JP3146529B2 - Manufacturing method of high precision aluminum alloy sliding parts - Google Patents

Manufacturing method of high precision aluminum alloy sliding parts

Info

Publication number
JP3146529B2
JP3146529B2 JP18889491A JP18889491A JP3146529B2 JP 3146529 B2 JP3146529 B2 JP 3146529B2 JP 18889491 A JP18889491 A JP 18889491A JP 18889491 A JP18889491 A JP 18889491A JP 3146529 B2 JP3146529 B2 JP 3146529B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
particles
dispersion
strength
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18889491A
Other languages
Japanese (ja)
Other versions
JPH0533013A (en
Inventor
勝義 近藤
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18889491A priority Critical patent/JP3146529B2/en
Publication of JPH0533013A publication Critical patent/JPH0533013A/en
Application granted granted Critical
Publication of JP3146529B2 publication Critical patent/JP3146529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、急冷凝固アルミニウム
合金粉末を原料とて耐摩耗性に優れ、また、湿式潤滑環
境下での摺動特性に優れ、さらに、寸法精度にも優れる
アルミニウム合金摺動部品(例えばオイルポンプロータ
や含油軸受など)を経済的に製造するための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy slide having excellent wear resistance using a rapidly solidified aluminum alloy powder as a raw material, excellent sliding characteristics in a wet lubricating environment, and excellent dimensional accuracy. The present invention relates to a method for economically manufacturing a moving part (for example, an oil pump rotor or an oil-impregnated bearing).

【0002】[0002]

【従来の技術】急冷凝固法やメカニカルアロイング法で
得られる粉末のアルミニウム合金(P/M合金)は、溶
製合金(I/M合金)と違ってFe、Ni、Cr等の遷
移元素や溶体化時効硬化元素のCu、Mg、Mn、或い
はSi、Mo、V、Zr等の分散強化粒子をアルミニウ
ム(以下元素記号で表示)中に多量に固溶させ、偏析す
ることなく均一かつ微細に分散させることができる。
2. Description of the Related Art A powdered aluminum alloy (P / M alloy) obtained by a rapid solidification method or a mechanical alloying method is different from a smelted alloy (I / M alloy) in that a transition element such as Fe, Ni, Cr or the like is used. Dispersion strengthening particles such as solution-aged hardening elements Cu, Mg, Mn, or Si, Mo, V, Zr, etc. are solid-solved in a large amount in aluminum (hereinafter denoted by an element symbol) and uniformly and finely without segregation. Can be dispersed.

【0003】この高性能のAl合金粉末を原料として用
いれば、強度、靭性、硬度、剛性等の機械的特性のほ
か、耐熱性や耐摩耗性に優れたAl合金部品を作ること
ができる。しかし、そのためには、材料の準安定状態の
合金相を保ち、かつ、微細組織を保ちながら、合金粉末
の完全結合(密着)を行わしめることが必要不可欠の条
件となる。
[0003] If this high-performance Al alloy powder is used as a raw material, an Al alloy part excellent in heat resistance and wear resistance in addition to mechanical properties such as strength, toughness, hardness and rigidity can be produced. However, for that purpose, it is indispensable to perform complete bonding (adhesion) of the alloy powder while maintaining the alloy phase in the metastable state of the material and maintaining the fine structure.

【0004】鉄系合金粉末の場合、圧粉成形後の焼結に
よって完全結合の目的を達成することができるが、Al
合金粉末は、表面に生じている酸化膜が拡散結合を阻害
するので、焼結操作は殆んど採用できない。極めて高温
の共晶液相を利用すれば焼結可能であるが、このような
焼結作用は材料の準安定状態の合金相を著しく損うため
部品の強度を維持できず、実質的に意味がない。
[0004] In the case of iron-based alloy powder, the purpose of perfect bonding can be achieved by sintering after compaction.
Since the oxide film formed on the surface of the alloy powder inhibits diffusion bonding, the sintering operation can hardly be employed. Although sintering can be achieved by using an extremely high temperature eutectic liquid phase, such sintering action significantly impairs the alloy phase in the metastable state of the material, so that the strength of the component cannot be maintained and practically meaningful There is no.

【0005】そこで、一般的には熱間鍛造法を利用し、
適切な加熱、加圧を行うことで酸化皮膜を十分に除去も
しくは分断、破壊して粉末どうしを圧着させて金属結合
及び固相拡散を生じさせる方法が採られる。
Therefore, in general, hot forging is used,
A method is adopted in which the oxide film is sufficiently removed or cut or broken by performing appropriate heating and pressurization, and the powders are pressed together to cause metal bonding and solid phase diffusion.

【0006】その具体例としては、例えば特開昭63−
60265号がある。これに示される製造方法は、大気
雰囲気中で粉末成形体を熱処理して粉末粒子表面に吸着
している水分を先ず除去する。また、粉末表面の酸化膜
を破壊して粉末どうしを結合させるために粉末成形体を
加熱した後、予備的な熱間密閉型鍛造を経てから再度熱
間鍛造を実施している。
As a specific example, see, for example,
No. 60265. According to the manufacturing method shown in the figure, the powder compact is heat-treated in an air atmosphere to first remove moisture adsorbed on the surface of the powder particles. Further, after the powder compact is heated in order to break the oxide film on the powder surface and bond the powders together, hot forging is performed again after preliminary hot closed forging.

