane that is lightweight and has excellent wear resistance and is used in compressors such as refrigerators, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

冷蔵庫やエアコン等のロータリーコンプレッサーに用い
られるベーン材としては、高速度鋼、特殊鋳鉄、鉄系粉
末焼結合金等の鉄系材料が従来用いられている。
Iron-based materials such as high-speed steel, special cast iron, and iron-based powder sintered alloys have been conventionally used as vane materials for rotary compressors such as refrigerators and air conditioners.

第4図は、ローリングピストン型コンブレッサ−の構造
の概略を示す断面図であって、シリンダー3内で、ピス
トン4がシャフト5を回転軸として偏心運動を行なう事
によって冷媒ガスの吸入、圧縮、排出が行なわれる。こ
の際ベーン6はガスシール材としての役目を果たし、シ
リンダー3とピストン4の両方から摺動を受ける。又第
5図はベーンロータリー型コンプレッサーの構造の概略
を示す断面図であって、ベーン6を持ったローター8が
楕円型シリンダー9の中を回転運動し、それぞれのベー
76に区切られた部屋が吸入−圧縮−吐出の作動を繰り
返している。
FIG. 4 is a sectional view schematically showing the structure of a rolling piston type compressor, in which a piston 4 moves eccentrically around a shaft 5 in a cylinder 3 to suck, compress, and discharge refrigerant gas. will be carried out. At this time, the vane 6 serves as a gas sealing material and receives sliding movement from both the cylinder 3 and the piston 4. FIG. 5 is a sectional view schematically showing the structure of a vane rotary compressor, in which a rotor 8 with vanes 6 rotates inside an elliptical cylinder 9, and a room divided into each bay 76 is The suction-compression-discharge operation is repeated.

mmにこれらのロータリーコンプレッサーでは、シリン
ダーとピストンとの材質が異なっており(例えば第4図
の如きローリングピストン式コンプレッサーの場合、シ
リンダー3には軟質の共晶黒鉛鋳鉄等が、ピストン4に
は熱処理して強度を上げたMoNiCr鋳鉄等が使われ
る事が多い)、従ってベーン材に対してもこれら異なっ
た材質と摺動する際の耐摩耗性、耐焼付性に優れている
事が要求されている。
In these rotary compressors, the cylinder and piston are made of different materials (for example, in the case of a rolling piston compressor as shown in Figure 4, cylinder 3 is made of soft eutectic graphite cast iron, etc., and piston 4 is made of heat-treated (In many cases, MoNiCr cast iron, etc., which has increased strength due to the use of aluminum alloys, is used.) Therefore, the vane material is required to have excellent wear resistance and seizure resistance when sliding with these different materials. There is.

更に前記摺動面のクリアランスに関しては、例えば第4
図の如きローリングピストン式コンプレッサーの場合、
シリンダー3とベーン6とは、両者間のクリアランスが
μmのオーダーになる様に嵌合してあり、ベーン6の熱
膨張係数がシリンダー3の熱膨張係数に近い事が要求さ
れている。
Furthermore, regarding the clearance of the sliding surface, for example, the fourth
In the case of a rolling piston compressor as shown in the diagram,
The cylinder 3 and the vane 6 are fitted so that the clearance therebetween is on the order of μm, and the coefficient of thermal expansion of the vane 6 is required to be close to that of the cylinder 3.

又第5図の如きベーンロータリー型コンプレッサーでは
、前述の様にベーン6が回転体の一部を形成している為
、該ベーン6の軽量化による入力低減効果が大きく、ベ
ーン材の軽量化が強く求められている。而して自動車用
エアコンの場合は軽輩化が要求される為、ハウジング及
びコンプレッサーのローター8がAN合金製のものも実
用化されており、この場合は軽量化のみならず、熱膨張
係数の点からもA1合金製へ−ンが用いられている。
In addition, in the vane rotary type compressor as shown in Fig. 5, since the vanes 6 form part of the rotating body as described above, the input reduction effect by reducing the weight of the vanes 6 is large, and the weight of the vane material can be reduced. It is strongly required. Since automotive air conditioners are required to be lighter, the housing and compressor rotor 8 are made of AN alloy. Also from the point of view, A1 alloy horns are used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上に述べた様に、コンプレッサー用ベーンに対しては
、(1)耐摩耗性に優れている事、(2)耐焼付性に優
れている事、(3)熱膨張係数が相手材質に近い事、(
4)軽量である事等の特性が要求されている。
As mentioned above, compressor vanes must have (1) excellent wear resistance, (2) excellent seizure resistance, and (3) a coefficient of thermal expansion close to that of the other material. case,(
4) Characteristics such as being lightweight are required.

然しなから、従来用いられている高速度鋼等の鉄系材料
は、耐摩耗性の点で優れおり、相手材質に近い熱膨張係
数を有してはいるものの、重さの点で改良が必要とされ
ていた。一方Aj2系材料は、軽輩化の点では優れてい
るものの、耐摩耗性が鉄系材料よりも格段に劣っており
、又熱膨張係数もシリンダー及びピストンとかなり異な
っている為、前記自動車用エアコンの場合以外は実用化
されていなかった。
However, although conventionally used iron-based materials such as high-speed steel have excellent wear resistance and a coefficient of thermal expansion close to that of the other material, improvements in weight cannot be achieved. It was needed. On the other hand, although Aj2-based materials are superior in terms of weight reduction, their wear resistance is significantly inferior to that of iron-based materials, and their coefficient of thermal expansion is quite different from that of cylinders and pistons, so they are not suitable for use in the above-mentioned automobiles. It had not been put to practical use except in the case of air conditioners.

〔課題を解決する為の手段〕[Means to solve problems]

本発明は上記の点に鑑み鋭意検討の結果なされたもので
あり、その目的とするところは、耐摩耗性が優れている
と共に、軽量であり、熱膨張係数も相手材質に近いコン
プレッサー用複合型ベーン及びその製造方法を憬供する
事である。
The present invention was made as a result of intensive studies in view of the above points, and its purpose is to provide a composite type for compressors that has excellent wear resistance, is lightweight, and has a coefficient of thermal expansion close to that of the mating material. The purpose is to provide vanes and their manufacturing methods.

本発明者等は前記コンプレッサー用ベーンを、特に耐摩
耗性が要求される摺動面(例えば第4図に示したローリ
ンピストン式コンプレッサーにおいては、ピストン4と
摺動する面、又第5図に示シタヘーンロータリー型コン
プレッサーにおいては、ビ1円型シリンダー9と摺動す
る面)の少なくとも中央部を形成する耐摩耗性に優れた
材質(A)と、その他の面を形成する軽量な材1(B)
とが複合化された複合型ベーンとする事により、耐摩耗
性に優れ且つ軽量なベーン材を得る事が出来、しかも前
記材質A、B及びこれらの比(A/B)を適宜選択する
事によってその熱膨張係数をシリンダー及びピストンの
熱膨張係数に近ずける事が出来る事を見出して、本発明
の完成に到ったものである。
The present inventors have proposed that the compressor vanes be used on sliding surfaces that require particularly wear resistance (for example, in the rollin piston type compressor shown in FIG. 4, the surface that slides on the piston 4, and as shown in FIG. 5). In the illustrated rotary type compressor, a material (A) with excellent wear resistance forms at least the central part of the surface that slides on the circular cylinder 9), and a lightweight material 1 forms the other surfaces. (B)
By creating a composite type vane in which these are combined, a vane material with excellent wear resistance and light weight can be obtained, and the materials A and B and their ratio (A/B) can be appropriately selected. The present invention was completed by discovering that the coefficient of thermal expansion can be brought close to that of the cylinder and piston.