【0007】[0007]

【発明が解決しようとする課題】Al合金粉末表面の酸
化膜は、粉末製造工程及び粉末成形体の加熱工程におい
て生成される。後者の工程では粉末成形体の加熱温度が
300℃以上になるとAl粉末粒子に吸着している結晶
水が蒸発し、これとAlが反応して粉末表面に強固な酸
化Al皮膜ができる。
The oxide film on the surface of the Al alloy powder is formed during the powder manufacturing process and the heating process of the powder compact. In the latter step, when the heating temperature of the powder compact becomes 300 ° C. or higher, the water of crystallization adsorbed on the Al powder particles evaporates, and this reacts with Al to form a strong Al oxide film on the powder surface.

【0008】しかるに、上述した特開昭63−6062
5号の方法では、先ず大気中で成形体を加熱して吸着水
分を除去するので、除去された水分が再度Alと反応し
て粉末の結合を害する酸化Al皮膜が生じる。その皮膜
は、次工程の予備的熱間密閉鍛造によって破壊するが、
これでは、熱間鍛造工程が計2回となるので生産性や製
造コスト面で不利になる。
However, Japanese Patent Application Laid-Open No. 63-6062 discloses the above.
In the method of No. 5, since the molded body is first heated in the atmosphere to remove the adsorbed water, the removed water reacts with Al again to form an Al oxide film which impairs the bonding of the powder. The film is destroyed by the preliminary hot sealing forging in the next step,
In this case, since the hot forging process is performed twice in total, it is disadvantageous in terms of productivity and manufacturing cost.

【0009】また、Fe、Ni、Crなどの遷移元素を
添加した急冷凝固Al粉末の場合、遷移元素とAlとの
金属間化合物(例えばFeAl3 、NiAl3 、CrA
3 等)が組織中に微細に析出している。この金属間化
合物は素地のAlに対する拡散係数が極めて小さいので
遷移元素を多量に含有するような場合には、加熱処理に
より粗大化する金属間化合物がAl粉末どうしの拡散結
合を阻害し、従って、鍛造を2回に増やしても十分な強
度、靭性を得難い。
In the case of a rapidly solidified Al powder to which a transition element such as Fe, Ni, or Cr is added, an intermetallic compound of the transition element and Al (eg, FeAl 3 , NiAl 3 , CrA
l 3, etc.) is finely precipitated in the tissue. Since this intermetallic compound has a very small diffusion coefficient with respect to Al of the base material and contains a large amount of transition elements, the intermetallic compound coarsened by the heat treatment inhibits diffusion bonding between Al powders, Even if forging is increased twice, it is difficult to obtain sufficient strength and toughness.

【0010】さらに、熱間鍛造法では、金属、及び粉末
成形体の熱膨脹、熱収縮を伴い、これによる固化体の寸
法変化が生じるため加工終了段階で鉄系焼結部品並の高
寸法精度を得るのが難しく、このことも製品コストに影
響する。高寸法精度を必要とする場合には機械加工仕上
げが必要になるからである。
[0010] Furthermore, the hot forging method involves thermal expansion and contraction of the metal and the powder compact, which causes a dimensional change of the solidified body. Difficult to obtain, which also affects product costs. This is because when high dimensional accuracy is required, machining finish is required.

【0011】鉄系焼結部品は、成形、焼結後に内部に残
存する10〜20%の空孔を利用し、これを加圧により
部分的に潰して全体としては大きな塑性変形を生じさせ
ずに局所的に金型に沿った形状に変形することで寸法精
度を高めるいわゆるサイジングを行って高寸法精度を確
保している。ところが、このサイジングは、上述した通
り、残存空孔を利用した圧縮性材料の局所組成変形法で
あって、真密度の鍛造や伸線・スエージなどの非圧縮性
材料の組成変形とは変形のメカニズムが全く異なるの
で、対象物が十分な固化強度と適量の残存空孔を有して
いなければ利用することができない。アルミニウム合金
は、内部に10〜20%もの空孔が残存すると強度が著
しく低下するのでサイジング実施のための条件を見たし
得ない。一方、強度確保のために空孔をもたない真密度
の鍛造体にするとサイジングにならず、再鍛造となるた
め寸法精度は向上しない。
[0011] Iron-based sintered parts utilize 10 to 20% of pores remaining inside after molding and sintering, and are partially crushed by pressurization without causing large plastic deformation as a whole. In order to ensure high dimensional accuracy, so-called sizing is performed to enhance dimensional accuracy by locally deforming the shape along the mold. However, as described above, this sizing is a method of local composition deformation of compressible material using residual vacancies, and is different from composition deformation of incompressible material such as true density forging and wire drawing / swaging. Since the mechanism is completely different, it cannot be used unless the object has a sufficient solidification strength and an appropriate amount of residual pores. When 10 to 20% of the pores remain inside the aluminum alloy, the strength is significantly reduced, so that the conditions for sizing cannot be seen. On the other hand, if a true density forged body having no holes is used to ensure strength, sizing does not occur and re-forging is performed, so dimensional accuracy is not improved.

【0012】また、鉄系焼結摺動部品のように、内部に
残存空孔を保有していると、含油効果が生じて湿式潤滑
環境下では相互摺接面間に油膜が形成され、耐摩耗、摺
動特性が著しく高まるが、真密度の鍛造体は含油用の空
孔をもたなので含油による耐摩耗、摺動特性の向上も期
待できない。
[0012] Further, when residual pores are retained inside, as in the case of iron-based sintered sliding parts, an oil-impregnating effect is produced, and in a wet lubricating environment, an oil film is formed between the mutually sliding contact surfaces. Although the wear and sliding characteristics are remarkably increased, a true density forged body has pores for oil impregnation, so that it is not expected to improve the wear resistance and sliding properties due to oil impregnation.