即ち本発明における請求項1の発明は、特に耐摩耗性が
要求される摺動面の少なくとも中央部を形成する耐摩耗
性に優れた材質(A)と、その他の面を形成する軽量な
材質(B)とが、金属接合により複合化されている事を
特徴とするコンプレッサー用複合型ベーンである。又請
求項2の発明は、耐摩耗性に優れた材質(A)が高速度
鋼、特殊鋳鉄、鋳鋼、鉄系粉末焼結合金、セラミックス
、サーメット、硬質合金の内の何れか1種である事を特
徴とする請求項1記載のコンプレッサー用複合型ベーン
である。又請求項3の発明は、軽量な材質(B)がAI
 AN合金、Mg、Mg合金、或いはこれらをマトリッ
クスとし、短繊維ウィスカーやセラミックス粒子で強化
した複合材の内の何れか1種である事を特徴とする請求
項1〜2記載のコンプレッサー用複合型ベーンである。
That is, the invention of claim 1 of the present invention is characterized in that a material (A) with excellent wear resistance forms at least the central part of the sliding surface where particularly wear resistance is required, and a lightweight material forms the other surfaces. This is a composite vane for a compressor, characterized in that (B) and (B) are composited by metal bonding. Further, in the invention of claim 2, the material (A) having excellent wear resistance is any one of high-speed steel, special cast iron, cast steel, iron-based powder sintered alloy, ceramics, cermet, and hard alloy. 2. A composite vane for a compressor according to claim 1, characterized in that: Further, in the invention of claim 3, the lightweight material (B) is made of AI.
The composite type for a compressor according to claims 1 to 2, characterized in that it is one of AN alloy, Mg, Mg alloy, or a composite material made of these as a matrix and reinforced with short fiber whiskers or ceramic particles. It's a vane.

又請求項4の発明は、耐摩耗性に優れた材質(A)及び
軽量な材ff (B)の内のいずれか一方または両方に
潤滑性物質或いは耐焼付性物質が含まれている事を特徴
とする請求項1〜3記戦のコンプレッサー用複合型ベー
ンである。史に又請求項5の発明は、シュレーマン押出
又はコンフォーム押出によって、耐摩耗性に優れた材質
(A)と軽量な材質(B)とを複合化する事を特徴とす
る請求項1〜4記載のコンプレッサー用複合型ベーンの
製造方法である。
Further, the invention of claim 4 provides that either or both of the material (A) having excellent wear resistance and the lightweight material ff (B) contain a lubricating substance or a seizing-resistant substance. A composite vane for a compressor according to claims 1 to 3, characterized in that: Historically, the invention of claim 5 is characterized in that the material (A) with excellent wear resistance and the lightweight material (B) are composited by Schlemann extrusion or conform extrusion. 4. The method for manufacturing a composite vane for a compressor according to the present invention.

本発明において、特に耐摩耗性が要求される摺動面を形
成する耐摩耗性に優れた材質(A)としては、従来から
用いられている高速度鋼、特殊鋳鉄、鋳鋼、鉄系粉末焼
結合金等の硬質の鉄系材ネ1はもとより、セラミックス
、サーメント、硬質合金等の可塑性のない材質を用いる
事が出来る。又軽量な材ff (B)としては、軽固化
を主体とし、耐摩耗性や耐焼付性をも考慮したAI!、
、AI!合金、Mg、Mg合金やこれらをマトリックス
とし、短繊維ウィスカーやセラミックス粒子で強化した
複合材を用いる事が出来る。
In the present invention, the materials (A) with excellent wear resistance that form the sliding surfaces that require particularly wear resistance include conventionally used high-speed steel, special cast iron, cast steel, iron-based powder sintered In addition to hard iron-based materials 1 such as alloys, non-plastic materials such as ceramics, cerment, and hard alloys can be used. In addition, as a lightweight material ff (B), AI! is mainly designed for light solidification and also takes into consideration wear resistance and seizure resistance! ,
, AI! It is possible to use alloys, Mg, Mg alloys, and composite materials using these as a matrix and reinforced with short fiber whiskers or ceramic particles.

又本発明において、特に耐焼付性が重視される場合には
、前記材fiA及びBの内のいずれか一方または両方に
C,MoS、、BN等の固体潤滑剤や金属間化合物粒子
を添加する事が望ましい。
Further, in the present invention, when seizure resistance is particularly important, a solid lubricant such as C, MoS, BN, or intermetallic compound particles is added to one or both of the materials fiA and B. things are desirable.

史に本発明においては、前記材質A、B及びこれらの比
(A/B)を適宜選択する事によってその熱膨張係数を
シリンダー及びピストンの熱膨張係故に近ずける事が可
能である。
Historically, in the present invention, by appropriately selecting the materials A and B and their ratio (A/B), it is possible to make the coefficient of thermal expansion close to that of the cylinder and piston.

本発明における前記材[A及びBは、例えばシュレーマ
ン押出又はコンフォーム押出等により完全に金属的に接
合させる事が可能であり、又材質A及びBの接合を強化
させる為の展延性のある中間屡が存在していても差し支
えない。
The materials [A and B in the present invention] can be completely joined metallically by, for example, Schlemann extrusion or conform extrusion, and also have malleable properties to strengthen the joining of materials A and B. There is no problem even if there is a middle class.

次に本発明の実施態様を図面により具体的に説明する。Next, embodiments of the present invention will be specifically described with reference to the drawings.

第1図(a)は本発明による複合型ベーンの一例を示す
断面図であって、該複合型ベーンは耐摩耗性に研れた材
質(A)と、軽量な材質(B)とから構成されており、
特に耐摩耗性が要求される摺動面A−1においては、そ
の中央部は耐摩耗性に優れた材質(A)より形成されて
おり、その両側部は軽量な材質(B)から形成されてい
る。この場合充分な耐摩耗性を得る為には、前記摺動面
A−1における耐摩耗性に優れた材質(A)と軽量な材
質(B)との割合(A/B)を1以上にする事が望まし
い、第1図(b)は本発明による複合型ベーンの他の一
例を示す断面図であって、特に耐摩耗性が要求される摺
動面A−1は全面が耐摩耗性に優れた材質(A)より形
成されている。
FIG. 1(a) is a sectional view showing an example of a composite vane according to the present invention, and the composite vane is made of a wear-resistant material (A) and a lightweight material (B). has been
In particular, in the sliding surface A-1 where wear resistance is required, the central part is made of a material (A) with excellent wear resistance, and the both sides are made of a lightweight material (B). ing. In this case, in order to obtain sufficient wear resistance, the ratio (A/B) of the material (A) with excellent wear resistance and the lightweight material (B) on the sliding surface A-1 should be 1 or more. FIG. 1(b) is a sectional view showing another example of the composite vane according to the present invention, in which the sliding surface A-1, which particularly requires wear resistance, is entirely wear-resistant. It is made of material (A) with excellent properties.

(作用〕 本発明によるコンプレッサー用複合型ベーンは、特に耐
摩耗性が要求される摺動面の少なくとも中央部を形成す
る耐摩耗性に優れた材質(A)と、その他の面を形成す
る軽量な材ff(B)とが複合化されているので、耐摩
耗性に優れており、且つ軽量である。しかも前記材質A
、B及びこれらの比(A/B)を適宜選択する事によっ
てその熱膨張係数をシリンダー及びピストンの熱膨張係
数に近ずける事が可能である。
(Function) The composite vane for a compressor according to the present invention is made of a material (A) with excellent wear resistance that forms at least the central part of the sliding surface where particularly wear resistance is required, and a lightweight material that forms the other surfaces. Since it is made of a composite material ff(B), it has excellent wear resistance and is lightweight.
, B and their ratio (A/B), it is possible to make the coefficient of thermal expansion close to that of the cylinder and piston.

〔実施例1〕 次に本発明を実施例により更に具体的に説明する。[Example 1] Next, the present invention will be explained in more detail with reference to Examples.