【0013】本発明は、これ等の課題を解決するのに有
効なAl合金摺動部品の製造方法を提供しようとするも
のである。
An object of the present invention is to provide a method for manufacturing an Al alloy sliding component which is effective in solving these problems.

【0014】[0014]

【課題を解決するための手段】この発明は、上記の課題
を解決するため、急冷凝固アルミニウム合金粉末を冷間
又は温間で相対密度75〜90%に予備成形し、次に、
この予備成形体を不活性ガス雰囲気中300℃以上56
0℃以下で0.25〜3時間加熱脱ガス処理した後、直
ちに300〜560℃での熱間コイニングを行って空孔
率5〜8%の固化体となし、その後、この固化体をサイ
ジング処理する方法を採る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention preforms a rapidly solidified aluminum alloy powder in a cold or warm state to a relative density of 75 to 90%.
The preform is placed in an inert gas atmosphere at 300 ° C. or higher and 56
After degassing by heating at 0 ° C. or less for 0.25 to 3 hours, hot coining is immediately performed at 300 to 560 ° C. to form a solid having a porosity of 5 to 8%, and then the solid is sized. Take the method of processing.

【0015】なお、この方法において原料として用いる
急冷凝固Al合金粉末は、Fe、Ni、Crから選ばれ
た遷移元素のアルミ化合物を分散強化粒子とし、マトリ
ックスが重量比でCu:1〜5%,Mg:0.2〜1.
5%,Mn0.2〜1%を含有する溶体化時効硬化性ア
ルミニウム合金からなる多重強化アルミニウム合金であ
って、前記分散強化粒子を形成する遷移元素の添加量
が、いずれかの元素の単独添加時に重量比でFe:3〜
10%,Ni:3〜10%,Cr:2〜8%、2種又は
3種の元素の混合添加時に各元素が単独添加時と同一範
囲にあり、かつ、合計で15%を越えない範囲にあるも
のや上記の組成中に分散強化粒子形成元素としてさらに
Mo、V、Zrの中から選ばれた1種又は1種以上の元
素をそれぞれ重量比で1〜5%、合計で5%を越えない
範囲で含有し、かつ、Si:5〜17%を含有するも
の、或いは上記のSiに代えてSiC、TiC、Al2
3 粒子から選ばれた1種又は1種以上の硬質粒子を体
積比で10〜30%含有させたものが望ましい。
The rapidly solidified Al alloy powder used as a raw material in this method is made of an aluminum compound of a transition element selected from Fe, Ni, and Cr as dispersion strengthened particles, and the matrix has a weight ratio of Cu: 1 to 5%, Mg: 0.2-1.
A multi-strength aluminum alloy comprising a solution-aged hardenable aluminum alloy containing 5% and Mn of 0.2 to 1%, wherein the addition amount of a transition element forming the dispersion-strengthened particles is such that either element alone is added. Sometimes Fe: 3 ~
10%, Ni: 3 to 10%, Cr: 2 to 8% When two or three elements are mixed and added, each element is in the same range as when solely added, and the total does not exceed 15%. And one or more elements selected from Mo, V, and Zr as dispersion-strengthening particle-forming elements in the above composition, and 1 to 5% by weight, respectively, for a total of 5%. Not exceeding and containing Si: 5 to 17%, or SiC, TiC, Al 2 instead of Si
It is desirable that one or more hard particles selected from O 3 particles be contained in an amount of 10 to 30% by volume ratio.

【0016】予備成形体の加熱脱ガス処理時に用いる不
活性ガスは窒素、アルゴン等の一般的なガスでよい。
The inert gas used at the time of heat degassing of the preform may be a general gas such as nitrogen or argon.

【0017】また、熱間コイニング(熱間型押鍛造)時
に目的とする摺動部品に突起等を生じさせる必要がある
場合には、熱間コイニングに引続いて同一金型臼内で杵
や中栓或いはその両者を作動させて先方及び/若しくは
後方押出鍛造処理を施すとよい。
If it is necessary to form projections or the like on a target sliding part during hot coining (hot stamping and forging), a punch or the like is set in the same die after the hot coining. The inner plug or both may be operated to perform forward and / or backward extrusion forging.

【0018】[0018]

【作用】(1)使用材料 I/M合金はP/M合金と違って急冷凝固の効果をもた
ないため組成が同じであってもP/M合金のように高強
度が得られない。従って、本発明では急冷凝固Al合金
粉末を原料として用いる。
(1) Materials used Unlike the P / M alloy, the I / M alloy does not have the effect of rapid solidification, so that even if the composition is the same, high strength cannot be obtained unlike the P / M alloy. Therefore, in the present invention, the rapidly solidified Al alloy powder is used as a raw material.

【0019】(2)粉末成形 残留空孔は、通常の粉末冶金法の場合、相対密度約94
%を境として連結空孔から孤立空孔に変わっていくが、
粉末の予備成形体の段階で残留空孔が孤立していると、
次工程の加熱脱ガスがうまくいかない。この加熱脱ガス
処理のためには蒸発成分の通過に支障の無い大きさの連
結空孔を必要とし、この要求に応え得る範囲として予備
成形体の相対密度を75〜90%に定めた。この予備成
形体は最終製品に近い形に成形するほど後工程での成形
が容易になってコスト面で有利になる。
(2) Powder molding Residual pores have a relative density of about 94 in the case of ordinary powder metallurgy.
%, It changes from connected holes to isolated holes.
When residual vacancies are isolated at the stage of powder preform,
Heat degassing in the next step does not go well. For this heat degassing treatment, a connection hole having a size that does not hinder the passage of evaporating components is required, and the relative density of the preform is set to 75 to 90% as a range that can meet this requirement. As the preform is formed into a shape closer to the final product, it is easier to form in a subsequent step, which is advantageous in terms of cost.

【0020】(3)加熱処理 Al合金粉末粒子に吸着している水分及びその他の有機
成分を蒸発、除去して粉末どうしを完全結合させるのに
必要である。加熱温度が300℃未満又は加熱時間が
0.25時間未満では吸着成分の蒸発が十分に進まな
い。また、300℃以上の加熱では蒸発した結晶水がA
lと再反応して酸化Al皮膜を生成する恐れがあるが、
この発明では予備成形体を不活性ガス雰囲気中に置いて
いるので蒸発水のAlとの再反応が抑えられ、粉末どし
が結合し易い状態に保たれる。
(3) Heat treatment It is necessary to evaporate and remove the moisture and other organic components adsorbed on the Al alloy powder particles to completely combine the powders. If the heating temperature is less than 300 ° C. or the heating time is less than 0.25 hours, the evaporation of the adsorbed components does not proceed sufficiently. In addition, when heated at 300 ° C. or more, the evaporated crystallization water becomes A
There is a risk of reacting with l to form an Al oxide film,
In the present invention, since the preform is placed in an inert gas atmosphere, re-reaction of the evaporating water with Al is suppressed, and the state in which the powder is easily bonded is maintained.

【0021】なお、加熱温度が560℃を越えるか又は
加熱時間が3時間を越えると粉末内の微細組織が崩れて
急冷凝固による粉末の特性が失われる。従って、予備成
形体の加熱は不活性雰囲気下で行い、かつ、この際の条
件として加熱温度300〜560℃、加熱保持時間0.
25〜3時間を設定した。
If the heating temperature exceeds 560 ° C. or the heating time exceeds 3 hours, the fine structure in the powder is broken and the properties of the powder due to rapid solidification are lost. Therefore, heating of the preform is performed in an inert atmosphere, and at this time, a heating temperature of 300 to 560 ° C. and a heating holding time of 0.
25 to 3 hours were set.

【0022】(4)熱間コイニング(熱間型押鍛造) 前工程で表面の水分及びその他の有機物が除去されたA
l合金粉末を加熱、加圧して表面の酸化膜を十分に分
断、破壊した後、粉末どうしを圧着させ、これにより、
金属結合及び固相拡散を生じさせて粉末を完全に結合さ
せる。
(4) Hot coining (hot stamping and forging) A in which water and other organic substances on the surface have been removed in the previous step
After heating and pressing the alloy powder to sufficiently divide and break the oxide film on the surface, the powders are pressed together, thereby
Metal binding and solid state diffusion occur to fully bind the powder.

【0023】この工程において、熱間コイニングに引続
き同一金型臼内で杵や中栓を作動させて先方及び/若し
くは後方押出鍛造処理を行うと加圧方向と並行方向及び
/若しくは垂直方向の塑性流動で予備成形時には無かっ
た突起等を生じさせることができ、従って、部品形状が
多少複雑になっても製造は比較的簡単である。
In this step, following hot coining, the punch and the inner plug are operated in the same die to perform forward and / or backward extrusion forging, and the plasticity in the direction parallel to the pressing direction and / or in the vertical direction is obtained. Due to the flow, projections and the like that were not present during the preforming can be generated, and therefore, even if the shape of the part becomes somewhat complicated, the manufacture is relatively simple.

【0024】この熱間コイニングは、300℃未満の温
度では粉末間での十分な金属結合及び固相拡散が生じ
ず、粉末どうしの完全結合の目的が達成されない。一
方、560℃を越えると金属間化合物やその他の微細分
散粒子が粗大化して急冷凝固による粉末の特性を失い、
かつ粉末成形体と金型との焼付き等も生じ易くなる。
In this hot coining, at a temperature lower than 300 ° C., sufficient metal bonding and solid phase diffusion between powders do not occur, and the purpose of perfect bonding between powders cannot be achieved. On the other hand, if the temperature exceeds 560 ° C., intermetallic compounds and other finely dispersed particles become coarse and lose the properties of powder due to rapid solidification,
In addition, seizure between the powder compact and the mold is liable to occur.

【0025】熱間コイニング時の加圧力は、固化体内の
空孔率が5〜8%となる値に制御する必要がある。空孔
率が8%以上では固化体の強度が著しく低下し、使用時
に圧力を受ける摺動部品の場合、破損し易くなる。ま
た、空孔率が5%以下では固化体の圧縮性が悪くなって
サイジングによる高精度の確保が困難になる。加えて含
油性の悪化による摺動特性の低下が生じる。図1は、表
1に示す成分組成の急冷凝固Al合金粉末を用いたとき
の摺動特性(焼付き性能)、サイジング能及び固化体強
度の各特性と空孔率の関係を示している、摺動特性は図
2に示す試験法を用いて評価した。これから判るよう
に、空孔率を5〜8%にすれば、高精度と強度と摺動特
性を併せて満足させることができる。
It is necessary to control the pressure during hot coining to a value at which the porosity in the solidified body becomes 5 to 8%. When the porosity is 8% or more, the strength of the solidified body is remarkably reduced, and a sliding part which is subjected to pressure during use tends to be damaged. On the other hand, if the porosity is 5% or less, the compressibility of the solidified body deteriorates, and it becomes difficult to secure high precision by sizing. In addition, the sliding characteristics are deteriorated due to the deterioration of the oil-retaining property. FIG. 1 shows the relationship between porosity and sliding properties (seizure performance), sizing ability and solidified body strength when using a rapidly solidified Al alloy powder having the component composition shown in Table 1. The sliding characteristics were evaluated using the test method shown in FIG. As can be seen from the above, if the porosity is 5 to 8%, high precision, strength and sliding characteristics can be satisfied together.