高速度鋼(SKH−9、熱処理済み)の条(A)と、4
032合金(A/!−3i系)粉にAl1 O2短繊維
(9v o 1%)及び黒鉛粉末(0,5wt%)を混
合した混合粉末(B)とを、フンフオーム押出によって
複合化して、第1図(b)に示した断面形状の、耐摩耗
性に優れた材質(A)と、軽量な材it (B)とから
なる複合型ベーンを得た。
High speed steel (SKH-9, heat treated) strip (A) and 4
032 alloy (A/!-3i series) powder mixed with Al1O2 short fibers (9v o 1%) and graphite powder (0.5wt%) (B) was composited by Funfoam extrusion. A composite vane having the cross-sectional shape shown in FIG. 1(b) and made of a material (A) with excellent wear resistance and a lightweight material (B) was obtained.

この際特に耐摩耗性が要求される摺動面A−1には全面
高速度鋼(A)を露出させ、又第1図(b)のX−x断
面における耐摩耗性に優れた材質(A)と、軽すな材質
(B)との割合(A/B)を1/3とした。この様にし
て得られた複合型ベーンの比重は4.29gr/cm’
で、A2合金製のベーンよりは若干劣ってはいるものの
、従来の高速度鋼製のベーンに比べて45%も軽量化さ
れていた。即ちこの様な構成の複合型ベーンを例えば第
5図に示した様なベーンロータリー型コンプレッサーの
ベーン6として使用した場合、特に耐摩耗性が要求され
る楕円型シリンダー7との摺動面A−1は従来の高速度
鋼製のベーンと同等な耐摩耗性を有しており、しかも軽
量化による入力低減効果は極めて大きいものである。更
に第1図(b)に示した断面に垂直な方向における前記
複合型ベーンの熱膨張係数は、第5図におけるローター
8として高強度Al−3i系合金を使用した場合の該ロ
ーター8の熱膨張係数とほぼ同等であり、又その強度は
約80kg/cm”であって、A42合金製ベーンの強
度(約48kg/cm”)をはるかに超えているもので
あった。
At this time, high-speed steel (A) is exposed on the entire surface of the sliding surface A-1 where wear resistance is especially required, and a material with excellent wear resistance ( The ratio (A/B) of A) and the light material (B) was set to 1/3. The specific gravity of the composite vane obtained in this way is 4.29g/cm'
Although it was slightly inferior to A2 alloy vanes, it was 45% lighter than conventional high-speed steel vanes. That is, when a composite vane with such a configuration is used as the vane 6 of a vane rotary compressor as shown in FIG. 5, the sliding surface A- No. 1 has wear resistance equivalent to that of conventional high-speed steel vanes, and the input reduction effect due to weight reduction is extremely large. Furthermore, the coefficient of thermal expansion of the composite vane in the direction perpendicular to the cross section shown in FIG. The coefficient of expansion was approximately the same, and the strength was approximately 80 kg/cm'', far exceeding the strength of the A42 alloy vane (approximately 48 kg/cm'').

:実施例2〕 直径3.5 m mφ、長さ4mのアルミナ棒1の両端
に第2図に示す様なはめ合い部(la及び1b)を設け
た耐〃耗性部材(A)を複数本用意した0次に前記アル
ミナ棒lに前処理を施した後、その表面にCuを無電解
メンキした。
:Example 2] A plurality of wear-resistant members (A) each having a fitting part (la and 1b) as shown in FIG. After subjecting the prepared alumina rod 1 to a pretreatment, the surface thereof was electrolessly coated with Cu.