【0026】[0026]

【表1】 [Table 1]

【0027】(5)サイジング処理 この処理は、金型を加熱せず常温のままで使用する冷間
サイジング、金型を300℃以下の一定温度に加熱して
温度制御しながら使用する温間サイジングのどちらであ
ってもよい。この条件の選択は、製造する摺動部品の形
状、材質、仕上げ寸法精度などを考慮して最適な条件を
選ぶことになる。なお、摺動部品の寸法精度は、このサ
イジングによる固化体の局所変形によって高まるが、サ
イジング時に焼付き等が起こると高寸法精度を得難くな
るので、サイジング処理は一般に使用される油などの液
体又は固体潤滑剤を使用して行うのが望ましい。
(5) Sizing treatment This treatment involves cold sizing in which the mold is used at room temperature without heating, and warm sizing in which the mold is heated to a constant temperature of 300 ° C. or less to control the temperature. Either may be used. In selecting these conditions, optimal conditions are selected in consideration of the shape, material, finishing dimensional accuracy, and the like of the sliding component to be manufactured. The dimensional accuracy of sliding parts is increased by local deformation of the solidified body due to this sizing, but if seizure occurs during sizing, it becomes difficult to obtain high dimensional accuracy. Alternatively, it is desirable to use a solid lubricant.

【0028】このほか、原料が遷移元素を含む急冷凝固
Al合金粉末の場合、上記の方法で得られたAl合金摺
動部品にT4、T6等の熱処理を施して部品強度を更に
高めることが可能である。
In addition, when the raw material is a rapidly solidified Al alloy powder containing a transition element, the Al alloy sliding part obtained by the above method can be subjected to a heat treatment such as T4 or T6 to further increase the part strength. It is.

【0029】以下は、使用原料について、特定の組成の
Al合金粉末が好ましいとした理由である。
The following is the reason why the Al alloy powder having a specific composition is preferable for the raw materials used.

【0030】先ず、材料合金中の各成分の作用とその含
有量について説明すると、 Fe:Alとの金属間化合物を生成して高温強度を向上
させる。その量が3%未満では添加効果が充分でなく、
一方、10%を越えると金属間化合物が粗大化して得ら
れる部品の強度が低下する。
First, the function and content of each component in the material alloy will be described. An intermetallic compound with Fe: Al is formed to improve the high-temperature strength. If the amount is less than 3%, the effect of addition is not sufficient,
On the other hand, if it exceeds 10%, the strength of the component obtained by coarsening of the intermetallic compound decreases.

【0031】Ni:Feと同様、Alとの金属間化合物
を生成して高温強度を高める。その量が3%未満又は1
0%超ではFe過不足時と同様の問題を生じる。
Like Ni: Fe, it forms an intermetallic compound with Al to increase the high-temperature strength. Less than 3% or 1
If it exceeds 0%, the same problem as in the case of excess or deficiency of Fe occurs.

【0032】Cr:耐食性を向上させ、また、それ自身
がマトリックス中に微細に分散し、かつAlとの微細な
金属間化合物を生成して強度を向上させる。その添加量
が2%未満では効果が充分でなく、また、8%を越えて
も効果は特に伸びず、晶出物が粗大化して強度、靭性が
かえって低下する。
Cr: Improves corrosion resistance, and itself is finely dispersed in a matrix, and forms a fine intermetallic compound with Al to improve strength. If the addition amount is less than 2%, the effect is not sufficient, and if it exceeds 8%, the effect is not particularly extended, and the crystallized material becomes coarse and strength and toughness are rather lowered.

【0033】なお、これ等の遷移元素は単独添加、混合
添加のいずれでも効果があるが、混合添加時の総量が1
5%を越えても効果は特に伸びない。逆に、原料粉末の
製造過程での高融点元素の添加量が増え、均一溶体化温
度を高温側に移行させることになるので原料費の面では
不利になる。
These transition elements are effective either independently or as a mixture, but the total amount of the transition elements is 1%.
Even if it exceeds 5%, the effect is not particularly increased. Conversely, the amount of the high melting point element added in the production process of the raw material powder is increased, and the uniform solution temperature is shifted to a higher temperature side, which is disadvantageous in terms of the raw material cost.

【0034】Si:Al素地中に微細に分散して強度を
向上させ、また、前述の遷移元素とAlとの化合物の粗
大化を抑制する。その量が5%未満では効果が薄く、ま
た、17%を越すと初晶Siの粒径が大きくなり、合金
の強度、靭性が低下するほか、粉末の鍛造性も悪くな
る。
Si: Al is finely dispersed in an Al base to improve strength, and suppresses coarsening of the above-mentioned compound of a transition element and Al. If the amount is less than 5%, the effect is small, and if it exceeds 17%, the grain size of primary crystal Si increases, the strength and toughness of the alloy decrease, and the forgeability of the powder also deteriorates.

【0035】SiC、TiC、Al2 3 :Siと同様
の働きをする。その量が10%(この場合はvo1比)
未満では効果が不足し、30%を越えると粉末の鍛造性
と合金の靭性が悪くなる。
SiC, TiC, Al 2 O 3 : Works similarly to Si. The amount is 10% (in this case, vo1 ratio)
If it is less than 30%, the effect is insufficient, and if it exceeds 30%, the forgeability of the powder and the toughness of the alloy deteriorate.

【0036】Cu及びMg:両者は固溶強化により強
度、硬度等の機械的特性を向上させ、同時にAl素地中
に析出して上記遷移元素とAlとの化合物の粗大化を抑
制する。Cuについてはその量が1%に満たないと効果
が不足し、また、5%を越えても効果の伸びがなく、逆
に耐食性の低下を招く。Mgについては0.5%未満で
は効果が不足し、1.5%を越えると効果の伸びがない
だけでなく晶出物が粗大化してかえって強度、靭性が低
下する。
Cu and Mg: Both improve mechanical properties such as strength and hardness by solid solution strengthening, and at the same time, precipitate in the Al base to suppress the compound of the transition element and Al from becoming coarse. If the amount of Cu is less than 1%, the effect is insufficient, and if it exceeds 5%, the effect is not extended, and conversely, the corrosion resistance is reduced. If the content of Mg is less than 0.5%, the effect is insufficient, and if it exceeds 1.5%, not only the effect does not elongate, but also the crystallized material becomes coarser and the strength and toughness are reduced.

【0037】Mn:Al合金を固溶強化し、また、繊維
組織化して強度を向上させ、かつ、遷移元素とAlとの
金属間化合物の粗大化を抑制する。その量が0.2%未
満では効果が不充分。また、1%を越えても効果は高ま
らず、粗大晶出物を生じるため強度、靭性がかえって低
下する。
Mn: A solid solution strengthening of an Al alloy is performed, and a fiber structure is formed to improve the strength and suppress the coarsening of an intermetallic compound of a transition element and Al. If the amount is less than 0.2%, the effect is insufficient. Further, even if it exceeds 1%, the effect does not increase and coarse crystals are formed, so that strength and toughness are rather lowered.

【0038】Mo、V、Zr:これ等はAl素地中に微
細かつ均一に分散して素地の強度を高める。いずれの元
素も1%未満では効果が充分でなく、また、合計添加量
が5%を越えるとこれ等の分散粒子における切欠感受性
が大きくなって強度が低下する。
Mo, V, Zr: These are finely and uniformly dispersed in an Al base to increase the strength of the base. If any of the elements is less than 1%, the effect is not sufficient, and if the total amount exceeds 5%, the notch sensitivity of these dispersed particles becomes large and the strength is reduced.

【0039】以上の各元素や硬質粒子を添加した原料粉
末は、強度、耐摩耗性、耐熱性に優れているが、このよ
うな元素や硬質粒子を含むと従来法による場合、拡散結
合がより起こり難くなる。これに対し、本発明の方法
は、不活性雰囲気中での加熱により蒸発水分とAlとの
再反応を防止しながら粉末表面の結合阻害物を除去し、
酸化皮膜が再生成していない状態で予備成形体を熱間コ
イニングして粉末どうしを強固に結合させた後、残存空
孔を利用してサイジングを行うので、機械的特性に優
れ、しかも寸法精度が高く、含油による摺動特性にも優
れているAl合金摺動部品を1回の熱間鍛造で簡単に経
済的に製造することが可能である。
The raw material powder to which the above-mentioned elements and hard particles are added is excellent in strength, wear resistance and heat resistance. Less likely to happen. In contrast, the method of the present invention removes binding inhibitors on the powder surface while preventing re-reaction between evaporated moisture and Al by heating in an inert atmosphere,
After the preformed body is hot-coined in a state where the oxide film has not been regenerated and the powders are firmly bonded to each other, sizing is performed using the remaining pores, so that the mechanical properties are excellent and the dimensional accuracy is high. It is possible to easily and economically manufacture an Al alloy sliding part having high oil content and excellent sliding properties due to oil impregnation by one hot forging.

【0040】[0040]

【実施例】表2に示す配合組成のA〜Qの急冷凝固Al
合金粉末を用いて表3に示す条件で外径25mm×内径2
0mm×長さ15mmの焼付き性能評価試験用試料No1〜No
21を作った。No1〜No17の試料は本発明の製造方法
で作られ、一方、No18〜21は比較製造方法で作られ
ている。そして、これ等の各試料についてサイジング後
の特性(引張強度、伸び、図2の試験方法による焼付き
性能)を評価した。また、外径30mmの固化体における
真円度も調べた。その結果を表3に併せて示す。
EXAMPLES Rapid solidification Al of A to Q having the composition shown in Table 2
Using the alloy powder, under the conditions shown in Table 3, outer diameter 25 mm x inner diameter 2
Sample No.1 ~ No for seizure performance evaluation test of 0mm x length 15mm
I made 21. Samples No. 1 to No. 17 were made by the manufacturing method of the present invention, while Nos. 18 to 21 were made by the comparative manufacturing method. Then, the characteristics (tensile strength, elongation, seizure performance by the test method of FIG. 2) after sizing were evaluated for each of these samples. Further, the roundness of the solidified body having an outer diameter of 30 mm was also examined. The results are shown in Table 3.