−・方長さ約2mmに切断した高強度炭素繊維を有機バ
インダーで固めて、強化繊維の体積台を率■、が20%
のプリフォームとし、これを非酸化性雰囲気中で焼成し
て溶湯鍛造用プリフォームを作製し、該溶湯鍛造用プリ
フォーム中に4032合金CAN−3i系)を溶湯鍛造
した。この炭素繊維FRM(以下C−FRMと記す)の
熱膨張係数は炭素繊維の低熱膨張係数の効果及び403
2合金の高Si含有の効果とが相まって、16×10−
’/’Cであった。前記C−FRMのビレ、トを用い、
シュレーマン押出機で第3図(a)に示す様にC−FR
M2の横断面端部付近にアルミナ棒lが位置する複合材
を作成した。尚前記シュレーマン押出に際しては、表面
をメタライジングした、第2圓に示した形状のアルミナ
棒lを、各アルミナ棒1の端部(la及びlb)を互い
にはめ合わせた後、このはめ合い部を根ロー付けで接合
する事によって長尺化した。又この長尺化したアルミナ
棒1をC−FRMと複合化した後、超音波探傷で前記ア
ルミナ棒1の接合部を求め、この位置で切断して所定長
さの複合材とした。次にアルミナ棒lを被覆しているC
−FRMの一部を除去して、第3図(b)に示す様な所
定の形状に研削研磨して仕上げ、特に耐摩耗性が要求さ
れる摺動面A−1の中央部にアルミナ棒lを露出させた
- High-strength carbon fibers cut into lengths of approximately 2 mm are hardened with an organic binder, and the volume of the reinforcing fibers is 20%.
This preform was fired in a non-oxidizing atmosphere to produce a molten metal forging preform, and a 4032 alloy (CAN-3i series) was molten metal forged into the molten metal forging preform. The thermal expansion coefficient of this carbon fiber FRM (hereinafter referred to as C-FRM) is due to the effect of the low thermal expansion coefficient of carbon fiber and 403
Combined with the effect of high Si content in the two alloys, the
'/'C. Using the fillet and toe of the C-FRM,
C-FR as shown in Figure 3(a) using a Schlemann extruder.
A composite material was created in which an alumina rod l was located near the end of the cross section of M2. In the above-mentioned Schlemann extrusion, after fitting the ends (la and lb) of each alumina rod 1 to each other, the alumina rods 1 having the shape shown in the second circle and having metallized surfaces are The length was made longer by joining them using root brazing. Further, after this elongated alumina rod 1 was composited with C-FRM, the joint portion of the alumina rod 1 was determined by ultrasonic flaw detection and cut at this position to obtain a composite material of a predetermined length. Next, C covering the alumina rod l
-Remove a part of the FRM and finish it by grinding and polishing it into a predetermined shape as shown in Figure 3(b).In particular, place an alumina rod in the center of the sliding surface A-1 where wear resistance is required. l was exposed.

この欅にして得られた複合型ベーンの比重は2゜65で
あって、アルミ合金製ベーンの場合よりも3%軽量にな
っていた。該複合型ベーンを例えば第5図に示した樺な
ベーンロータリー型コンプレッサー用ベーンとして使用
した場合、楕円型シリンダー9との摺動面はアルミナで
あり、その耐摩耗性、耐焼付性は従来用いられている高
速度鋼等の鉄系材料よりも優れている。又ローター8と
の摺動面においては、An−5t合金マトリックスのS
1粒子と、強化繊維の炭素繊維とが潤滑効果を示す為、
その耐摩耗性、耐焼付性は極め一ζ優れたものである。
The specific gravity of the composite vane obtained from this keyaki was 2.65°, which was 3% lighter than that of the aluminum alloy vane. When this composite vane is used, for example, as a vane for the birch vane rotary compressor shown in FIG. It is superior to ferrous materials such as high-speed steel, which are currently used in the industry. In addition, on the sliding surface with the rotor 8, S of the An-5t alloy matrix
1 particle and the reinforcing carbon fiber exhibit a lubricating effect,
Its wear resistance and seizure resistance are extremely excellent.