【0041】これから判るように、本発明の製造方法に
よれば、引張強度、焼付き荷重が非常に大きく、かつ、
伸びも大きく、さらに、真円度の誤差が僅か2.0〜
3.5μmの高精度Al合金摺動部品を1回の熱間鍛造
工程を経て経済的に作ることができる。
As can be seen, according to the production method of the present invention, the tensile strength and seizure load are very large, and
Elongation is large, and the roundness error is only 2.0 ~
A 3.5 μm high-precision Al alloy sliding part can be economically produced through a single hot forging process.

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【発明の効果】以上述べたように、本発明の方法によれ
ば、分散強化粒子の形成元素、溶体化時効硬化元素、硬
質粒子などを含む高性能の急冷凝固Al合金粉末を、材
料合金の特性を維持しながら、かつ、サイジング処理が
可能で含油性も維持される空孔を残存させながら1回の
熱間鍛造工程を経て強固に結合させることができるの
で、強度、耐摩耗性、湿式潤滑環境下での摺動特性、及
び寸法精度に優れる高精度摺動部品を比較的簡単に経済
的に製造することができ、Al合金摺動部品の信頼性向
上、用途拡大、コストダウン等が図れると云う効果が得
られる。
As described above, according to the method of the present invention, a high-performance rapidly solidified Al alloy powder containing elements forming dispersion-strengthened particles, solution-aging hardening elements, hard particles, etc., It is possible to bond firmly through one hot forging process while maintaining the characteristics and leaving pores that can be sizing and maintain oil-impregnating properties, so that strength, abrasion resistance, wet type High-precision sliding parts with excellent sliding characteristics and dimensional accuracy in a lubricating environment can be manufactured comparatively easily and economically, improving reliability of Al alloy sliding parts, expanding applications, and reducing costs. The effect of achieving is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】表1の組成の合金の摺動特性、サイジング能、
固化体強度の各特性と残存空孔率の関係を示すグラフ
FIG. 1 shows the sliding characteristics, sizing ability, and
Graph showing the relationship between each property of solidified body strength and residual porosity

【図2】焼付き性能評価の試験法を示す図FIG. 2 is a diagram showing a test method for evaluation of seizure performance.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 5/00 B22F 3/24 101 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 5/00 B22F 3/24 101

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe、Ni、Crから選ばれた遷移元素
のアルミ化合物を分散強化粒子として含み、マトリック
スが重量比でCu:1〜5%,Mg:0.2〜1.5
%,Mn0.2〜1%を含有する溶体化時効硬化性アル
ミニウム合金からなる多重強化アルミニウム合金であっ
て、前記分散強化粒子を形成するFe、Ni、Crの添
加量が、いずれかの元素の単独添加時にそれぞれ重量比
でFe:3〜10%,Ni:3〜10%,Cr:2〜8
%、Fe、Ni、Crのうちいずれか2種又は3種の元
素の混合添加時に各元素が単独添加時と同一範囲にあ
り、かつ、合計で15%を越えない範囲にあり、さら
に、前記分散強化粒子形成元素としてMo、V、Zrの
中から選ばれた1種又は1種以上の元素をそれぞれ重量
比で1〜5%、合計で5%を越えない範囲で含有し、か
つ、Si:5〜17%を含有する組成の急冷凝固アルミ
ニウム合金粉末を冷間又は温間で相対密度75〜90%
に予備成形し、次に、この予備成形体を不活性ガス雰囲
気中300℃以上560℃以下で0.25〜3時間加熱
脱ガス処理した後、直ちに300〜560℃での熱間コ
イニングを行って空孔率5〜8%の固化体となし、その
後、この固化体をサイジング処理することから成る高精
度アルミニウム合金摺動部品の製造方法。
Wherein [Claim 1] Fe, Ni, aluminum compound of a transition element selected from Cr as dispersion strengthened particles, Cu in the matrix weight ratio: 1~5%, Mg: 0.2~1.5
%, A multi-strength aluminum alloy comprising a solution-aged hardenable aluminum alloy containing 0.2-1% Mn, wherein the amount of Fe, Ni, Cr forming the dispersion-strengthened particles is at least one of Fe: 3 to 10%, Ni: 3 to 10%, Cr: 2 to 8
%, At the time of mixed addition of any two or three of Fe, Ni, and Cr, each element is in the same range as that of the single addition, and not more than 15% in total. One or more elements selected from Mo, V, and Zr as elements for forming dispersion-strengthened particles are each contained in a weight ratio of 1 to 5%, not exceeding 5% in total, and Si : A rapidly solidified aluminum alloy powder having a composition containing 5 to 17% is cooled or warmed to a relative density of 75 to 90%.
Then, the preformed body is heated and degassed in an inert gas atmosphere at 300 ° C. or more and 560 ° C. or less for 0.25 to 3 hours, and immediately hot-coined at 300 to 560 ° C. And producing a solid body having a porosity of 5 to 8%, and then subjecting the solid body to a sizing treatment.
【請求項2】 Fe、Ni、Crから選ばれた遷移元素
のアルミ化合物を分散強化粒子として含み、マトリック
スが重量比でCu:1〜5%,Mg:0.2〜1.5
%,Mn0.2〜1%を含有する溶体化時効硬化性アル
ミニウム合金からなる多重強化アルミニウム合金であっ
て、前記分散強化粒子を形成するFe、Ni、Crの添
加量が、いずれかの元素の単独添加時にそれぞれ重量比
でFe:3〜10%,Ni:3〜10%,Cr:2〜8
%、Fe、Ni、Crのうちいずれか2種又は3種の元
素の混合添加時に各元素が単独添加時と同一範囲にあ
り、かつ、合計で15%を越えない範囲にあり、さら
に、前記分散強化粒子形成元素としてMo、V、Zrの
中から選ばれた1種又は1種以上の元素をそれぞれ重量
比で1〜5%、合計で5%を越えない範囲で含有し、か
つ、SiC、TiC、Al2 3 粒子から選ばれた1種
又は1種以上の硬質粒子を体積比で10〜30%含有す
る急冷凝固アルミニウム合金粉末を冷間又は温間で相対
密度75〜90%に予備成形し、次に、この予備成形体
を不活性ガス雰囲気中300℃以上560℃以下で0.
25〜3時間加熱脱ガス処理した後、直ちに300〜5
60℃での熱間コイニングを行って空孔率5〜8%の固
化体となし、その後、この固化体をサイジング処理する
ことから成る高精度アルミニウム合金摺動部品の製造方
法。
2. An aluminum compound of a transition element selected from the group consisting of Fe, Ni, and Cr as dispersion-strengthened particles, and the matrix has a weight ratio of Cu: 1 to 5% and Mg: 0.2 to 1.5.
%, A multi-strength aluminum alloy comprising a solution-aged hardenable aluminum alloy containing 0.2-1% Mn, wherein the amount of Fe, Ni, Cr forming the dispersion-strengthened particles is at least one of Fe: 3 to 10%, Ni: 3 to 10%, Cr: 2 to 8
%, At the time of mixed addition of any two or three of Fe, Ni, and Cr, each element is in the same range as that of the single addition, and not more than 15% in total. One or more elements selected from Mo, V, and Zr as the elements for forming dispersion-strengthened particles are each contained in a weight ratio of 1 to 5%, not exceeding 5% in total, and SiC. , TiC, a rapidly solidified aluminum alloy powder containing 10-30% of one or one or more hard particles selected from Al 2 O 3 particles at a volume ratio relative density from 75 to 90% between cold or warm The preform is preformed, and then the preformed body is subjected to a heat treatment at 300 to 560 ° C in an inert gas atmosphere.
After heating and degassing for 25 to 3 hours, immediately 300 to 5 hours
A method for producing a high-precision aluminum alloy sliding component, comprising: performing hot coining at 60 ° C. to form a solid having a porosity of 5 to 8%, and then sizing the solid.
JP18889491A 1991-07-29 1991-07-29 Manufacturing method of high precision aluminum alloy sliding parts Expired - Fee Related JP3146529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18889491A JP3146529B2 (en) 1991-07-29 1991-07-29 Manufacturing method of high precision aluminum alloy sliding parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18889491A JP3146529B2 (en) 1991-07-29 1991-07-29 Manufacturing method of high precision aluminum alloy sliding parts