(発明の効果〕 本発明によるコンプレッサー用ti合型ベーンは、耐摩
耗性が借れていると共に、軽量であり、しかも熱膨張係
数も相手材質の値に近づける事が可能である等工業上顕
著な効果を奏するものである。
(Effects of the Invention) The Ti joint type vane for a compressor according to the present invention has excellent wear resistance, is lightweight, and has an industrially remarkable coefficient of thermal expansion that can be made close to the value of the mating material. This has the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(b)は本発明による複合型ベーンの
一例を示す断面図、第2図は本発明において耐摩耗性に
優れた材料として用いるアルミナ棒素材の形状の一例を
示す断面図、第3図(a)及び(b)はそれぞれ本発明
によるアルミナ/C−FRM復合押出材及びアルミナ/
C−FRM複合型ベーンの断面図、第4図は、ローリン
グピストン型コンプレッサーの構造の概略を示す断面図
、第5図はベーンロータリー型コンプレッサーの構造の
概略を示す断面図である。 八−耐摩耗性に優れた材質、B−・−軽量な材質、A−
1・−特に耐摩耗性が要求される摺動面、1−・アルミ
ナ棒、la、lb・−アルミナ棒Iの端部、2−−C−
FRM、3−・シリンダー、4−ピストン、5・−・シ
ャフト、6−・・ベーン、7・・吐出弁、8−・−ロー
ター、9−・楕円型シリンダー、1〇−吸入ポート、1
)−吐出ボート。 特許出願人 古河電気工業株式会社 第1図 第2図 (a)     (b) 第3図
Figures 1 (a) and (b) are cross-sectional views showing an example of a composite vane according to the present invention, and Figure 2 is a cross-sectional view showing an example of the shape of an alumina rod material used as a material with excellent wear resistance in the present invention. Figures 3(a) and 3(b) show an alumina/C-FRM composite extrusion material and an alumina/C-FRM composite extrusion material according to the present invention, respectively.
FIG. 4 is a sectional view showing the outline of the structure of a rolling piston type compressor, and FIG. 5 is a sectional view showing the outline of the structure of a vane rotary type compressor. 8-Material with excellent wear resistance, B-・-Lightweight material, A-
1.-Sliding surface where particularly wear resistance is required, 1-.Alumina rod, la, lb.--End of alumina rod I, 2--C-
FRM, 3--Cylinder, 4-Piston, 5--Shaft, 6--Vane, 7-Discharge valve, 8--Rotor, 9--Oval cylinder, 10-Suction port, 1
) - discharge boat. Patent applicant Furukawa Electric Co., Ltd. Figure 1 Figure 2 (a) (b) Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1) 特に耐摩耗性が要求される摺動面の少なくとも
中央部を形成する耐摩耗性に優れた材質(A)と、その
他の面を形成する軽量な材質(B)とが、金属接合によ
り複合化されている事を特徴とするコンプレッサー用複
合型ベーン。
(1) A material with excellent wear resistance (A) that forms at least the central part of the sliding surface where particularly wear resistance is required, and a lightweight material (B) that forms the other surfaces are metal bonded. Composite type vane for compressor, which is characterized by being made of composite vane.
(2) 耐摩耗性に優れた材質(A)が高速度鋼、特殊
鋳鉄、鋳鋼、鉄系粉末焼結合金、セラミックス、サーメ
ット、硬質合金の内の何れか1種である事を特徴とする
請求項1記載のコンプレッサー用複合型ベーン。
(2) The material (A) with excellent wear resistance is one of high-speed steel, special cast iron, cast steel, iron-based powder sintered alloy, ceramics, cermet, and hard alloy. The composite vane for a compressor according to claim 1.
(3) 軽量な材質(B)がAl、Al合金、Mg、M
g合金、或いはこれらをマトリックスとし、短繊維ウィ
スカーやセラミックス粒子で強化した複合材の内の何れ
か1種である事を特徴とする請求項1〜2記載のコンプ
レッサー用複合型ベーン。
(3) Lightweight material (B) is Al, Al alloy, Mg, M
3. The composite vane for a compressor according to claim 1, wherein the composite vane is made of one of g-alloy or a composite material made of these as a matrix and reinforced with short fiber whiskers or ceramic particles.
(4) 耐摩耗性に優れた材質(A)及び軽量な材質(
B)の内のいずれか一方または両方に潤滑性物質或いは
耐焼付性物質が含まれている事を特徴とする請求項1〜
3記載のコンプレッサー用複合型ベーン。
(4) Material with excellent wear resistance (A) and lightweight material (
Claims 1 to 3, characterized in that either one or both of B) contains a lubricating substance or an anti-seizure substance.
3. The composite vane for a compressor according to 3.
(5) シュレーマン押出又はコンフォーム押出によっ
て、耐摩耗性に優れた材質(A)と軽量な材質(B)と
を複合化する事を特徴とする請求項1〜4記載のコンプ
レッサー用複合型ベーンの製造方法。
(5) A composite mold for a compressor according to claims 1 to 4, characterized in that the material (A) with excellent wear resistance and the lightweight material (B) are composited by Schlemann extrusion or conform extrusion. How to manufacture vanes.
JP63259109A 1988-10-14 1988-10-14 Compound vane for compressor and manufacture thereof Pending JPH02104996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63259109A JPH02104996A (en) 1988-10-14 1988-10-14 Compound vane for compressor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63259109A JPH02104996A (en) 1988-10-14 1988-10-14 Compound vane for compressor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02104996A true JPH02104996A (en) 1990-04-17

Family

ID=17329442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63259109A Pending JPH02104996A (en) 1988-10-14 1988-10-14 Compound vane for compressor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02104996A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718499A1 (en) * 1994-12-20 1996-06-26 Zexel Corporation Vane for vane compressor
FR2760493A1 (en) * 1997-01-14 1998-09-11 Tecumseh Products Co Vane for a rotary expansible chamber e.g a compressor
WO2007042135A1 (en) * 2005-10-13 2007-04-19 Joma-Hydromechanic Gmbh Rotor pump
JP2014020209A (en) * 2012-07-12 2014-02-03 Mitsubishi Heavy Ind Ltd Two-stage compressor and two-stage compression system
CN111720311A (en) * 2020-06-18 2020-09-29 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718499A1 (en) * 1994-12-20 1996-06-26 Zexel Corporation Vane for vane compressor
FR2760493A1 (en) * 1997-01-14 1998-09-11 Tecumseh Products Co Vane for a rotary expansible chamber e.g a compressor
WO2007042135A1 (en) * 2005-10-13 2007-04-19 Joma-Hydromechanic Gmbh Rotor pump
JP2014020209A (en) * 2012-07-12 2014-02-03 Mitsubishi Heavy Ind Ltd Two-stage compressor and two-stage compression system
CN111720311A (en) * 2020-06-18 2020-09-29 广东美芝制冷设备有限公司 Rotary compressor and refrigeration cycle system

Similar Documents

Publication Publication Date Title
Allison et al. Metal-matrix composites in the automotive industry: opportunities and challenges
US4570316A (en) Method for manufacturing a rotor for a rotary fluid pump
JPH0696188B2 (en) Fiber reinforced metal composite material
KR100218984B1 (en) Highly ductile sintered aluminum alloy method for production thereof
EP0375337B1 (en) Parts for use in rotary gear pump
Dinwoodie Automotive applications for MMC's based on short staple alumina fibres
JP2005533931A (en) Reinforced composite machine part and method for manufacturing the same
JPH02104996A (en) Compound vane for compressor and manufacture thereof
US20040074335A1 (en) Powder metal connecting rod
JPH05231348A (en) Sliding part and scroll type compressor using it
JP2924263B2 (en) High-strength aluminum alloy pump rotor
JPH02218887A (en) Composite vane for compressor and manufacture thereof
JPH06122933A (en) High ductility al sintered plastic fluidized alloy, its production and its application
JPH03275908A (en) Camshaft and manufacture thereof
JP3146529B2 (en) Manufacturing method of high precision aluminum alloy sliding parts
JPS63230983A (en) Rotary compressor member
JPS6345485A (en) Scroll type compressor
JPS62237089A (en) Vane made of fiber-reinforced metallic composite material for vane type compressor
JPS61157778A (en) Swash plate type compressor
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JPH0379556B2 (en)
JPH03130591A (en) Rotary compressor member
JPS61241484A (en) Rotary type compressor
JPH04332A (en) Spiral parts material for scroll compressor
JPH0379557B2 (en)