Publications (2)

Publication Number Publication Date
JPH0533013A JPH0533013A (en) 1993-02-09
JP3146529B2 true JP3146529B2 (en) 2001-03-19

Family

ID=16231747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18889491A Expired - Fee Related JP3146529B2 (en) 1991-07-29 1991-07-29 Manufacturing method of high precision aluminum alloy sliding parts

Country Status (1)

Country Link
JP (1) JP3146529B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451577B (en) 2008-07-02 2014-09-01 Sunplus Mmedia Inc Solar tracking device and method for tracking thereof
TWI369470B (en) * 2008-09-10 2012-08-01 Sunplus Mmedia Inc Solar tracking and concentration device
JP6523682B2 (en) * 2014-12-26 2019-06-05 Ntn株式会社 Sintered bearing

Also Published As

Publication number Publication date
JPH0533013A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
JP3782446B2 (en) High-strength, high-temperature, self-lubricating composite material and manufacturing method thereof
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JPH11504388A (en) Aluminum alloy powder mixture and sintered aluminum alloy
JPH08253826A (en) Sintered friction material, composite copper alloy powder used therefor and their production
JPH0625782A (en) High ductility aluminum sintered alloy and its manufacture as well as its application
EP0533950B1 (en) Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor
JP2001271129A (en) Sintering material and composite sintered sliding part
US5466277A (en) Starting powder for producing sintered-aluminum alloy, method for producing sintered parts, and sintered aluminum alloy
EP0600474B1 (en) High heat resisting and high abrasion resisting aluminum alloy
JPH0120215B2 (en)
JP3146529B2 (en) Manufacturing method of high precision aluminum alloy sliding parts
EP1371740B1 (en) Heat-resistant and creep-resistant aluminum alloy and billet thereof, and method for their production
JPH0625386B2 (en) Method for producing aluminum alloy powder and sintered body thereof
JPH0539507A (en) Rotor for oil pump made of aluminum alloy and production thereof
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JPS636215A (en) Bearing
JPH029099B2 (en)
JPS60147514A (en) High-temperature abrasion resistant valve seat
JPS62235455A (en) Aluminum bearing alloy and its production
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
JPH11107848A (en) Cylinder liner made of powder aluminum alloy
JP3336631B2 (en) Aluminum alloy oil pump
JP2584488B2 (en) Processing method of wear resistant aluminum alloy
JPH0421735A (en) Aluminum series bearing alloy
JPH0533093A (en) High strength aluminum alloy excellent in wear resistance and sliding property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees